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Abstract
Over the last several decades, the relative contribution of early life events to individual disease
susceptibility has been explored extensively. Only fairly recently, however, has it become evident
that abnormal or excessive nociceptive activity experienced during the perinatal period may
permanently alter the normal development of the CNS and influence future responses to
somatosensory input. Given the significant rise in the number of premature infants receiving high-
technology intensive care over the last twenty years, ex-preterm neonates may be exceedingly
vulnerable to the long-term effects of repeated invasive interventions. The present review summarizes
available clinical and laboratory findings on the lasting impact of exposure to noxious stimulation
during early development, with a focus on the structural and functional alterations in nociceptive
circuits, and its sexually dimorphic impact.
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Premature Birth and Neonatal Intensive Care
Advances in perinatal medical care over the last two decades have substantially increased the
survival of infants born premature [1]. As part of this life-saving care, however, preterm
neonates are exposed to multiple invasive procedures in the neonatal intensive care unit (NICU)
which are frequently accompanied by local inflammation and tissue damage lasting for several
hours to days [2]. Growing clinical and basic science data suggests that exposure to repeated
tissue damaging interventions in neonates may induce lasting changes in the CNS and have
profound consequences for subsequent nociceptive processing [3;4;5;6;7;8;9;10].

Premature birth, defined as birth prior to 37 weeks gestation, occurs at alarmingly high rates
worldwide. According to the World Health Organization, 16.5% of all infants are born
premature, with over 500,000 preterm babies born each year in the United States alone [11].
Indeed, the rates of premature births in the United States have been escalating steadily to nearly
35% of all live births within the last two decades [11]. While the underlying causes of
prematurity are diverse and not completely understood, several factors are known to contribute
to the increased prevalence of preterm births, including assisted reproductive techniques [11],
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tobacco, alcohol and illicit drug use during pregnancy [12], as well as high maternal blood
pressure, diabetes and obesity [13].

Intrinsic to their care in the NICU, preterm infants undergo on average 14 noxious (painful
and/or tissue damaging) procedures per day including repeated heel lances, endotracheal
intubation, surgery, and respiratory and gastric suctioning [14;15]. Mounting evidence
indicates that nociceptive circuitry is both established and functional during late gestation, and
that premature infants are indeed capable of mounting developmentally specific and distinct
responses to noxious and non-noxious stimuli [16;17]. Moreover, cortical activation in
response to acute noxious stimulation in preterm neonates at 25 weeks has been reported,
suggesting the potential for higher-level processing of pain [18;19].

The Lasting Impact of Neonatal Noxious Stimulation
Pain is unique amongst sensory modalities. While olfactory, auditory, and tactile stimulation
are plentiful after birth, the newborn mammalian CNS is rarely exposed to nociceptive input.
During the last two decades, however, this situation has changed dramatically due to the wide
application of intensive care interventions in high-risk preterm neonates [7;20]. As the neonatal
period is a sensitive window for experience-induced plasticity due to the ongoing maturation
of nociceptive systems [21], accumulating evidence from clinical and animal research studies
indicates that exposure to noxious stimulation, experienced early in life, can leave a legacy of
altered somatosensory processing [8;22;23;24;25;26;27].

Long-Term Effects of Early Noxious Insult on Developing Nociceptive Systems-Clinical
Studies

Early pioneering studies on the lasting impact of early life noxious stimulation in human infants
reported that heel lance elicits decreased facial and enhanced cardiovascular responses,
indicative of an increased threshold for pain, in preterm infants with prior NICU experience
compared to age matched full-term infants [28]. Subsequent studies revealed that a higher
frequency of invasive procedures in preterm infants is significantly associated with dampened
nociceptive responses at 32 weeks of age compared to controls [29]. Moreover, decreased facial
responsiveness to immunization at 4 and 8 months [30], and blunted nociceptive sensitivity
have been reported in 18 month old former preterm neonates compared to full term peers
[24]. Former NICU toddlers are also rated by parents as less pain sensitive compared to term-
born controls, with a higher frequency of procedural pain exposure associated with more
dampened nociceptive responsiveness to noxious stimulation at 18 months of age [24].
Furthermore, a recent study reported that former extremely preterm children display a
generalized decrease in thermal but not mechanical nociceptive sensitivity during pre-
adolescence, suggesting lasting centrally mediated alterations in nociceptive pathways [31].

In contrast to the aforementioned reduced nociceptive responsiveness following superficial
(i.e. acute and inflammatory) types of neonatal noxious stimulation, deep somatic and visceral
noxious stimulation (i.e. early surgery and tissue damage) in infancy leads to prolonged
sensitization of nociceptive responses. Hypersensitivity to tissue damage is observed in human
infants, in that a decrease in sensory thresholds is observed for days or weeks in the presence
of local or deep visceral tissue injury [32;33]. Furthermore in premature infants, the withdrawal
reflex threshold in an area of local tissue damage following repeated heel lances is half the
value of that on the intact contralateral heel for several months following the initial insult
[34;35]. Interestingly, this response is not restricted to the site of injury, as former NICU infants
also display secondary hyperalgesia (sensitivity in surrounding areas of undamaged tissue) in
the intact, contralateral limb [36]. Similarly, infants that experienced surgery within the first
three months of life display enhanced hypersensitivity to subsequent surgery performed in the
same dermatome that persists for more than one year [37]. This hypersensitivity is also not
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restricted to the site of tissue damage, as neonates demonstrate greater sensitivity to mechanical
stimulation both in the area of incision and on the contralateral side of the body following
corrective unilateral abdominal surgery [38]. Moreover, term-born males that experienced un-
anesthetized neonatal circumcision respond more intensely to routine inoculation at 4-6 months
in comparison to uncircumcised infants; this effect is partially attenuated by pre-treatment with
a local anesthetic [39].

Interestingly, alterations in nociception do not appear to be transient in nature, whereby both
full- and preterm infants with prior NICU experience display an increased threshold for acute
thermal stimuli (i.e. decreased sensitivity), but enhanced perceptual sensitization to a prolonged
heat stimulus (i.e. hyper-sensitivity) up to 14 years of age [31;40]. Former preterm adolescents
also display significantly greater tenderness in response to pressure [41], are more prone to
lasting clinical somatization [40], and report earlier onset of pediatric migraine [42] compared
to full-term peers. Indeed, 10-year old children with former NICU experience also rate pictures
of medical events as more intense than pictures of psychosocial pain events, unlike term-born
children [43]. (See Table 1)

Long-Term Effects of Early Noxious Insult on Developing Nociceptive Systems-Experimental
Animal Studies

There is considerable parallel evidence in non-human animal models that neonatal noxious
stimulation induces persistent alterations in somatosensory structure and function that last into
adult life [8;27;44]. Data collected to date suggest, however, that the type of noxious
stimulation (acute: lasting minutes to days, versus tonic: lasting weeks to months) is critical to
the long-term impact. Early pioneering studies reported that chronic neonatal inflammation
induced by unilateral intraplantar application of Complete Freund's adjuvant results in
enhanced nociceptive sensitivity, as well as increased primary afferent nerve fiber innervation
of the spinal cord that extend into adulthood [27]. Similarly, local hindpaw skin wounds
induced during the first week of life result in long-lasting cutaneous hypersensitivity, expanded
dorsal horn receptive fields, and profound sprouting of local sensory nerve terminals in
adulthood [27;44]. This hyperinnervation is associated with a long-lasting decrease in
mechanical threshold in the wounded region, as well as a substantial up-regulation of growth
factors including NGF and BDNF [45;46;47]. Moreover, repeated intraplantar carrageenan
administration over the first three postnatal weeks results in enhanced nociceptive sensitivity
[26]. Thermal hyperalgesia following exposure to repetitive needle pricks, and lasting visceral
hyperalgesia associated with neonatal chronic chemical irritation of the colon have also been
reported [22;48]. Finally, a persistent neonatal lipopolysaccharide immune challenge produces
long-lasting hypersensitivity to mechanical and thermal stimuli in adulthood [49].

In contrast, a generalized decrease in nociceptive sensitivity as a consequence of acute or
superficial stimulation such as foot shock and intraplantar formalin injections have been
demonstrated [6;50]. Likewise, a long-term global elevation of nociceptive thresholds in
response to noxious thermal and mechanical stimulation following short-lasting local neonatal
inflammation with intraplantar carrageenan has been reported [8]. Remarkably, this
hypoalgesia is not only present in the neonatally injured hindpaw but is also present in the
intact contralateral paw. The degree of hypoalgesia produced by the P0 insult is not trivial;
paw withdrawal latencies increase by more than 40% in adult animals that were injured on the
day of birth in comparison to control animals. Injury-induced hypoalgesia is observed in both
adolescence (P40) and adulthood (P60), and is significantly greater in neonatally injured
females compared to injured males [25]. Alternatively, a few studies using similar paradigms
have failed to report any long-term effects on sensory thresholds [51;52]. This may be due to
variability in the concentration of the inflammatory agents used, as well as additional
contributing factors that are still not well-understood. The abovementioned hypoalgesic
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response that we report is also associated with excessive hyperalgesia in the presence of on-
going inflammation following a subsequent inflammatory insult in adulthood [8], with
neonatally injured females again exhibiting significantly greater hyperalgesia in the inflamed
paw than neonatally injured males. While an early study only reported this effect in the
neonatally inflamed hindpaw [8], we observed enhanced hyperlagesia in both the neonatally
injured and uninjured paws, which is consistent with previous studies reporting long-lasting
sensitization of afferent neurons and hyperalgesia following neonatal insult [22;46;48]. These
inconsistent results may be due to differences in the timing of neonatal injury, adult
reinflammation and/or behavioral testing.

This increased hyperalgesia following re-inflammation in adulthood may appear disparate with
the observed basal hypoalgesia. Anatomical studies, however, suggest that neonatal
inflammatory insult results in alterations in primary afferent innervation of the dorsal horn
[53], which may account for our observed hyperalgesia. In particular, neonatal inflammatory
insult increases primary afferent innervation in the L3-L5 spinal cord, as reflected by increased
expression of both CGRP and substance P immunoreactivity (unpublished observations).
Parallel changes are not observed in CGRP expression in the thoracic spinal cord of injured
animals, indicating that these changes are site-specific. Similar findings of an increase in
substance P levels in laminae I and II of the dorsal horn have been reported following chronic
inflammation in rodents [54]. As both CGRP and substance P are pro-nociceptive, enhanced
dorsal horn release of these peptides due to increased primary afferent input would be
associated with an enhanced response to noxious stimulation, and may provide the biological
basis for the observed increased hyperalgesia following intraplantar CFA in adulthood. The
dual findings of baseline hypoalgesia and enhanced hyperalgesia following a subsequent insult
are also surprisingly consistent with previous reports in former premature children. Grunau
and colleagues found that ex-preterm neonates are rated by parents as less reactive to everyday
bumps and scrapes; however parents rate that these children experience medical procedural
pain as more intense [24;55]. Similarly, adolescents with prior NICU experience display an
increased threshold for acute thermal stimuli (i.e. decreased sensitivity), but enhanced
perceptual sensitization to a prolonged heat stimulus (i.e. hyper-sensitivity) [40]. Taken
together, these data suggest that early life exposure to acute versus persistent noxious
stimulation may differentially affect developing nociceptive circuitry, thereby producing
distinct long-term effects. (See Table 2)

Interestingly, the aforementioned studies suggest that the long-term impact of neonatal noxious
insult mirrors the developmental consequences of early life stress. Compelling evidence in
experimental animal models has revealed that stressful experiences during the perinatal period
result in profound and permanent consequences on the behavioral and neuroendocrine
responses to stress stimuli in adulthood. Specifically, exposure to a potent stressor such as
repeated maternal separation results in lasting hyperactivation of the hypothalamic pituitary
adrenal (HPA) axis, while brief bouts of handling (i.e. mild stressor in rodents) during the
perinatal period result in a stress hypo-responsive phenotype [56;57;58]. Thus, given that the
lasting impact of early life stress on the HPA axis is dependent upon the degree (mild versus
severe) of perinatal stress exposure, the type of noxious stimulation (acute versus tonic),
similarly, appears to be critical to the long-term bivalent effects of neonatal insult on baseline
nociceptive thresholds.

Critical Period
The ability of early life experience to alter the organization of the CNS and subsequent behavior
is a major focus of neuroscientific research. Previous research in both human and non-human
animal models suggests that there are periods during nervous system development within which
perturbations have long-lasting, if not permanent consequences. This is in contrast to the
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relatively transient effects associated with the same perturbations at times outside these periods
[59;60]. Work in our laboratory has indicated that there is indeed a critical period for the long-
term consequences of neonatal inflammatory insult on adult sensory thresholds. Animals that
experienced unilateral neonatal hindpaw inflammation on both postnatal days zero and eight
(P0 and P8) display a significant decrease in sensitivity to noxious stimuli (hypoalgesia) in
adulthood, compared to animals injured at two weeks of age (P14) [25]. Together, these results
suggest that the impact of neonatal inflammation is dependent upon a sensitive period, and that
noxious insult occurring outside of this critical window does not permanently alter thermal
sensory thresholds. These results are consistent with previous animal studies that have also
reported that neonatal injury permanently alters visceral and somatic sensory processing,
however, only when induced during the first week of life [8;10].

Sex Differences In Response to Neonatal Noxious Stimulation
Given the sizable body of literature that indicates that males and females experience pain
differently [61;62;63], it is surprising that the majority of previous studies examining the impact
of neonatal noxious insult have been conducted exclusively in male rodents [8;26;27]. Our
laboratory has hypothesized that sexually dimorphic organizational hormones may contribute
to significant sex differences in response to noxious inflammatory insult [64;65;66;67]. Sex
steroid hormones such as estrogens and androgens modulate prenatal and postnatal functional
development and have potent influences on pain thresholds in male and female rats [68;69].
Prenatally, males experience a significant surge of testicular testosterone that is centrally
aromatized to estradiol and ultimately results in the masculinization of the male brain [64;65;
66;67]. In females, the ovaries are quiescent and intracerebral estradiol remains low at birth
[64;65;66;67]. Similar differences in hormone levels may also be present in peripheral tissues
as well. Given that estrogens have been shown to exert neuromodulatory and neuroprotective
effects following acute and chronic central injuries, increased perinatal central estradiol in
males may contribute to lasting sexually dimorphic responses to early life noxious stimulation
[64;70;71].

To our knowledge, we reported for the first time that neonatal inflammatory insult was indeed
sexually dimorphic, with females displaying significantly greater basal hypoalgesia in
adulthood in comparison to males. The paw withdrawal latency of females injured with 1%
CGN was more than 3 seconds longer in both the inflamed and intact hindpaws compared to
injured males [25]. Moreover, we showed that female rats injured at P14, when estradiol
concentrations are comparable in males and females, displayed equivalent levels of baseline
hypoalgesia as injured males. This further suggests that sex differences in the neonatal
neuroendocrine environment contribute to the observed sexually dimorphic impact of neonatal
inflammatory insult [25]. Estrogen also influences the expression of a number of pro-
inflammatory as well as pro-nociceptive agents that may contribute to sex differences in
nociceptive responses. For example, prostaglandins (which are pro-inflammatory) are released
peripherally in response to injury, and estrogen has been shown to modulate both prostaglandin
and COX-1 and COX-2 expression in peripheral tissues [72]. In adults, estrogens modulate
vascular tone in a tissue specific manner (vasodilation, vasoconstriction), which may lead to
differences in inflammation-induced edema [71]. Peripheral injury also results in increased
BDNF that is thought to promote neuronal survival and healing. As estradiol increases BDNF
expression centrally, this may also attenuate the adverse effect of peripheral injury [73].

In addition, activational gonadal hormones can alter the processing of nociceptive information.
Sex-steroids influence endogenous opioid systems [74;75], as well as the activity of other
neuromodulators involved in nociceptive processing; including substance P, gamma-
aminobutyric acid (GABA), glutamate, dopamine, serotonin and norepinephrine [76;77].
Moreover, gonadal hormones have been shown to have a marked influence on estrous cycle
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effects on nociceptive and analgesic sensitivity in rodents [78;79], as well as menstrual cycle
variability in chronic pain conditions such as migraine headache [80], temporomandibular
disorders [81], and fibromyalgia [82].

Thus, several mechanisms may contribute to a sexually dimorphic effect of neonatal noxious
insult, including sex differences in the neuroendocrine environment at the time of injury and/
or at the time of testing. While there are no reported sex differences in response to early life
noxious stimulation in premature infants, primarily because of the small sample sizes that are
unable detect sexual dimorphic effects, the aforementioned studies suggest that the lasting
impact of procedural pain experienced in the NICU may indeed be sexually dimorphic. In
addition, all of the previous experimental rodent studies that have examined the lasting
consequences of neonatal noxious insult on developing nociceptive circuits have been
conducted exclusively in males. Hence, the inclusion of female subjects in basic and clinical
research studies examining this topic is warranted, as premature females may be at considerably
increased risk for long-term consequences of early life trauma.

Increased Endogenous Opioid Tone: A Potential Mechanism for the Neonatal
Injury-Induced Deficits in Nociceptive Responsiveness

While the impact of neonatal noxious stimulation on developing nociceptive circuitry and
subsequent pain processing and perception has been the focus of a significant amount of
research within the last decade, clinical and experimental studies have failed to elucidate the
mechanisms underlying the reported lasting alterations in nociceptive responsiveness. The
periaqueductal gray (PAG), and its descending projections to the rostral ventromedial medulla
(RVM) and the spinal cord dorsal horn, constitute a primary anatomical circuit for the
descending modulation of pain [83]. The PAG is rich in nerve terminals and fibers containing
endogenous opioids [84], and opioid receptors are localized throughout the rostral-caudal axis
of the PAG [85]. Interestingly, while in rats the anatomical connections for nociceptive
modulation are present at birth, descending inhibitory controls are functionally immature
throughout the first postnatal weeks [86;87]. The delayed maturation of descending inhibition
may therefore contribute to the increased vulnerability of the immature somatosensory system
to excessive afferent input, whereby exposure to neonatal noxious stimulation during a critical
window may alter the functional integrity of endogenous descending inhibitory systems.
Indeed, our laboratory hypothesized that neonatal injury during this critical developmental
period (P0-P8) [25] results in increased afferent drive to CNS sites responsive to noxious input
(eg. PAG). This increased drive results in the activation of endogenous pain inhibitory circuits
and the subsequent release of endogenous opioid peptides. As the inflammation associated
with intraplantar carrageenan is persistent (lasting approximately 24-48 hours), the release of
endogenous opioids is sustained, and this continuous opioid release, during a time of increased
developmental plasticity, is subsequently maintained into adulthood. This is supported by
mounting behavioral data [8;25]. Specifically, the observable hypoalgesia following neonatal
injury is limb non-specific (present in both the forepaws and hindpaws) and global in nature
(somatic and visceral) [10;25]. Therefore, it appears to involve multiple segmental levels of
the spinal cord, various dermatomes, and occurs bilaterally. Indeed these results are not easily
explained by the induced unilateral neonatal insult that impacts few ipsilateral spinal levels.
Consequently, the hypoalgesia appears better explained by alterations in descending
nociceptive circuitry, such as that arising from the PAG, that produce global, limb-non-specific
analgesia along the entire axis when activated.

Parallel studies have reported that increased afferent drive during the developmental critical
period results in the reorganization of somatosensory circuits in adulthood, and interestingly,
changes in endogenous pain modulation in humans as a consequence of neonatal pain has been
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previously proposed to account for the long term changes in pain sensitivity observed in NICU
infants exposed to frequent noxious interventions [88].

We have recently reported a significant increase in PAG opioid peptide expression (beta-
endorphin and met/leu-enkephalin) as a consequence of neonatal injury [89]. It was notable
that alterations in the endorphin and enkephalinergic systems were very well correlated across
similar regions and levels of the PAG, suggesting that the two opioidergic systems act in
parallel in response to neonatal inflammation and nociception. While comparable studies
cannot be conducted in neonates, previous studies in adult rats have also reported that hindpaw
inflammation results in upregulated biosynthesis of pro-dynorphin and pro-enkephalin in
dorsal horn neurons [90;91], and a significant increase in endogenous opioid peptide release
within the PAG [92]. Noxious stimulation-induced changes in opioid peptide expression are
also paralleled by an increase in mRNA expression [90]. As stated above, our working
hypothesis is that neonatal inflammation results in the release of endogenous opioid peptides
within the PAG as a mechanism of decreasing nociception. Surprisingly, a parallel decrease
in opioid receptor expression was also noted. Previous studies have similarly reported a long-
term increase in endogenous opioid peptide along with a concomitant decrease in mu and delta
opioid receptor density in the lateral hypothalamus of offspring following gestational stress
[93;94].

Alternatively, however, opioid receptors are rapidly internalized following ligand binding,
which would also result in a concomitant decrease in opioid receptor availability. Taken
together, these studies suggest that early life stressors can confer long-lasting changes in
supraspinal opioidergic circuits that are reflected by changes in peptide and receptor
expression. Interestingly, we reported a significantly greater increase in met-enkephalin
observed in neonatally injured females compared to males. This differential change in peptide
expression may contribute to the increased hypoalgesia observed in females [25]. No
significant sex difference in met-enkephalin immunoreactivity was present at baseline,
indicating that the observed sex differences were injury-induced. In parallel behavioral studies,
we found that intra-PAG administration of the opioid antagonist naloxone significantly reduced
neonatal injury-induced hypoalgesia, further implicating the PAG as the primary site whereby
neonatal injury permanently alters somatosensory processing [89].

While these results strongly suggest that persistent alterations in baseline nociceptive
thresholds associated with neonatal inflammatory insult are mediated by a central increase in
endogenous opioid tone, additional mechanisms may also contribute. Previous studies have
demonstrated that early life insult also results in increased serotonergic receptor expression in
the PAG [95], as well as upregulated GABA, serotonin, opioid, neuropeptide Y, tachykinin
and interleukin systems at the spinal level [96]. Therefore, a multitude of alterations at the
levels of the brain and spinal cord may contribute to the observable behavioral alterations in
adulthood following neonatal noxious insult.

Additionally, noxious neonatal experiences lead not only to decreased nociceptive sensitivity
in adulthood, but also to significant alterations in the behavioral and neuroendocrine responses
to stress [6;22;97;98;99;100]. Blunted emotionality, decreased anxiety, and reduced basal and
stress induced plasma corticotropin releasing factor (CRF) and adrenocorticotropin hormone
(ACTH) are displayed in adult rats following short-lasting, local inflammation experienced
during the first week of life [6;95]. Premature infants with extensive NICU care also exhibit
low basal levels of stress hormones at 3 months of age compared to their full-term counterparts
[101]. Thus, alterations in the developing hypothalamic-pituitary-adrenal axis may also
contribute to the long-term basal hypoalgesia following neonatal hindpaw inflammation.
Indeed, our preliminary data suggests that neonatal noxious stimulation produces a generalized
reduction in reactivity to non-life threatening aversive environmental stimuli due to parallel
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alterations in supraspinal nociceptive and stress modulatory circuits [8;95]. For example,
neonatally injured male and female rats tested in adulthood display reduced anxiety in the open
field and elevated plus maze, as indicated by an increase in time spent in the open areas. By
contrast, in the forced swim test, injured animals display significantly shorter latencies to
immobility suggesting a hyper-response to a strong physiological stressor (unpublished
observations). Furthermore, corticosterone (CORT) levels were significantly blunted in injured
females at baseline and following restraint stress. Anseloni et al [85] similarly reported that
neonatally-injured animals displayed reduced anxiety behavior, however found increased
latency to immobility to the forced swim test. The reasons for the discrepant results are not
known, but may include differences in the type of injury paradigm employed, or in the age at
the time of injury. Regardless, together these studies indicate that neonatal injury alters
adulthood stress and anxiety-related behaviors in a sexually dimorphic manner, and contributes
to mounting evidence that neonatal trauma in the absence of analgesics has long-term
polysystemic adverse effects.

Clinical Implications for Changes in Endogenous Opioid Tone
Our studies have shown that persistent pain experienced early in life results in decreased mu
and delta receptor availability, suggesting a persistent activation of opioid receptors due to
enhanced release of endogenous opioid peptides. This decrease in receptor availability is
supported by our previous findings demonstrating a significant rightward shift in the morphine
dose-response curve in adult animals that were injured neonatally [102]. Similar results have
been reported in children, in that the number of invasive procedures experienced in the neonatal
intensive care unit are inversely correlated with morphine effectiveness [29]. Despite the
current knowledge that neonates are responsive to noxious stimuli, the majority of routine
procedures, including repeated heel-lances, endotracheal intubations and minor surgeries are
performed in the absence of analgesics [15]. Indeed recent studies have reported that neonates
receiving NICU treatment experience an average of 14 noxious procedures per day, with fewer
than 35% receiving appropriate analgesic therapy [15]. The findings that neonatal injury results
in long-term changes in opioid tone and hypoalgesia have serious implications for future pain
management in neonates.

Effects Of Analgesia On Developing Nociceptive Circuitry
Despite the current knowledge that preterm infants are responsive to noxious stimulation
[17;103;104] and the accumulating evidence that invasive procedures can have lasting effects
on developing nociceptive circuitry, neonatal pain remains an under-recognized and under-
treated condition in the NICU [15;105;106]. Indeed, many life-saving intensive care
interventions are performed in the absence of analgesics [15;105;106;107].

Conflicting evidence exists as to the clinical benefits of opioid analgesia in premature infants
undergoing invasive procedures in the NICU [29;108;109;110;111]. For example, altered pain
responses in former preterm neonates can be predicted by the number of previous painful
procedures and are normalized by the early use of morphine as an analgesic [29]. In addition,
post-operative morphine analgesia in preterm and full-term infants reduces behavioral and
hormonal stress responses [112;113;114] and is associated with decreased mortality [115;
116]. Furthermore, 45 month-old children that experienced operations following pre-emptive
analgesia during early life respond to immunization pain in a similar manner as non-operated
age-matched controls [117]. Lastly, the long-term outcomes at 5-6 years of age of formerly
preterm children who were exposed to morphine in the neonatal period indicate no adverse
effects of morphine on intelligence, motor function, cognitive development or other behavioral
outcomes [29;30;110;118].
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Alternatively, morphine is not recommended as a standard of care for acute pain resulting from
invasive procedures in ventilated preterm newborns [119;120]. Further conflicting evidence
exists on the long-term effects of early opiate exposure on later cognitive and motor abilities
in preterm infants. Specifically, higher morphine exposure is associated with poorer motor
development at 8 months, but not 18 months of age [109]. Similarly, neonatal morphine
analgesia contributes to subtle neurobehavioral differences, including altered motor function,
in preterm infants at 36 weeks [111]. Parallel evidence in rodents suggests delays in motor
development following early morphine exposure [121], and a recent study demonstrated
marked learning impairments in passive avoidance and forced swim tasks in adulthood
following neonatal exposure to opiates [122].

Clearly, the aforementioned studies imply the importance of additional research to evaluate
both the short-term and long-term effects of morphine analgesia on the neurobehavioral
outcomes of prematurity, specifically the impact of neonatal opiate exposure on motor and
cognitive development. Further studies examining the effects of pre-emptive analgesics in the
NICU are challenging, however, as the humane care of infants requires physicians to treat those
perceived to be in distress. As such, the gaps in our knowledge of the long-term risks and
benefits of analgesic therapy in newborns would greatly benefit from experimental animal
models, as very few studies have examined whether opioid analgesics can be used to prevent
the long-term sequelae associated with neonatal noxious insult [100].

We have previously demonstrated that pre-emptive morphine administration blocks neonatal
injury induced thermal and mechanical hypoalgesia in both the injured and uninjured paws in
adolescence (P40) and adulthood (P60) [99]. Moreover, morphine attenuation of the
hypoalgesia was reported to be comparable in males and females [90]. These results are
consistent with previous studies in rodents that report daily morphine administration prior to
intraplantar formalin during the first week of life significantly reduces the long-term effects of
repetitive pain [123]. Previous studies in humans have also reported that morphine therapy
ameliorates the effects of early repetitive noxious stimuli in extremely low birth weight infants
at 4 months of age [29]. Similarly, children who had minor neonatal operations and received
pre-emptive analgesia responded to immunization pain in a similar manner as non-operated
age-matched controls [117]. The ability of pre-emptive morphine to block the hypoalgesia may
indeed occur through direct modulation of primary afferent drive into the spinal cord, thereby
inhibiting the central relay of inflammatory pain and preventing the subsequent increase in
descending endogenous opioid tone [99]. However, the effects of morphine in these studies
may partly be a consequence of modification of the inflammatory response and/or the stress
response to neonatal inflammatory insult [124;125].

Neonatal morphine has also been shown to significantly attenuate CFA- induced hyperalgesia
and increased the rate of recovery, such that both males and females recover 7 days faster than
saline treated injured controls [99]. As previously stated, increased primary afferent innervation
of the spinal cord dorsal horn following neonatal inflammatory insult may account for our
observed hyperalgesia in adulthood [25]. Administration of morphine at the time of injury
would be expected to inhibit this increase in primary afferent input, thereby preventing the
entire cascade of behavioral, physiological and anatomical deficits associated with neonatal
inflammation. In regard to recovery, clinical reports demonstrate that at 32 weeks of age,
preterm infants experience a reduced rate of recovery to skin breaking procedures [126], and
exhibit subtle differences in ability to recover from finger lance at 4 months compared to full
term controls [30]. There are no reports on the impact of pre-emptive morphine on recovery
rates in premature neonates; however, these data suggest that morphine analgesia may in fact
significantly increase the rate of recovery following procedural pain in NICU infants.
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While neonatal morphine administration does not significantly alter morphine's antinociceptive
effects in adulthood in males or females (i.e. no significant shift in ED50 values), interestingly,
a significant rightward shift in ED50 is noted in neonatally injured animals that do not receive
neonatal morphine [99]. These results have serious clinical implications. Previous studies have
reported that pre-term infants that experience surgery during the first three months of life have
significantly higher peri- and post-operative analgesic requirements in response to surgery in
the same or different dermatome compared to control infants [37;114]. Similarly, mice exposed
to chronic noxious stimulation display increased tail flick latencies compared to control
animals, and a significant two-fold increase in the ED50 of morphine in response to abdominal
constriction [127]. As noxious stimulation during the neonatal period leads to increased
activation of opioid systems in a manner analogous to the repeated application of exogenous
opiates, these studies suggest that neonatal injury produces cross-tolerance to the analgesic
effects of morphine thereby decreasing the subsequent effectiveness of morphine [128;129;
130]. Again interestingly, exposure to morphine neonatally does not result in a significant shift
in ED50 values. Therefore, it appears that opioid cross tolerance may be associated with
neonatal injury-induced chronic exposure to endogenous opioids resulting from a potentiation
of the descending inhibitory circuit, and not a result of exposure to morphine on P0.
Alternatively, neonatal stress associated with maternal separation and repeated handling has
also been suggested to reduce opioid analgesia [99;131]. This suggests that alterations in opioid
analgesia may reflect a combined effect of neonatal nociceptive experience as well as early
life stress, and may involve altered responsiveness of endogenous analgesia circuits as well as
the hypothalamic-pituitary-adrenal axis [4].

Final Remarks
Although research into the long-term consequences of noxious stimulation during the neonatal
period have spanned over two decades, our understanding of neonatal pain is literally still in
its infancy. The studies presented in this review have established that exposure to neonatal
noxious insult is associated with a lasting alteration in both basal nociceptive sensitivity and
response to a subsequent injury in adulthood (See Figure 1). Moreover, the impact of neonatal
injury appears to be significantly exacerbated in females in comparison to males. The clear
presence of a sex difference in the response to early insult may indeed contribute to the higher
prevalence, severity and duration of pain syndromes observed in women than men.
Furthermore, the profound alterations of nociceptive thresholds following neonatal
inflammation may be mediated by an experience-induced facilitated activation of descending
nociceptive pathways, characterized by dynamic physiological and anatomical modification
and modulation of opioidergic systems in the PAG. Finally, pre-emptive analgesia has been
shown to ameliorate the long-term effects of neonatal injury on adult nociception, which
provides compelling justification for the use of analgesics prior to the initiation of noxious
procedures performed on neonates. Collectively, these studies present valuable information
about the long-term consequences of neonatal noxious stimulation, which may ultimately lead
to improved understanding and treatment of the lasting effects of repeated invasive
interventions in premature infants in the NICU.
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Figure 1.
The Lasting Impact of Neonatal Inflammatory Insult: A Summary. (A) Intraplantar
carrageenan (CGN) on the day of birth (P0) results in (B: left-handled; right-1% CGN) a lasting
increase in primary afferent innervation of the dorsal horn of the lumbar spinal cord, ultimately
leading to (C) an increase in endogenous opioid tone which is characterized by (D: top left-
met enkephalin handled; top right-met enkephalin 1% CGN; bottom right-beta endorphin 1%
CGN; bottom left-beta endorphin handled) a significant increase in enkephalin and beta
endorphin immunoreactivity and (E: top left-MOR handled; top right-MOR 1% CGN; bottom
right-DOR 1% CGN; bottom left-DOR handled) a significant decrease in mu and delta opioid
receptor binding in the PAG. This increase in opioid tone contributes to the (F) observed
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hypoalgesia at baseline testing. (G) In the presence of a subsequent major noxious insult in
adulthood, (H: left-handled; right-1% CGN) neonatally injured animals have increased release
of pro-nociceptive peptides (i.e. CGRP and substance P) compared to handled animals,
resulting in (I) enhanced hyperalgesia following intraplantar CFA.
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