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Previous systems analyses in plants have focused on a single developmental stage or time point, although it is often important
to additionally consider time-index changes. During seed development a cascade of events occurs within a relatively brief time
scale. We have collected protein and transcript expression data from five sequential stages of Arabidopsis (Arabidopsis thaliana)
seed development encompassing the period of reserve polymer accumulation. Protein expression profiling employed two-
dimensional gel electrophoresis coupled with tandem mass spectrometry, while transcript profiling used oligonucleotide
microarrays. Analyses in biological triplicate yielded robust expression information for 523 proteins and 22,746 genes across
the five developmental stages, and established 319 protein/transcript pairs for subsequent pattern analysis. General linear
modeling was used to evaluate the protein/transcript expression patterns. Overall, application of this statistical assessment
technique showed concurrence for a slight majority (56%) of expression pairs. Many specific examples of discordant protein/
transcript expression patterns were detected, suggesting that this approach will be useful in revealing examples of post-
transcriptional regulation.

One aim of systems biology is in developing an
understanding of the complexity of living organisms
by acquisition, integration, and interpretation of the
information present in large omics datasets (Ilsley
et al., 2009). In this regard, global methods for com-
parative transcript and protein profiling can be per-
formed to discover posttranscriptionally regulated
genes. One of the earliest global comparisons of tran-
script and protein abundance in eukaryotes revealed a
weak statistical correlation (Gygi et al., 1999), suggest-
ing that protein expression deviates from its cognate
transcript more often than generally assumed. Subse-

quent studies have shown that the correlation between
protein and transcript expression levels can vary be-
tween 20% and 70%, based upon the profiling ap-
proach used and the system being analyzed (Chen
et al., 2002; Griffin et al., 2002; Ørntoft et al., 2002; Le
Roch et al., 2004; Shankavaram et al., 2007; Jayapal
et al., 2008; Pascal et al., 2008; Hornshøj et al., 2009). It
has become increasingly clear that the various post-
transcriptional mechanisms operating within a cell can
substantially change, and thus regulate, steady-state
protein levels. In some cases the regulation can result
in patterns much different from those predicted from
transcript profiling alone (Shang and Lehrman, 2004;
Shendure, 2008; Hendrickson et al., 2009). Discordance
between transcript and protein levels can make it
difficult to answer important biological questions
based upon measurement of transcript levels alone
(Piques et al., 2009). Thus, an improved strategy for
assessing correlation between transcript and protein
levels should be broadly informative.

Nonparametric statistical tests have been previously
used for pairwise comparisons of transcript/protein
abundances. The Pearson product moment correlation
(PPMC) was applied for analysis of yeast (Saccharo-
myces cerevisiae; Gygi et al., 1999) and prostate cells
(Pascal et al., 2008), and the Spearman rank order
correlation (SROC) has been applied to analysis of
yeast (Griffin et al., 2002) and Plasmodium falciparum
(Le Roch et al., 2004). There have, however, been fewer
parallel time-index studies of any biological process or
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response that have included quantifying proteome
and transcriptome coordination (Prioul et al., 2008;
Tian et al., 2009). As a result the methods for statistical
description of multidatapoint trends and the degree of
agreement between such datasets have not been well
explored. In order for profiling studies to address the
kinetic aspects of biological responses, improved sta-
tistical applications will be necessary. Herein we pres-
ent general linear modeling (GLM) as an approach
useful for detecting concordance\discordance in the
patterns of transcript and protein expression during
Arabidopsis (Arabidopsis thaliana) seed development.
A comparison of the results from application of GLM
versus simple correlation coefficient analysis of the
transcript and protein expression datasets reveals the
latter to be inadequate for assessing complex biolog-
ical trends.
Seeds undergo a rapid, lineal transformation from

fertilized embryos to mature propagules. This devel-
opmental sequence can be separated into three distinct
phases: embryogenesis, seed filling, and maturation
(Goldberg et al., 1994). Seed filling is particularly
interesting because it is the period of massive storage
reserve (oil, protein, and starch) synthesis and depo-
sition (Baud et al., 2009; Andriotis et al., 2010). It is well
known that both protein (Hajduch et al., 2005, 2006;
Agrawal et al., 2008) and transcript levels (Ruuska
et al., 2002; Le et al., 2007) change dramatically during
seed filling, although in no case has there been parallel
comparative global profiling of both. While it is clearly
important to perform parallel coincidental global pro-
filing of transcript and protein expression, it is also
important that data analysis incorporate a robust
statistical approach capable of providing confidence
assessments for the entire dataset. Ideally, the strategy
for statistical analysis would simultaneously provide
insight into the mechanisms of posttranscriptional
regulation. The use of GLM in our analyses allows
us to assign confidence values to our conclusions, and
at the same time to identify outliers that might provide
insight into the underlying mechanisms.

RESULTS

Using Fatty Acid Analysis as a Marker for the Stages of
Seed Filling

Developing Arabidopsis seeds were harvested at 5,
7, 9, 11, or 13 d after flowering (DAF). Ten different
fatty acids (FAs) were detectable by gas chromatogra-
phy (GC), and their distribution during seed filling
was quantified (Supplemental Table S1). Total FA
levels increased linearly from 5 through 11 DAF,
with a 2-fold increase between 11 and 13 DAF, at
which point FAs comprised 20% of the seed dry mass
(Fig. 1). Linoleic acid (18:2) levels steadily increased
during seed development, and this was the most
prominent FA at all developmental stages. Linolenic
acid levels also increased steadily throughout seed fill-

ing showing a 3-fold increase between 11 and 13 DAF.
Eicosanoic (20:0), 11-eicosenoic (20:1D11), 13-eicosenoic
(20:1D13), and erucic (22:1D13) acid levels increased
approximately 3.6-, 5.0-, 2.3-, and 4.9-fold between
11 and 13 DAF, suggesting that the activity of cytoplas-
mic fatty-acyl-CoA elongase might be temporally re-
gulated. Total protein levels also increased steadily
between 5 and 13 DAF (Fig. 1).

Global Proteomics and Transcriptomics Quantified 1,025
Two-Dimensional Gel Spots and 22,746 Probes,

Respectively, during Seed Filling

To generate global protein expression data, proteins
prelabeled with Cy5 were used in combination with
high-resolution two-dimensional gel electrophoresis
(2-DE; Supplemental Fig. S1). To eliminate dye-effect

Figure 1. Characterization of developing Arabidopsis seeds. A, Seeds
staged at 5, 7, 9, 11, and 13 DAF. B, FA content of developing seeds as
determined by GC-MS analysis of methyl ester-derivatized FAs using
heptadecanoic acid as the internal standard. FAs are expressed on a
seed fresh weight basis. C, Protein content of developing seed as
quantified by the Coomassie dye binding assay. [See online article for
color version of this figure.]
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biases, all analytical 2-DE was carried out exclusively
with Cy5 from the same production lot. Use of the
single CyDye yielded 10- to 20-fold increase in sensi-
tivity versus Sypro Ruby or Coomassie Brilliant Blue
while avoiding the problems associated with differ-
ences in labeling efficiency, molar absorptivity, and lot-
to-lot variations. For profiling experiments involving
multiple time points we have found that the single dye
and lot approach is superior to sample multiplexing.

Isolated proteins from whole seeds were separated
using broad (pH 3–10) and medium (pH 4–7) range
immobilized pH gradient (IPG) strips in biological
triplicate (Supplemental Fig. S1). Since the majority of
Arabidopsis seed proteins have acidic pI values, the
pH 4 to 7 range was used in the principal analytical
gel, while pH 3 to 10 gels were analyzed only within
the 3 to 4 and 7 to 10 ranges. Gels were imaged using
the ImageMaster Platinum software to create protein
expression profiles. Only those spots detected in bio-
logical triplicate and at least two developmental stages
were further analyzed. A total of 1,025 spot groups
satisfied these two criteria (Supplemental Table S2).

Proteins labeled with a fluorescent dye such as Cy5
present challenges for gel excision and subsequent
protein identification, so preparative colloidal Coomas-
sie Brilliant Blue-stainedgelswere produced for protein
identification. Due to the differences in protein detec-
tion methods, only 696 spots were unequivocally
matched to the 1,025 spot groups from the Cy5-labeled
analytical gels. All 696 protein spots excised from gels
were subjected to trypsin digestion and tandem mass
spectrometry (MS/MS) for protein identification. A
total of 523 protein spots were confidently identified
by assigning aminimum of two unique peptides. These
spots correspond to 346 nonredundant proteins (Sup-
plemental Table S3). In some instances proteins were
present as multiple spots, presumably the products of
multigene families or posttranslational modifications.
Seed storage proteins had the highest frequency of
multiple spots. Proteins involved in primary metabo-
lismandenergyproduction comprise the largest groups
of developing seed proteins; approximately 21% and
18%, respectively, of the total nonredundant proteins.

Global transcript profiling was performed in biolog-
ical triplicate for each developmental stage using the
Affymetrix ATH1GenomeArray (Fig. 2), and analyzed
using GeneSpring software (version 7.3). Supplemental
Figure S2 summarizes the results of gene expression
trends plotted as normalized intensities (on a log scale)
and the distribution of probe intensities across all de-
velopmental stages and biological replicates. Using this
approach, expression patterns for 22,746 genes were
obtained for the five sequential stages of seed filling.

Use of the PPMC r or the Kendall Rank Order Correlation
t for Pairwise Analysis Indicates a Significant Increase in
Protein/Transcript Correlation across Time

The results of pairwise protein/transcript correla-
tions are summarized in Table I. In total, 319 pairs

were established, and expression was compared in at
least one developmental stage. However, the total
number of protein/transcript pairs at each develop-
mental stage differed depending upon expression: 280
pairs were correlated at 5 DAF, 299 at 7 DAF, 305 at 9
DAF, 301 at 11 DAF, and 247 at 13 DAF. Employing
correlation coefficient statistics at individual stages of
seed filling, 10% and 8.6% of protein/transcript pairs
correlated based on Pearson’s r and the Kendall rank
order correlation (KROC) coefficient t at 5 DAF, re-
spectively. At 13 DAF, as much as 19% and 18% of the
pairs were positively correlated (P , 0.05) based on
Pearson’s r and Kendall’s t, respectively. These time-
index changes indicate a significant increase in corre-

Figure 2. Experimental design for large-scale comparison of transcript
and protein expression during Arabidopsis seed filling. Seeds were
harvested at 5, 7, 9, 11, or 13 DAF. Total protein fractions were isolated
and labeled with NHS-Cy5, then resolved by high-resolution 2-DE
(employing both wide and medium range pH gradients), and analyzed
to acquire protein expression profiles. Analyses were conducted in
biological triplicate. Protein spots for which expression profile data
were acquired were excised from the gel, trypsin digested, and
analyzed by LC-MS/MS for identification. A total of 523 nonredundant
proteins were conclusively identified based upon the minimum crite-
rion of two unique, nonoverlapping peptides. For transcriptome anal-
yses, mRNA was isolated, labeled, and hybridized to the Affymetrix
ATH1Genome Array (22,746 genes) in biological triplicate. Microarray
slides were scanned and computationally analyzed to acquire mRNA
expression profiles. The profile trends for each protein/transcript pair
were compared using both correlation coefficient analysis and GLM.
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lation across the developmental sequence (Table I).
Contrary to these low correlation coefficients, when
the calculations were performed for all 319 pairs over
all developmental stages, a 44% correlation was ob-
served (Table I). This inconsistency points out the need
for a more robust assessment of protein/transcript
relationships for the time-index experiment.

Incorporation of Time as a Variable in the Regression

Analysis Provides a More Robust Assessment of
Protein/Transcript Correlations

Analysis of time-index data is difficult when only
correlation coefficients are used, because this statistical
approach evaluates the slope of the line and not the
y-intercept or degree of line curvature. We therefore
applied GLM to evaluate our datasets.
Overall, the concordance of expression profile re-

gression parameters indicates that there is consider-
able similarity of response for protein/transcript pairs,
and even with statistically small sample sizes some of
the similarities are very strong (Table II). The distri-
bution of concordance and discordance among the 319
protein/transcript pairs varied with the quadratic line
properties including y-intercept, slope, and curvature
(Fig. 3; Supplemental Table S4). Concordance with
y-intercept, for example, indicates similar expression
at the initial stage of seed filling, while discordance for
slope or curvature suggests disparate time-index ex-
pression. The distribution of concordance for these
three parameters does not appear random. Overall,
56% of the 319 protein/transcript pairs had concor-
dant expression patterns.

Mining the Concordance/Discordance Data

Recent progress has led to the development of
efficient methods for database mining, ranging from
methods of clustering, outlier analysis, frequent, se-
quential, and structured pattern analysis, and visual-
ization of spatial and time-index datasets (Van den
Bulcke et al., 2006; Antoine and Miernyk, 2007;

Nicolas, 2009). The results from our GLM analysis of
the concordance between protein and transcript ex-
pression profiles during Arabidopsis seed develop-
ment suggest a similar utility (Fig. 3; Supplemental
Table S4). Discordant protein/transcript pairs can be
easily identified and targeted for further study, with-
out any prior need to directly address the nature of this
regulation.

DISCUSSION

An increasing body of literature addressing com-
parative analysis of global transcript and protein ex-
pression in eukaryotes has converged upon a general
consensus that correlation between the two is poor
(Gygi et al., 1999; Chen et al., 2002; Cox et al., 2007;
Baerenfaller et al., 2008; Jayapal et al., 2008; Wu et al.,
2008; Hornshøj et al., 2009; Tian et al., 2009). The
underlying bases for the discordance in protein and
mRNA abundance are manifold (Wu et al., 2008;
Hendrickson et al., 2009; Piques et al., 2009), and dif-
ficulties in interpretation are exacerbated by the lack of
adequate statistical tools to compensate for the inher-
ent biases in data collection (Nie et al., 2007). The
major aim of this study was to define the concordance

Table I. Correlation analysis of transcript-protein pairs from developing Arabidopsis seeds

A total of 319 protein/transcript pairs were correlated using Kendall’s t (K’s T) and Pearson’s correlation coefficients (P’s) at least in one
developmental stage. The table shows number of positively (Pos) and negatively (Neg) correlated pairs for all stages investigated (all days) and for
each developmental stage individually. The table also shows percentage of significantly correlated (P , 0.05) pairs in relation to the total number of
correlated pairs for each developmental stage.

Sign P Value
All Days 5 DAF 7 DAF 9 DAF 11 DAF 13 DAF

K’s T P’s K’s T P’s K’s T P’s K’s T P’s K’s T P’s K’s T P’s

Neg ,0.00016 32 27 24 24 24 24 25 25 26 26 49 49
Neg ,0.05 60 61 24 29 24 28 25 33 26 36 49 54
Neg all 111 121 131 132 150 161 150 158 172 167 118 120
Pos all 208 198 149 148 149 138 155 147 129 134 129 127
Pos ,0.05 135 139 24 29 13 15 22 34 17 26 45 47
Pos ,0.00016 77 84 24 24 13 13 22 22 17 17 46 46
Total correlated 319 319 280 280 299 299 305 305 301 301 247 247
Significantly correlated % 42 44 8.6 10 4.4 5.0 7.2 11 5.6 8.6 18 19

Table II. Regression analysis of transcript-protein pairs from
developing Arabidopsis seeds

In total 319 transcript-protein pairs were subjected to regression
analysis to evaluate their relationship during seed filling. The regres-
sion model has the following annotations: b0 is the intercept for the
protein curve, b01 = b0 + b1 is the intercept for the microarray curve,
b2 is the slope for the protein curve, b23 = b2 + b3 is the slope for the
microarray curve, b4 is the quadratic term for the protein curve, and
b45 = b4 + b5 is the quadratic term for the microarray curve.

Regression b0 and b01 b2 and b23 b4 and b45

Strong concordance 30 22 18
Concordance 164 169 160
Discordance 155 150 159
Strong discordance 47 5 3
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of time-index patterns of protein/transcript expres-
sion during the early maturation stages of Arabidopsis
seed development. We have employed GLM to eval-
uate the time variable so that it could be incorporated
into the overall assessment of protein and transcript
expression.

Selection of the appropriate statistical tools can have
a crucial impact on data interpretation (Nie et al.,
2007). In the case of comparative protein/transcript
expression studies, the most commonly used nonpara-
metric correlation analyses, the PPMC coefficient r
(Rodgers and Nicewander, 1988), the SROC coefficient
sr (Corder and Foreman, 2009), and the KROC coeffi-
cient t (Degerman, 1982) yielded varying results. For
instance, in yeast, the correlation analysis between
protein and mRNA abundances gave an r value that is
inadequate for prediction of protein expression levels

from quantitative mRNA data (Gygi et al., 1999). The
PPMCwas also used in analysis of mRNA and protein
levels in human prostate cells, with r values that
varied from 0 to 0.63 (Pascal et al., 2008). In contrast
to these two instances, expression of as many as 65% of
the genes was judged to be significantly correlated
with corresponding proteins in NCI-60 cancer cells
using the PPMC (Shankavaram et al., 2007). Further-
more it was recently reported that calculation of the
PPMC r indicated a positive correlation in a compar-
ison of two porcine tissues analyzed using iTRAQ for
protein and cDNA microarray/454-sequencing for
transcript profiling (Hornshøj et al., 2009). Using the
SROC, a significant number of genes with large dis-
crepancies between protein and corresponding tran-
script abundances was determined in yeast (Griffin
et al., 2002). The SROC has also been used to compare

Figure 3. The GLM analysis of expression profiles for
319 transcript/protein pairs analyzed during seed
filling in Arabidopsis. A, Three line parameters were
evaluated by GLM including y-intercept, slope, and
curvature to statistically compare transcript and pro-
tein expression. Temporal data for each transcript and
protein pair were statistically evaluated for each of
these parameters and determined to be either in
concordance or discordance as denoted in the sim-
plified graphical models. B, Distribution of concor-
dant and discordant transcript/protein pairs based
upon y-intercept parameter and distributed across
protein functional classes. C, Functional distribution
of concordant and discordant transcript/protein pairs
based on slope parameter. D, Functional distribution
of concordant and discordant transcript/protein pairs
based on curvature parameter.
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Figure 4. Schematic view of carbohydrate metabolism during seed filling of Arabidopsis. Expression (heat) maps of individual
protein (P) and transcript (T) expression based on proteomics and microarray experiments as relative value to 5 DAF are shown.
Protein/transcript pairs are under one ATG number. Intermediates: UDP-G, UDP-Glc; G-1-P, Glc-1-P; G-6-P, Glc-6-P; F-6-P, Fru-
6-P; 6PGLone, 6-phosphoglucono-D-lactone; 6PGLate, 6-phosphogluconate; Ru-5-P, ribulose-5-P; GAP, glyceraldehyde-3-P;
F-1,6-bp, Fru-1,6-bisP; DHAP, dihydroxyacetone phosphate. Enzymes: 1, Suc synthase; 2, UDP-Glc pyrophosphorylase; 3,
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protein with corresponding transcript levels during
the P. falciparum life cycle (Le Roch et al., 2004), but the
calculated sr value supported concordance in only
three out of seven instances. Our results suggest
positive correlations of 42% and 44% through all stages
of seed filling using the KROC and PPMC correlation
analyses, respectively (Table I). However, dependence
of pairwise correlation on the stage of seed develop-
ment was also observed, ranging from 9% to 19%
(Table I).

The use of GLM extends the multivariate regression
model by allowing linear transformations of multiple
dependent variables. This gives the GLM the impor-
tant advantage that multivariate tests of significance
can be employed when responses on multiple depen-
dent variables are correlated (i.e. transcript, protein,
developmental stage). This can also provide insight
into which dimensions of the response variables are
related to the predictor variables (Waldorp, 2009). A
second advantage is the ability to analyze effects of
repeated-measurement factors, which have tradition-
ally been analyzed using ANOVA. Linear combina-
tions of responses reflecting a repeated measure effect
such as the difference of responses on a measure under
differing conditions, such as time, can be constructed
and tested for significance (Friston, 2008).

An important result to come from our GLM analy-
ses addresses metabolic specialization. One aspect of
Arabidopsis seed filling is the flow of carbon from
Suc into FAs (Fig. 4; Hills, 2004; Baud et al., 2009;
Andriotis et al., 2010). The protein/transcript pairs
for pyrophosphate:Fru-6-P 1-phosphotransferase
(At1g76550), cytosolic (At2g36460) and plastidial
(At2g21330) Fru-bisP aldolase, cytosolic triose-P isom-
erase (At3g55440), cytosolic (At1g13440) and plastidial
(At3g26650) glyceraldehyde-3-P dehydrogenase, plas-
tidial phosphoglycerate kinase (At1g79550), cytosolic
enolase (At2g36530), and plastidial pyruvate kinase
(At5g52920) were all concordant during seed filling for
at least two of three GLM parameters. At the same
times, the majority of the 28 reactions of intermediary
metabolism shown in Figure 4 were discordant. This
reveals that there must be posttranscriptional regula-
tion of core metabolism during seed development. A
similar conclusion has been reached for bacteria and
yeast (Griffin et al., 2002; Jayapal et al., 2008).

A small majority (179 of the 319) of protein/tran-
script pairs were concordant (Table II; Supplemental
Table S3), and are thus unlikely to be candidates for
posttranscriptional regulation of expression. These
results are based upon steady-state analysis and might
not detect all types of posttranslational regulation.

From our survey, this leaves 140 protein/transcript
pairs with discordant expression patterns suggesting
posttranscriptional regulation. Included among these
are genes/proteins involved in cellular structure (actin
8, At1g49240), signaling (ADP-ribosylation factor
ATARF1, At1g23490), and RNA metabolism (Gly-rich
RNA-binding proteins, At4g39260, At2g21660, RNA-
binding proteins, At4g17520, At5g47210). One exam-
ple of how our experimental strategy can be used for
identifying targets for additional research is the in-
triguing case of plastidial pyruvate kinase. The ex-
pression trend of the two plastidial pyruvate kinase
proteins (At3g22960 and At5g52920) was very similar,
while transcript levels were discordant (At3g22960)
and concordant (At5g52920) with protein expression
for all three quadratic-line variables (Supplemental
Table S3). It was previously reported that these genes
encode an a-subunit (At3g22960) and a b-subunit
(At5g52920) that stoichiometrically assemble into a
a4b4 heterooctomer (Andre et al., 2007). Apparently
holomer assembly in some manner controls steady-
state levels of the subunits. It will be interesting to
similarly target other multisubunit complexes for
comparative analysis.

In summary, we have employed GLM as an ap-
proach to determine patterns of protein/transcript
concordance for a series of analyses where time was
an integral component of experimental design. This
approach proved to bemore robust thanmethods used
to study protein/transcript concordance based on
pairwise correlations. The results of our analyses
over five stages of Arabidopsis seed filling are consis-
tent with an overall concordance of 56%. This value is
substantially higher than those predicted using three
different correlation coefficients, but is still too low to
justify generalizations and/or assumptions regarding
protein levels based solely on transcript profiling. The
results indicate that GLMwill be useful in data-mining
applications aimed at identifying candidates suitable
for studying posttranscriptional regulation of gene
expression.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Arabidopsis (Arabidopsis thaliana; Columbia ecotype 0) plants were grown

in a controlled environment chamber (16-h-light/8-h-dark cycle, 23�C day/

20�C night, 50% humidity, and light intensity of 8,000 LUX). Flowers were

tagged upon opening and the developing seeds were collected at 5, 7, 9, 11, or

13 DAF, in the middle of a light cycle (between 11 AM and 2 PM central U.S.

time).

Figure 4. (Continued.)
phosphoglucomutase; 4, Glc-6-P isomerase; 5, fructokinase; 6, phosphoglucomutase + Glc-6-P dehydrogenase + 6-phospho-
gluconate dehydrogenase + phosphoribulokinase; 7, phosphofructokinase; 8, Fru-1,6-bisP aldolase; 9, triose-P isomerase; 10,
glyceraldehyde-3-P dehydrogenase; 11, phosphoglycerate kinase; 12, 2,3-bisphosphoglycerate-independent phosphoglycerate
mutase; 13, enolase; 14, pyruvate kinase; 15, Glc-6-P isomerase + Glc-6-P dehydrogenase + 6-phosphogluconate dehydro-
genase; 16, phosphoribulokinase; 17, Rubisco; 18, pyruvate dehydrogenase; 19, phosphoenolpyruvate carboxylase; 20, malate
dehydrogenase.
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Seed Oil Content

FA content of developing Arabidopsis seeds at 5, 7, 9, 11, and 13 DAF was

determined as described earlier (Hajduch et al., 2006) with minor modifica-

tions. Seeds were divided into three Teflon-lined glass screw cap vials per

developmental stage (approximately 50 mg of seeds per tube) and dried at

80�C overnight. After dry weight determination, 1 mL of 14% BF3 in methanol

was added to each tube along with 17:0 internal standard dissolved in toluene

(0.5% of dry mass exactly). Total volume of toluene was brought to 150 mL and

samples were incubated at 95�C for 90 min, with mixing every 10 min. After

incubation, samples were cooled to 25�C. To each tube, 1 mL of water and 3

mL of hexane were added. Tubes were vortex mixed and centrifuged at 3,000g

for 5 min. The upper phase was removed and transferred to a conical glass

tube. Samples were back extracted with additional 3 mL of hexane, dried

under N2, and resuspended in 400 mL of hexane before GC analysis. The GC

analyses and quantitation were performed as described previously (Hajduch

et al., 2006).

Protein Isolation and Cy5 Labeling

A total protein fraction was isolated from developing seeds and quantified

using the Coomassie dye binding assay (Bio-Rad) with g-globulin as the

standard. For Cy5 labeling, protein pellets were reconstituted in 30 mM Tris-

HCl, pH 8.5, containing 7 M urea, 2 M thiourea, and 4% (w/v) CHAPS with

vortex mixing for 30 min at 25�C followed by centrifugation for 15 min at

14,000g to remove insoluble material. Then, 50 mg of protein were adjusted to

final volume of 10 mL. One microliter of Cy5 (100 pmol) was added and the

mixture was incubated on ice for 30 min in the dark. The labeling reaction was

terminated by adding 1 mL of 10 mM Lys followed by incubation on ice for an

additional 10 min in the dark. For isoelectric focusing (IEF), 50 mg of protein

were mixed with equal volume of 23 sample buffer (8 M urea, 130 mM

dithiothreitol, and 4% [w/v] CHAPS), incubated 10 min on ice, mixed with

2.25 mL of IPG buffer (Amersham Biosciences), and adjusted to total volume of

450 mL with 13 sample buffer.

For preparative colloidal Coomassie Brilliant Blue G-250-stained gels,

protein pellets were resuspended in IEF resuspension media (8 M urea, 2 M

thiourea, 2% [w/v] CHAPS, 2% [v/v] Triton X-100, 50 mM dithiothreitol) with

vortex mixing as described above. For IEF, 1 mg of total protein was mixed

with 2.25 mL of appropriate IPG buffer in a total volume of 450 mL of

preparative IEF resuspension medium.

Image Acquisition and Analysis

Fluorescent gels were scanned using a FLA-5000 laser scanner (FUJI

Medical). The Coomassie Brilliant Blue-stained gels were imaged by scanning

densitometry (300 dpi, 16-bit grayscale). Digitized images were analyzed with

ImageMaster 2-D platinum software (version 5.0, GE Healthcare). Protein

abundance was expressed as a relative volume according to the normalization

method provided by the software.

Protein Identification by MS

Proteins spots were excised from colloidal Coomassie Brilliant Blue-

stained 2D gels and trypsin digested as described previously (Hajduch

et al., 2005). The MS analyses were carried out with a linear ion trap tandem

mass spectrometer (ProteomeX LTQ, Thermo-Fisher) using liquid chroma-

tography and nanospray ionization exactly as described previously (Hajduch

et al., 2006).

Database Searching with Spectral Data and Deposition
in the Oilseed Proteome Database

Analysis of LC-MS/MS data was performed on a locally licensed copy of

SEQUEST software (Eng et al., 1994). Searches were performed against the

National Center for Biotechnology Information nonredundant database,

Arabidopsis entries only (as of November 2005), and annotation for all

protein matches were manually updated to current The Arabidopsis Infor-

mation Resource annotation (as of December 11, 2009). Search parameters

were set as follows: enzyme, trypsin; number of internal cleavage sites, 2;

threshold, 500; minimum ion count, 35; peptide mass tolerance, 1.50; variable

modifications, oxidation (M); static modification, carboxyamidomethylation

(C). Matching peptides were filtered according to correlation scores (XCorr at

least 1.5, 2.0, and 2.5 for +1, +2, and +3 charged peptides, respectively),

peptide probability (maximum 0.05). For all protein assignments, a minimum

of two unique, nonoverlapping peptides was required. Protein expression and

summarized mass spectral assignment data from this investigation have been

uploaded onto the Oilseed Proteomics server (http://oilseedproteomics.

missouri.edu). Programming for the web database was performed as de-

scribed previously (Hajduch et al., 2005). Data are viewable through 2-DE gels

and a protein identification table. The spots on 2-DE gel and protein numbers

in the protein table are hyperlinked to display expression profile and protein

identification data.

Isolation of Total RNA

For total RNA isolation, a RNeasy plant mini kit (Qiagen) was used with

minor modifications. In total 20 to 50 mg of harvested Arabidopsis seeds were

homogenized with liquid N2 in 1.5 mL sterile polypropylene tubes using

plastic pestles. Samples were resuspended in the kit-provided resuspension

buffer (for 25 mg of seeds, 450 mL of resuspension buffer), incubated 5 min at

57�C, cooled on ice, and transferred to provided lilac QIAshredder spin

column (450 mL of homogenate per column). The remaining procedure was

performed as described according to the manual, with optional centrifugation

after last wash with elution buffer. The concentration of total RNA was

determined using a NanoDrop ND-1000 spectrophotometer (NanoDrop).

RNA Amplification, Target Biotin Labeling, and
Hybridization to the Arabidopsis ATH1 Genechips

One microgram of seed total RNA was used to make biotin-labeled

antisense RNA (aRNA) using the MessageAmp II-Biotin enhanced single

round aRNA amplification kit (Ambion) according to manufacturer’s proce-

dures. Briefly, total RNA was reverse transcribed to first-strand cDNA with

oligo(dT) primer bearing a 5m-T7 promoter using ArrayScript reverse tran-

scriptase. The first-strand cDNA then underwent second-strand synthesis and

clean up to become the template for in vitro transcription. Biotin-labeled

aRNA was synthesized using T7 RNA transcriptase with biotin-NTP mix.

After purification, aRNAwas fragmented in 13 fragmentation buffer at 94�C
for 35 min. Ten micrograms of fragmented aRNA in 200 mL of hybridization

solution was hybridized to the Arabidopsis ATH1 genechip (Affymetrix) at

45�C for 20 h. After hybridization, chips were washed and stained with

R-phycoerythrin-streptavidin on Affymetrix fluidics station 450 using fluidics

protocol EukGE-WS2v4. The image data were acquired using an Affymetrix

Genechip scanner 3000.

Microarray Data Analysis

Microarray data analysis for the three replicates for each developmental

stage was performed using GeneSpring GX 7.3 software (Silicon Genetics).

The array intensities were normalized using data transformation to set mea-

surements less than 0.01 to 0.01 per chip normalization to 50th percentile, and

per gene normalization to median (Supplemental Fig. S1). The normalized

data were transformed to natural log values to calculate the expression value.

The scatter plots of replicate arrays performed after normalization indicated

the data were highly reproducible. After normalization a Student’s t test with

a P value cutoff of 0.05, and the Benjamin and Hochberg false discovery rate

was applied to filter out genes having significantly differentiated expression

patterns.

Development of Cognate Gene and Protein Models for

Statistical Analysis

Initially, cognate transcript and protein pairs were determined by verifying

at least one protein was detected for each 2-DE spot groups. Then expression

data for 2-DE spot groups that were assigned to the same gene were summed

for comparison to transcript expression. To correlate proteomic and tran-

scriptomic datasets, both the protein and transcript expression values were

tested to find a minimum variance transform with the Box-Cox procedure

under linear modeling assumptions (Box and Cox, 1964). The protein and

microarray data were transformed y = log2 (x) where x is the observed volume

or optical intensity, and the transformed values were used for the rest for the

analysis. Each source of data was then statistically modeled to account for

Systems Analysis of Arabidopsis Seed Filling

Plant Physiol. Vol. 152, 2010 2085



known but experimentally irrelevant factors, or sources of variation, leaving

the experimentally relevant factor day within spot or probe and experimental

error in the residuals.

To put the data into the same relative numeric scale, known sources of

variation in the data collection process were statistically modeled and if the

sources of variation were not of experimental interest their contributions to

experimental variation were removed. In the case of protein data, the factors

of experimental interest were spot volumes sampled at each developmental

stage. These factors, together with a temporal term constitute the factor level

variability. A mixed linear statistical model with the intercept held as a

random effect was fit to the data without the temporal factor. The observed

values minus the predicted values were the residuals and were centered on a

mean value of 0. These residual values were divided by the SD of the residuals

to get a normalized and standardized expected variable of 1 to estimate the

spot volume for the ATG Probe for this time. Across all ATG numbers the

transformed and scaled values were used to model the spot measurement

values.

Because of the nature of the 2-DE analyses, there are occasionally missing

values in the proteomics data. However there were sufficient biological repe-

titions and temporal samplings to allow use of the expectation-maximization

algorithm, to estimate the distribution of the missing values and produce

five values for each time point (Dempster et al., 1977). This increased the data-

set size by a factor of five. The augmented dataset was then used through-

out the rest of the analyses. For microarrays it was expected that probe intensity

across seed development was of experimental interest, and the microarray

data were normalized and standardized in the same way as the proteomics

data.

The normalized proteomic and microarray datasets were then merged on

the field Probe_ID-ATG ID. There are 319 protein/transcript pairs through

five developmental time points, and three biological replicates. The normal-

ized, standardized, and merged analytic datasets contain 23,025 data records

and comprise the dataset used in all subsequent analyses.

Pairwise Nonparametric Analyses

The PPMC and KROC make different assumptions about the underlying

distribution of data. The Pearson r measures the strength of linear association

between the random variables x and y. It is scale independent and assumes the

random variables have a normal distribution. The Kendall t is a measure of

the concordance for all pairs of observed values (xj,yj) and (xi,yi) where a pair is

concordant if xi . xj and yi . yj or xi , xj and yi , yj, and discordant otherwise.

Associated with each correlation coefficient is a measure of the probability of

making a type I error; that is, the probability of being in error if you reject the

null hypothesis that the correlation is zero. We can count the number of

correlations that are positive or negative either across days or within days. We

can also restrict these counts to those correlations with significant P values ,
0.05. However, this ignores the multiple hypotheses testing condition, which

says that if we want to have an overall error rate of aF, we have to apply a more

stringent selection criterion, a0, for the test. Two possible methods for finding

this cutoff value are Sidak’s method where a0 = 1 2 (1 2 aF)
1/G and G is the

number of tests, 319 in this case, and Bonferroni’s method where a0 = aF/G.

Applying Sidak’s methodwe get a0 = 0001601 and from Bonferroni we get a0 =

0001567. Thus, there will be an approximate family wise error rate of a0 = 0.05

if we set the cutoff value at a0 = 0.00016.

GLM

Regression analysis with time as integral part of the model was used to

determine importance of time factor in determining protein/transcript corre-

lations. The regression model that was fit to the protein and microarray data is

a quadratic model with log spot or log probe intensity as the dependent

variable and time and time squared as the independent variables. Both de-

pendent variables were modeled with the same quadratic regression model,

y = b0 + b1I + b2D + b3DI + b4D
2 + b5D

2I + «, where y is the dependent variable,

D is the independent variable day, and I is an indicator variable (I = 0 if DIGE

otherwise I = 1), b is the regression parameter, and « is the error term. The

intercept parameter for protein only is b0, the intercept parameter for

microarray is (b0 + b1) and if the parameter b1 is not statistically significantly

different from 0 then there is no statistical difference between the intercepts for

DIGE or microarray. Similar interpretations can be given for the linear and

quadratic terms in the regression model. We will use the following notation:

b0, b2, and b4, are the intercept, linear, and quadratic terms for the protein

regression model. The microarray regression model has parameters b01 = b0 +

b1, b23 = b2 + b3, and b45 = b4 + b5. The difference terms are b1, b3, and b5. If a

difference term is not statistically different from 0, then that parameter in the

protein and microarray models is statistically equivalent. To assess how well

the model fits the data we can use the coefficient of multiple determination R2.

Using standard linear modeling notation we can define R2 ¼ SSR
SST0 ¼ 12 SSE

SST0.

For each spot probe pair we fit a model across both types of data, all days, and

all three replicate observations. This assumes that the residuals from each

model are normally distributed, r: N (0, s2). An examination of the residual

plots shows that the model fits the data well in most instances.

Since protein intensity measurements are scaled differently than micro-

array intensity measurements, it would not be expected that the regression

equations would be the same. However, it would be expected that the linear

parameter slope, b2 and b23, and the quadratic parameter direction of change

over time, b4 and b45, would be good metrics for similarity or dissimilarity of

biological activity. It is possible to define pairs of corresponding parameter

values, b0 and b01 or b2 and b23 or b4 and b45, as having concordance if the two

parameters are either significantly positive or negative for the same spot

probe. Similarly, discordance would be if one parameter is significantly

positive and the other is significantly negative. For concordance and discor-

dance, there is no requirement for the parameters to be significantly different

from 0. The frequency and degree of concordance/discordance measurements

are presented in Table II, indicating the similarity of response for protein/

transcript pairs.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. 2-DE analysis of proteins (50 mg) isolated from

immature seeds of 5, 7, 9, 11, or 13 DAF and labeled with n-hydroxy-

succinimide-activated Cy5.

Supplemental Figure S2. Microarray analysis of RNA isolated from

developing Arabidopsis seeds at 5, 7, 9, 11, or 13 DAF.

Supplemental Table S1. FA composition of developing Arabidopsis seeds.

Supplemental Table S2. Expression profile data for 1,025 protein spot

groups from two-dimensional gels.

Supplemental Table S3.Master table of MS/MS protein identification and

GLM data.

Supplemental Table S4. Summary and distribution of GLM concurrence

sorted according to protein functional classes.
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