Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Apr;102(1):281–282. doi: 10.1128/jb.102.1.281-282.1970

Subterminal Oxidation of Aliphatic Hydrocarbons

F W Forney a,1, A J Markovetz a
PMCID: PMC285001  PMID: 4985544

Abstract

Evidence is presented for a catabolic pathway of n-alkane oxidation which proceeds via subterminal oxidation rather than methyl group oxidation.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DWORKIN M., FOSTER J. W. Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol. 1958 May;75(5):592–603. doi: 10.1128/jb.75.5.592-603.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Forney F. W., Markovetz A. J. An enzyme system for aliphatic methyl ketone oxidation. Biochem Biophys Res Commun. 1969 Sep 24;37(1):31–38. doi: 10.1016/0006-291x(69)90876-6. [DOI] [PubMed] [Google Scholar]
  3. Forney F. W., Markovetz A. J., Kallio R. E. Bacterial oxidation of 2-tridecanone to 1-undecanol. J Bacteriol. 1967 Feb;93(2):649–655. doi: 10.1128/jb.93.2.649-655.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forney F. W., Markovetz A. J. Oxidative degradation of methyl ketones. II. Chemical pathway for degradation of 2-tridecanone by Pseudomonas multivorans and Pseudomonas aeruginosa. J Bacteriol. 1968 Oct;96(4):1055–1064. doi: 10.1128/jb.96.4.1055-1064.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fredricks K. M. Products of the oxidation of n-decane by Pseudomonas aeruginosa and Mycobacterium rhodochrous. Antonie Van Leeuwenhoek. 1967;33(1):41–48. doi: 10.1007/BF02045532. [DOI] [PubMed] [Google Scholar]
  6. Klein D. A., Davis J. A., Casida L. E., Jr Oxidation of n-alkanes to ketones by an Arthrobacter species. Antonie Van Leeuwenhoek. 1968;34(4):495–503. doi: 10.1007/BF02046471. [DOI] [PubMed] [Google Scholar]
  7. Klein D. A., Henning F. A. Role of alcoholic intermediates in formation of isomeric ketones from n-hexadecane by a soil Arthrobacter. Appl Microbiol. 1969 May;17(5):676–681. doi: 10.1128/am.17.5.676-681.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LUKINS H. B., FOSTER J. W. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA. J Bacteriol. 1963 May;85:1074–1087. doi: 10.1128/jb.85.5.1074-1087.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Markovetz A. J., Klug M. J., Forney F. W. Oxidation of 1-tetradecene by Pseudomonas aeruginosa. J Bacteriol. 1967 Apr;93(4):1289–1293. doi: 10.1128/jb.93.4.1289-1293.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McKenna E. J., Kallio R. E. The biology of hydrocarbons. Annu Rev Microbiol. 1965;19:183–208. doi: 10.1146/annurev.mi.19.100165.001151. [DOI] [PubMed] [Google Scholar]
  11. Vestal J. R., Perry J. J. Divergent metabolic pathways for propane and propionate utilization by a soil isolate. J Bacteriol. 1969 Jul;99(1):216–221. doi: 10.1128/jb.99.1.216-221.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES