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Abstract
Expression profiling of post-mortem human brain tissue has been widely used to study molecular
changes associated with neuropsychiatric diseases as well as normal processes such as aging.
Changes in expression associated with factors such as age, gender or postmortem interval are often
more pronounced than changes associated with disease. Therefore in addition to being of interest in
their own right, careful consideration of these effects are important in the interpretation of disease
studies. We performed a large meta-analysis of genome-wide expression studies of normal human
cortex to more fully catalogue the effects of age, gender, postmortem interval and brain pH, yielding
a “meta-signature” of gene expression changes for each factor. We validated our results by showing
a significant overlap with independent gene lists extracted from the literature. Importantly, meta-
analysis identifies genes which are not significant in any individual study. Finally, we show that
many schizophrenia candidate genes appear in the meta-signatures, reinforcing the idea that studies
must be carefully controlled for interactions between these factors and disease. In addition to the
inherent value of the meta-signatures, our results provide critical information for future studies of
disease effects in the human brain.

Introduction
Many studies have concerned genome-wide expression analysis of human postmortem brain
tissue with an aim to identify changes in expression associated with neuropsychiatric disease
(Mirnics et al., 2006). Human brain tissue presents a particular challenge for the analysis of
gene expression due to variability between individuals and tissue heterogeneity, making the
detection of small expression changes difficult. It is routine to match samples across conditions
and check for confounding effects of gender, age and other factors. This is not always easy, as
postmortem brain tissue is a limited resource and often sample sizes are small. Another
common method of reducing the effects of these factors involves adjustment during data
analysis. These methods include stratification of samples or implementation of statistical
techniques based on observed covariate distributions in the compared populations. However,
many studies are underpowered to detect genes so affected. This greatly complicates the
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detection of molecular changes associated with neuropsychiatric disorders such as
schizophrenia and bipolar disorder (Tomita et al., 2004).

It is therefore important to understand the effects of factors such as age, gender, brain pH and
postmortem interval (PMI) on gene expression, both to control for confounding sources of
variability when seeking disease effects, and as a means of elucidating biologically interesting
patterns due to the factors themselves. A number of studies have examined expression
differences associated with age (Lu et al., 2004, Erraji-Benchekroun et al., 2005), sex (Galfalvy
et al., 2003, Vawter et al., 2004, Reinius et al., 2008) and brain pH (Li et al., 2004, Mexal et
al., 2006). Because of small samples sizes and the presence of noise, our knowledge of gene
expression changes associated with these factors is likely to be incomplete.

One approach to detecting weak patterns is to use meta-analysis. In a meta-analysis, the results
from multiple studies are statistically pooled to provide an overall estimate of significance of
an effect. While meta-analysis has been increasingly used in the study of gene expression data
(Rhodes et al., 2004, Cahan et al., 2007, Borozan et al., 2008), to our knowledge only a few
studies have done so with post-mortem human brain data (Elashoff et al., 2007, Choi et al.,
2008, de Magalhaes et al., 2009).

In this paper we present a large cross-laboratory meta-analysis of human postmortem brain
data, integrating expression data from multiple studies, rather than a simple comparative
analysis of published gene lists. Our primary focus in this study is to examine gene expression
changes in normal brain with respect to four factors: age, gender, post-mortem interval (PMI)
and brain pH, for which data sets from control subjects are publicly available. While many
studies treat these factors as a nuisance and attempt to limit their range or control for them, we
show that considerable variability in gene expression exists due to these factors. Our results
provide new information on gene expression changes attributable to these factors.

Experimental Procedures
Data Collection

Genome-wide expression data sets were selected on the basis of public availability, inclusion
of normal subjects, use of neocortical tissue, and the availability sample characteristic data.
Details on each of the eleven datasets, including the source citation, can be found in Table 1.
Sources include the Stanley Medical Research Institute (SMRI), the Harvard Brain Bank, and
the Gene Expression Omnibus (GEO). GEO studies were identified by extensive manual and
keyword searches. While the SMRI has additional data sets, these represent repeated runs of
the samples from the same subjects, so we arbitrarily selected one data set to represent each of
the two SMRI brain collections. Sample characteristics for the normal subjects within each
dataset were collected (see Supplementary Table 1 for a summary). Datasets consisted of
single-channel intensity data generated from various Affymetrix platforms and one dataset
from the Illuimina HumanRef-8 BeadArray. For the majority of the datasets, we obtained pre-
processed data in which the expression levels were summarized, log transformed and
normalized by using the ‘rma’ function in the R bioconductor ‘affy’ package
(RDevelopmentCoreTeam, 2005). Where possible, we obtained the raw data (.cel files) for the
remaining datasets and reprocessed it using the ‘rma’ function. For the studies in which the
raw data was not available, we used the data in its given format.

Regression Analysis
Gene expression values for each probe, in each dataset, were modeled as a function of each of
the factors (age, sex, pH, and PMI). P-values were computed using one-sided tests, preformed
independently for the two alternative null hypotheses (i.e. gene expression does not increase
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with the confounding variable and gene expression does not decrease with the confounding
variable). To make a fair comparison across studies, we re-annotated probe sequences for each
array and mapped them to the corresponding GenBank gene using the Gemma database
(http://www.chibi.ubc.ca/Gemma/). Probes which were annotated to more than one gene were
removed from consideration. For cases in which multiple probes mapped to a single gene, we
combined p-values by retaining only the minimum p-value. Analyses were conducted in R
(RDevelopmentCoreTeam, 2005); code is available at http://chibi.ubc.ca/~mmistry/.

Meta-analysis of Differential Expression
The following meta-analysis was carried out for each of the four confounding factors, and each
hypothesis independently. We computed a summary statistic S across n studies for each gene
t using Fisher’s method (Fisher, 1948), which has been used previously in other microarray
meta-analyses (Rhodes et al., 2002, Hess and Iyer, 2007)

where pi is the regression p-value in the ith experiment. A given gene was included in the
analysis given if it was measured in at least three datasets and the particular sample
characteristic was reported. A p-value for S(t) is computed by observing that, under the null
hypothesis of uniform p-values within each study, S(t) has a χ2 distribution with 2n degrees of
freedom. The meta-analysis p-values for each signature were processed with the R ‘qvalue’
package to control the false discovery rate, yielding a q-value measure for each gene (Storey
and Tibshirani, 2003).

Validation analysis
We extracted genes lists from the expression analysis literature for age (Erraji-Benchekroun
et al., 2005), gender (Galfalvy et al., 2003) and brain pH (Mexal et al., 2006). Each set consisted
of a list of probes (Affymetrix probe sets) differentially expressed in human postmortem brain
as reported in their respective studies, which were then split based on direction of change. Each
probe was mapped to its corresponding gene using Gemma. Genes were removed if they were
not included in our meta-analysis. Details on each of the validation sets can be found in
Supplementary Table 1. Agreement of the meta-signature ranking with the validation sets was
performed using receiver operating characteristic (ROC) curve analysis.

Each meta-signature was further analyzed for functional enrichment of Gene Ontology (GO)
terms (Ashburner et al., 2000), using the ‘over-representation analysis’ (ORA) method in
ErmineJ (Lee et al., 2005). ORA evaluates the genes that meet a specified selection criterion
(meta-q < 0.001) and determines if there are gene sets which are statistically over-represented.
Probabilities are computed using the binomial approximation to the hypergeometric
distribution then corrected for multiple testing using the Benjamini-Hochberg procedure.

Results
Meta-analysis of differential expression

We assessed the global levels of gene expression across datasets by assigning rank values to
each gene based on its mean expression value within a dataset. While we observe variation
between studies, there still emerges a clear pattern of genes which are consistently strongly or
weakly expressed in the brain (data not shown) supporting the feasibility of comparing studies
to one another.
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We used linear regression to evaluate gene expression changes with respect to four factors
(age, sex, brain pH, and PMI), within each dataset. We considered both directions of change
(up- and down-regulation) for each factor, creating up to eight different scenarios for each
dataset. Although the focus of this paper is to report on the results from the meta-analysis across
datasets, we briefly summarized here the results from individual studies. The numbers of genes
that show evidence change with each of the factors (q < 0.01) is given in Table 2. Not
surprisingly, the datasets with smaller sample size showed fewer statistically significant
changes associated with the factors. Overall the factors associated with the most robust
differential expression were age and brain pH. Genes found to change in individual datasets
but not from meta-analysis can be found in Supplementary Table 7 at
http://chibi.ubc.ca/~mmistry/.

To examine changes in gene expression that were consistent across all datasets, or supported
by evidence from multiple data sets, we implemented a cross-study meta-analysis approach
(see Methods). The output of this analysis is eight meta-signatures (up or down for each of the
four factors). The top ten genes from each meta-signature can be found in Table 7. To examine
the results, we first extracted the corresponding p-values from each individual dataset and
visualized them as (smoothed) plots in the order determined by the meta-signature order (Figure
1). We observe that genes that have good meta-q-values tended to have good p-values in
multiple, but not necessarily all studies. We also demonstrate this using an alternative heat map
visualization (Supplementary Figure 1). More detailed results are plotted for some example
genes in Figure 2. These plots show that p-values for a given gene vary across individual
datasets, and the meta-analysis can identify genes which show only weak or non-significant
effects in some data sets. For example, in Figure 2, for age genes Gfap and Rgs4, we see weak
changes in expression level (up and down, respectively), that are not significant after multiple
test correction in those studies. On the other hand, we also find genes that show significant
effects in most if not all studies (e.g., Xist, Figure 2). In Figure 3 we assembled the top 50
genes down-regulated with age, and plotted expression levels within each dataset with samples
ordered by increasing age. For most of the studies, we observe a gradient across the dataset as
expression decreases from high to low levels, illustrating that the meta-analysis recovers many
genes which show fairly consistent trends across data sets.

While we have presented results from an analysis which treated each factor independently
(linear regression), we also performed a meta-analysis which models the factors simultaneously
in an analysis of covariance, yielding very similar results (available at
http://chibi.ubc.ca/~mmistry/). We also attempted to model interactions among factors, but this
was difficult due to lack of power.

Meta-profile evaluation
We tested the robustness of our meta-profiles by using a jackknife procedure. This involved
sequentially removing a dataset, performing the meta-analysis on the remaining datasets, and
then selecting genes at a meta-q < 0.01. This procedure was repeated for each data set in turn,
and genes found in all rounds retained as a “core” signature. Each of the core signatures
encompass more than half of the genes found in the corresponding meta-profiles, with the pH
meta-profiles as an exception. The ”core” signatures can be found in Supplementary Table 6
at http://chibi.ubc.ca/~mmistry/.

The studies we selected for meta-analysis were, in general, not designed to test the effects of
age, sex, pH or PMI; in fact attempts may have been made to limit the range of these factors
(especially in the case of PMI and pH). However, because human brain samples are difficult
to obtain, enough variability is allowed into studies to allow us to perform a meaningful meta-
analysis. We still questioned the extent to which our results would agree with more targeted
studies. Therefore, for the purpose of validation of our approach, we identified independent
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gene lists from the literature for age, sex and brain pH (we could not find a comprehensive
validation set for PMI). Details on validation sets can be found in Supplementary Table 2. Each
validation gene list was then separated into two groups based on direction of change, to
correspond with meta-signatures obtained from our meta-analysis. Obviously none of these
validation gene lists can be considered true gold standards, but help put our results in the context
of previous findings.

To quantify the predictive power of our analysis meta-signatures with respect to the
corresponding validation sets, we first preformed a standard receiver operating characteristic
(ROC) analysis. The score reported for each profile is the area under the ROC curve (AUC),
a value between 0 and 1, where 1.0 is perfect agreement with the external list and 0.5 would
reflect a random order. The AUC values for each of the profiles are reported in Table 3.
Individual ROC plots can be found in Supplementary Figure 2. We also tested the effect of
using a specific statistical threshold for selecting genes from the meta-profiles, by collecting
genes at two significance levels (meta-q <0.01, and meta-q < 0.001). The overlap with the
validation set was significant (p<0.001, Fisher s exact test; Table 3) for all signatures. We also
found a comparable overlap between each of the core signatures and the validation sets.

The brain pH profiles gave high AUC scores of 0.91 and 0.86 (up- and down-regulated genes,
respectively), when validated against DLPFC pH-sensitive genes taken from Vawter et al.
(2006). Additionally, we obtained reasonably high scores using a smaller independent pH gene
list obtained from Mexal et al. (2006), despite a difference in the brain region used between
the validation study and the meta-analysis (data not shown). Because pH itself probably
covaries across brain regions (Mexal et al., 2006), our results are consistent with the hypothesis
that pH-related changes in gene expression are similar across brain regions. The age profiles
on the other hand, exhibited slightly lower scores than those obtained for brain pH. Erraji-
Benchekroun et al. used samples from Brodmann areas 9 (dorsolateral PFC, BA9) and 47
(orbitofrontal PFC, BA47) from each subject, to evaluate age expression differences, showing
comparable changes in both brain regions (Erraji-Benchekroun et al., 2005). As such, our
validation set consisted of genes showing age expression changes collectively within both
neocortical brain regions BA9 and BA47. While many of these genes appear at the top of our
ranked lists, some are also dispersed throughout our ranking. The gender meta-signature from
our meta-analysis scored high when validated with a set of genes from Galfalvy et al. (2003),
with most validation genes sitting at the top of the ranking.

Overlap with schizophrenia candidate genes
We compared significant genes (meta-q < 0.001) from each of our meta-signatures with genes
known to be associated with schizophrenia. We extracted a list of 34 schizophrenia candidate
genes provided in a comprehensive literature review (Colantuoni et al., 2008), and searched
this list of genes within each of our meta-signatures. We found that 12 of these genes identified
with at least one of our meta-signatures, though the majority of overlap was observed amongst
the age and pH meta-profiles (Table 4). Overlap of genes with each of the age meta-signatures
was significant at p < 0.01.

Affected Biological Pathways
To derive a high-level biological interpretation of our meta-signatures we performed a Gene
Ontology (GO) (Ashburner et al., 2000) enrichment analysis using ErmineJ (Lee et al.,
2005). We extracted the ‘top’ GO categories for each of the profiles and a comparison amongst
them revealed various ‘biological processes’ unique to each meta-signature, in addition to a
number of shared categories. In Figure 4, we have displayed the top ten categories for each
age meta-signature depicting the number of genes represented in each GO category and the
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associated p-value (corrected for multiple testing). The ORA data generated for all eight meta-
signatures can be found in Supplementary Table 5 at http://chibi.ubc.ca/~mmistry/.

For genes increasing in expression with the progression of age, top GO categories included
those involved in cell growth and proliferation, and cell-cell interaction, consistent with
previous studies (Erraji-Benchekroun et al., 2005, Hong et al., 2008). Other processes included
the insulin receptor signaling pathway, encompassing a number of genes involved in longevity
and aging (Bartke, 2008). The age down-regulated genes presented an enrichment in synaptic
and/or receptor activity with GO categories such as neuron recognition, neurotransmitter
transport and secretion, and regulation of neurotransmitter levels. This finding is concordant
with existing aging studies in mouse and human (Erraji-Benchekroun et al., 2005, Oh et al.,
2009). Similarly, we found an enrichment of genes involved in neurotransmitter secretion in
the pH up-regulated meta-signature, in addition to genes implicated in metabolism and a
different array of pathways (i.e. G-protein signaling). The female and male meta-signatures
identified a similar enrichment of terms including relevant processes such as sex determination.
However, the genes associated with these shared terms were quite different between the two
meta-signatures. Functional enrichment analysis of our meta-signatures, although far from
providing hard cellular evidence, still provided a useful indication of the biological processes
altered by each factor and greater insight at the molecular level.

Correlation between factors and meta-profiles
Because we analyzed each factor independently, we wished to check whether factors were
correlated with each other across the 415 samples (Table 5). Age and PMI displayed the highest
correlation of 0.35, consistent with a positive correlation reported in (Galfalvy et al., 2003).
Age and brain pH displayed a slight negative correlation of −0.2. Further investigation of these
two factors revealed that categorizing the values of age into ‘young’ (< 50 years of age) and
‘old’ (≥ 50 years of age) groups resulted in a lower mean pH in the ‘old’ group versus the
‘young’. This was the general trend within each dataset (Supplementary Figure 3).

Due to these correlations, we expected that individual genes in some meta-profiles might
overlap with other meta-profiles (Table 6). Accordingly, the two factors displaying the highest
number of overlapping genes were those [up or down] in age and those [down or up] with brain
pH, respectively. However, these effects were weak and were even weaker in the ‘core’
signatures (Supplementary Table 4). We also found that a number of genes up-regulated with
PMI were also identified amongst the profiles for brain pH and age in both directions, but were
unable to extract any definite patterns.

Discussion
We have conducted a meta-analysis of gene expression in human cortex, examining gender,
age, postmortem interval and brain pH, as well as expression level. This meta-analysis was
made possible by the fact that many gene expression analyses have useful data for each of these
factors, even though they were usually considered potential “confounds” to be controlled. Our
results have at least two potential uses for future studies. First, the results of our meta-analysis
provide new information on the effects of each of the factors on gene expression and can be
studied further independently or used to bolster support for other studies. Second, the
identification of robust signatures associated with these factors will provide a ‘watch list’ of
genes which might be viewed cautiously if they are found to be implicated in neuropsychiatric
disease by expression studies. To facilitate the use of these lists in future studies, they are
provided in Supplementary Table 6 at http://chibi.ubc.ca/~mmistry/, with the top ten from each
list displayed in Table 7.
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There are some limitations of our study. We used a relatively simple meta-analysis method,
and other techniques may have even higher sensitivity. We combined datasets generated using
differing platforms, which may contribute noise and potentially reduce the power of our meta-
analysis. The MAQC (MicroArray Quality Control) project recently initiated a number of
studies to specifically address these concerns, and in general, reported a high agreement
between platforms (Canales et al., 2006, Shi et al., 2006, Shippy et al., 2006). A number of
other studies have been conducted to this end, showing agreement between platforms (Dobbin
et al., 2005, Irizarry et al., 2005, Petersen et al., 2005), and a high concordance between the
top functions identified by each platform (Pedotti et al., 2008, Li et al., 2009). While we
acknowledge that there still remain small differences between studies, we are only focussed
on the consistencies and combining them to extract more robust expression changes than can
be derived from single dataset studies. To maximize total sample size in our study, we used a
coarsely defined neocortical brain region. The majority of our datasets utilized samples from
the frontal cortex, but we also included a number of samples from the temporal and parietal
cortices. Various groups have studied regional patterns of gene expression in the postmortem
human brain, revealing cortical regions to generally cluster together indicating a shared global
expression profile (Khaitovich et al., 2004, Roth et al., 2006, Ernst et al., 2007). Finally, we
only considered linear model fits to age, pH and PMI. Future studies can address some of these
issues, and also include more data as studies become available.

Comparison of our results to the validation sets strongly supported the relevance of the meta-
signatures. However, the overlap in ‘top genes’ between meta-profiles and validation sets,
while statistically significant, was only a subset of the genes in the validation lists. There are
several possible explanations for this effect. One is that most of the studies we used treated
these factors as nuisances to be eliminated, which may have reduced our power to find real
changes. For example, the majority of the datasets have no subjects under the age of 30 at the
time of death, and most are over 40. In particular the Kato and Chen data sets, which use
samples from the Stanley Foundation, have a particularly well-controlled (narrow) age range.
In contrast the age validation set used a broader age range (13 to 79 years of age) (Erraji-
Benchekroun et al., 2005). Additionally, we expect biological variation among sample groups
(and therefore studies). Strong signals in any given data set, including the validation sets, may
be specific to that study. That is, none of the validation sets are truly gold standards. Further
examination of genes on the validation lists within each individual dataset supports this notion.
The agreement between the meta-analysis and the validation lists is better than the agreement
between the validation and any single dataset, with only a few to none of the validation genes
being identified in each dataset. In summary, the limited overlap of the meta-signatures with
the validation sets may simply be contingent on the data we used, and does not call into question
the validation sets or the meta-analysis.

Using a jackknife analysis, we obtained core signatures for each of the factors. We found a
large proportion of meta-profile genes overlap with the ‘core’ signatures, illustrating the ability
of our meta-analysis to extract gene profiles robust to influences from individual datasets. The
exception was brain pH, for which the ‘core’ signatures consisted of very few genes
(Supplementary Table 4). This was due to a large pH effect in the Kato dataset. However,
examination of the other data sets revealed that many genes showing large effects in the Kato
data set also show trends with pH (Supplementary Figure 4). Thus, even though the pH meta-
profiles are arguably biased by strong effects from the Kato dataset, these genes appear to show
weaker changes in many other data sets.

The inverse relationship we observed between our age and brain pH meta-profiles is in
agreement with a previous study (Harrison et al., 1995). A review of the literature also reveals
that results from independent gene expression studies examining changes with age are
strikingly similar to results derived from brain pH profiling studies, (Li et al., 2004, Erraji-
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Benchekroun et al., 2005, Berchtold et al., 2008, Hong et al., 2008, de Magalhaes et al.,
2009), further supporting this relationship. It has been suggested that the relationship between
age and pH is likely a result of slower modes of death experienced by elderly subjects (Harrison
et al., 1995), but this has not yet been fully explored. Previous studies however, have found
brain pH to be a proxy for agonal stress (Li et al., 2007). Subjects experiencing a longer terminal
phase of death results in lower brain pH levels than would be observed in subjects experiencing
a sudden death. We were unable to obtain cause of death information for the majority of our
datasets, and thus were unable to incorporate it into the meta-analysis. This raises the question
of whether the reasoning behind the inverse relationship is as hypothesized by Harrison et al.
(1995), or if the process of aging actually results in a general decline of brain pH.

To this point we have focused on evaluating the meta-analysis in light of other data sets, but
clearly one of the reasons to do a meta-analysis is to integrate information on weak patterns.
Indeed, our meta-analysis has confirmed previous finding and also added to them. By
assembling the significant genes (q<0.01) from individual datasets, we were able to generate
a ‘union’ signature, for each of the factors (Table 2). A comparison of the union signatures
against the corresponding meta-signatures revealed greater than 50% of the genes in each of
our meta-signatures to be novel (not found in any of the individual studies, and only revealed
by the meta-analysis). These novel genes span a broad range of cellular functions, implicating
various gene families with each of the different factors. An example is alterations of the gamma-
aminobutyric acid (GABA)-related transcriptome in age. We found two GABA receptors
(Gabbr and Gabrg2) and two glutamic acid decarboxylases (Gad67 and Gad65) to be down-
regulated with age. Animal studies have demonstrated that GABA receptors are markedly
decreased with age, and there is evidence to suggest this plays a role in age-related cognitive
changes (Jiang et al., 2001,El Idrissi, 2008). Evidence of reduced inhibitory neurotransmission
in the human brain is supported by evidence from a recent study (Loerch et al., 2008) using
the Lu et al. (2004) dataset, and is also observed in the results of our meta-analysis. Also
consistently altered in our age meta-signature are members of the regulator of G-protein
signalling (RGS) family. RGS family members, expressed in the brain and periphery, plays a
critical role in signal transduction by negatively regulating G-protein-coupled receptors
(GPCR) by means of their GTPase accelerating activity. These proteins have been implicated
in normal behavioural processes and various brain disorders. In the brain, they function to
modulate neurotransmission resulting from the activation of metabotropic GPCRs. Rgs4, a
member of this family has been previously shown to be down-regulated with age (Colantuoni
et al., 2008). In our study, we confirm this finding and additionally report four other members
of the family, (Rgs6, Rgs7, Rgs12 and Rgs17) that display an age-related decline in expression.
Alterations in expression of RGS genes presents a possible molecular mechanism that could
affect neuronal functioning during aging.

One motivation of our study was to identify gene expression changes which need to be
accounted for when studying potential expression changes in neuropsychiatric disorders such
as schizophrenia. This is important because changes in expression due to the factors we studied
can be large, compared to the reported effects of psychiatric disease (Mirnics et al., 2006).
Thus even a mild bias in age might cause a change in expression which is as large, or larger
than, the effect of disease. Therefore a gene which is known to change expression with age
(for example) must be analyzed very carefully if it is to be considered a candidate marker for
disease, because it is difficult to control perfectly for age. We searched our meta-signatures
for a list of schizophrenia associated genes and found that 12 of these genes identified with at
least one of our meta-signatures (Table 4). One such example is Rgs4, a gene that has been
extensively characterized in schizophrenia studies (Levitt et al., 2006) and which we find to
be down-regulated with age. Our results confirm previous work showing that Rgs4 is down-
regulated with age (Colantuoni et al., 2008). We also identified the receptor-ligand pair ErbB3
(v-erb-b2 erythroblastic leukemia viral oncogene homolog 3) and Nrg1 (neuregulin 1) in our
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age up- and down-regulated meta-signatures, respectively. Nrg1 and its receptor ErbB3 are
implicated in key neurodevelopmental processes in the nervous system (Falls, 2003), and have
also implicated in schizophrenia (Corfas et al., 2004). Evidence of a role for Nrg1-ErbB in
schizophrenia includes reduction in the level of ErbB3 expression in human postmortem
prefrontal cortex samples and genetic association evidence linking Nrg1 to schizophrenia
(Corfas et al., 2004). Another notable candidate is Gad67, a gene that is down-regulated across
our meta-signatures for age (consistent with some reports in the literature (Cashion et al.,
2004, Siegmund et al., 2007)), and up-regulated with pH. The reduction of Gad67 expression
in schizophrenia is arguably one of the best established changes for this disorder (Mirnics et
al., 2006). Together these findings of expression alterations of genes implicated in
schizophrenia with respect to these factors contribute an added complexity to their pre-existing
relationships with the disorder.

Looking specifically at findings from microarray studies of schizophrenia (Middleton et al.,
2002, Vawter et al., 2002, Iwamoto et al., 2005, Arion et al., 2007), we find additional overlap
with the results from our meta-analysis. Synaptic machinery transcripts such as Syn2 and
Synj1, reported as down-regulated in subjects with schizophrenia, are also down-regulated
with age in our meta-signatures. We see similar patterns between our data and other genes
reported to be down-regulated in schizophrenia such as Mapk1, Kcnk1, and Crym. Careful
analysis of such genes will allow us to explore the potential of interrelationships between these
factors and schizophrenia, and reveal the underlying factors driving the changes in gene
expression.

In summary, our results show that meta-analysis of human brain gene expression data is both
feasible and informative. We hope our study will encourage future meta-analyses on the effects
of neuropsychiatric disease on human brain gene expression.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of dataset p-values across meta-signature q-values
For each dataset used, gene p-values were plotted against the corresponding meta-q value and
a loess fit was computed to generate a smooth curve between points. The fact that most data
sets show a rise in p-values correlated with the meta-q-values indicates the contribution of
signals of varying strengths to the meta-signatures. An alternative view of the data using heat
maps is available in the supplement. The distorted curves for gender are due to the strong effects
of a small number of genes with very small meta-q-values (note the difference in scale of D
compared to A–C).
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Figure 2. Distribution of dataset p-values for individual genes: a magnified view
For selected genes from each of the meta-signatures we have plotted the log regression p-values
from each dataset. Open circles represent the datasets for which the gene was found to be
significant after multiple test correction (q < 0.01). Dashed line indicates a per-study p-value
significance level of 0.05 for reference.
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Figure 3. Top genes down-regulated with age
The top 50 age down-regulated genes were selected based on meta-analysis q-value ranking.
For each gene, the corresponding data from each study was extracted and converted to a heat
map. Expression values were normalized across samples within each dataset, and ordered by
age. Age is plotted at the top of each heat map. Light values in heat map indicate higher
expression. Grey bars indicate missing values. All data sets are at approximately the same
horizontal scale except the last, which is compressed to fit on the page.
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Figure 4. Gene Ontology Enrichment Analysis
For the age meta-signatures, we have displayed the top 10 GO terms identified using a GO
over-representation analysis. The primary y-axis displays the number of meta-signature genes
that fall in the given ‘biological process’ category, while the secondary axis displays the
associated p-value. GO terms were collapsed to parent term if parent and child both appeared
in the top ten.
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Table 4

Schizophrenia candidate gene analysis

Schizophrenia genes identified in meta-profiles

Age Down Opcml, Pldn, Nrg1, Rgs4, Bdnf, Dlg4, Gad67

Up Ntrk2, Ppp1r1b, Erbb3

pH Down Ntrk2, Slc1a2

Up Rgs4, Gad67

PMI Up Nrg1
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Table 5

Rank correlations between factors

Age Sex pH PMI

Age

Sex −0.12**

pH −0.2 * 0.17

PMI 0.35*** −0.2*** −0.06

Spearman rank correlations were computed using sample characteristic information for individual subjects.

*
indicates a p-value of ≤ 0.05

**
indicates a p-value of ≤ 0.01

***
indicates a p-value of ≪ 0.001
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