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Abstract
Elevating the temperature of cancerous cells is known to increase their susceptibility to subsequent
radiation or chemotherapy treatments, and in the case in which a tumor exists as a well-defined
region, higher intensity heat sources may be used to ablate the tissue. These facts are the basis for
hyperthermia based cancer treatments. Of the many available modalities for delivering the heat
source, the application of a laser heat source under the guidance of real-time treatment data has the
potential to provide unprecedented control over the outcome of the treatment process [7,18]. The
goals of this work are to provide a precise mathematical framework for the real-time finite element
solution of the problems of calibration, optimal heat source control, and goal-oriented error
estimation applied to the equations of bioheat transfer and demonstrate that current finite element
technology, parallel computer architecture, data transfer infrastructure, and thermal imaging
modalities are capable of inducing a precise computer controlled temperature field within the
biological domain.
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1 Introduction
Today, cancer is the second most common cause of death in the United States. In 2006,
about 564,830 Americans are expected to die of cancer. Among the most common forms of
the disease are cancer of the prostate and breast, accounting for 10% and 15% of all cancer
related deaths in men and women, respectively. Current detection technology has led to a 5-

NIH Public Access
Author Manuscript
Numer Methods Partial Differ Equ. Author manuscript; available in PMC 2010 April 6.

Published in final edited form as:
Numer Methods Partial Differ Equ. 2007 April 26; 23(4): 904–922. doi:10.1002/num.20251.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://dddas.ices.utexas.edu


year relative survival rate of greater than 90% for prostate and breast cancer [4]. Given these
survival rates, the quality of life of the patient post-treatment is a very important factor.
Traditional medical treatment of early stage prostate and breast cancer, including radical
prostatectomy, pelvic lymphadenectomy, lumpectomy, and mastectomy are major surgical
procedures and are associated with many surgical complications. Ablation therapies
delivered under various treatment modalities are a very promising, minimally invasive,
alternative to standard treatment and show significant potential as an effective cancer
treatment to eradicate the disease while maintaining functionality of infected organs and
minimizing complications and relapse.

The physical basis for thermal therapies is that exposing cells to temperatures outside their
natural environment for certain periods of time can damage and even destroy the cells.
However, one of the limiting factors in all forms of ablation therapy, including cryotherapy,
microwave, radio-frequency, and laser, is the ability to control the energy deposition to
prevent damage to adjacent healthy tissue [19].

Recent advances in imaging technology allow the imaging of the geometry of tissue and an
overlaying temperature field using MRI and new MRTI technology. MRTI has the desirable
properties of excellent soft-tissue contrast, the ability to provide fast, quantitative
temperature imaging in a variety of tissues, and the capability of providing biologically
relevant information regarding the extent of injury immediately following therapy [5].
Image guidance [18,20] has the potential to facilitate unprecedented control over bioheat
transfer by providing real time treatment monitoring through temperature feedback during
treatment delivery. A similar idea using ultrasound guided cryotherapy has been studied and
shows good results [19]. However, the hypothermic regime requires temperature
differentials of 70° from normothermia to ablate the tissue. Tissue ablation in the
hyperthermic regime requires substantially less energy deposition, temperature differentials
of 10°, suggesting that MRTI guidance under laser therapy could provide superior control
over the bioheat transfer.

The goal of this work is to deliver a computational model of bioheat transfer that employs
real-time, patient specific data and provides real-time high fidelity predictions to be used
concomitantly by the surgeon in the laser treatment process. The model employs an adaptive
hp-finite element approximation of the nonlinear parabolic Pennes equation and uses
adjoint-based algorithms for inverse analysis, model calibration, and adaptive control of cell
damage. The target disease of this research are localized adenocarcinomas of the breast,
prostate, cerebrum, and other tissues in which a well-defined tumor may form. The
algorithms developed also provide a potentially viable option to treat other parts of the
anatomy in patients with more advanced and aggressive forms of cancer who have reached
their limit of radiation and chemotherapy treatment.

The adaptive data driven computational control system for controlling laser treatment of
prostate cancer described is an example of a Dynamic-Data-Driven Applications System
(DDDAS) in which simulation models interact with measurement devices and assimilate
data over a computational grid for the purpose of producing high-fidelity predictions of
physical events.

The development stages uses canines as the host of prostate and brain tumors. The actual
laboratory at M.D. Anderson Cancer Center in Houston, TX is connected through a
computational grid to the computing center in Austin, TX. Prior to treatment, MRI data is
used to generate a finite element mesh of the patient-specific biological domain. The mesh is
then optimized to a particular quantity of interest using goal-oriented estimation and
adaption. The tool then proceeds to solve an optimal control problem, wherein the laser
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parameters (location of optical fiber, laser power, etc.) are controlled to eliminate/sensitize
cancer cells, minimize damage to healthy cells, and control Heat Shock Protein (HSP)
expression. Upon initiation of the treatment process, real-time MRI data is employed to co-
register the computational domain and MRTI data is used to calibrate the bioheat transfer
model to the biological tissue values of the patient. As new data is given intermittently,
computation is compared to the measurements of the real-time treatment and an appropriate
course of action is chosen according to the differences seen. A parallel computing paradigm
is used to meet the demands of rapid calibration and adapting the computational mesh and
models to control approximation and modeling error. From a computational point of view,
the orchestration of a successful laser treatment is to solve the problems of co-registration,
calibration, optimal control, and mesh refinement invisibly to the surgeon, and merely
provide the surgeon with an interface to the optimal laser parameters during treatment. A
schematic of the control loop is shown in Figure 1. The mathematical characterization of so-
called HSP expression is also described as are laboratory procedures for measuring tissue
damage, mesh generation, and the development of the computational infrastructure for
calibration procedures, verification and validation procedures, and inverse modeling and
sensitivity analysis.

2 Mesh Generation
The first step in simulation is to construct a finite element mesh used for the governing
bioheat transfer equations. The mesh generation involves two steps: (1) construction, from
MRI data, of a finite element mesh to represent the geometry and (2) overlaying the MRTI
temperature field onto the finite element mesh.

As an initial test of the imaging system when employed in experiments with laboratory
animals, we first consider data pertaining to a mouse. A sample of the MRI data used to
construct a mesh of the mouse and tumor is shown in Figure 3. In the case of prostate
cancer, prostate tumor cells were inoculated in the hind legs of a mouse and grown to a
tumor burden of less than 1.0 cc, Figure 2. The hexahedral mesh of the tumor (blue) and
tissue (yellow), shown in Figure 2, was created by a semi-automatic segmentation method
adapted to find the interface boundaries of tumor and tissue. Cubic spline and lofting
methods are applied to obtain smooth boundaries from the segmented MRI data [16,21].

2.1 MRTI Data-Filtering
Spatio-temporal temperature distribution is measured during the laser treatment with update
times less than 6 seconds per image and thickness between planes of 3.5 mm. The
temperature field, measured in the biological domain, is first filtered to eliminate any noise
and then nodal temperature values are assigned to the mesh by taking the interpolant of the
MRTI temperature data.

3 HSP Characterization and Damage Model
Heat shock proteins are a latent defense mechanism built into all cells, including cancer
cells, that provide enhanced viability of tumor tissue indirectly by preventing a damaged cell
from going into apoptosis, resulting in the recurrence of cancer. Knowledge of temperature
history versus time during treatment has been used to predict thermal necrosis in regions
where damage is severe, but in regions where temperatures are insufficient to coagulate
proteins, the results and subsequent effects have been difficult to predict. This is due, in part,
to the expression of heat shock protein (HSP) in the regions of thermal stress. Consequently,
knowledge of the thermal dose necessary to activate or de-activate HSP expression as a
function of temperature and time in the affected tissue [16,15] can be critical in planning and
implementing an effective thermal treatment by laser surgery.
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Heat Shock Proteins are a family of gene products expressed in higher concentrations in the
presence of environmental stresses. The name vastly understates the HSP family’s
astounding versatility. These proteins have been identified as critical components of cell
survival under adverse environmental conditions. Various levels of HSP species indicate the
health or likelihood of cell proliferation or drug resistance. Also, measures of cell damage as
a function of temperature and time for a specific patient is a critical indication of the
effectiveness of thermo-therapies. Knowledge of the temperatures necessary to elicit
interaction in tumor resistance and cell damage is essential to effectively produce a desired
tissue response and surgical outcome. The work of Rylander [15] developed a model for
HSP expression and cell damage based on an Arrhenius model for a mouse. Figure 4 shows
the comparison of the experimentally determined HSP expression with the predicted values
of (1). An empirical formula for the concentration of HSP expression, , at
temperature, u, and time, t, based on laboratory tests is [15]:

(1)

where α, β, and γ are time independent parameters that may depend on temperature, with γ >
1.

Cellular damage is measured in terms of the damage fraction FD predicted by means of an
Arrhenius integral formulation [16].

(2)

where C0 is the initial concentration of healthy cells, Ct the concentration of healthy cells
after heating at time t, A the pre-exponential scaling factor, Ea the activation energy of the
injury process, R the universal gas constant, and u the absolute temperature.

4 Bioheat Transfer Model
Driving the prediction of the HSP and cellular damage is the temperature field produced by
the well-known Pennes bioheat transfer model [13]. Liu [6] has shown Pennes model [13] to
give good results for prediction of temperature field in the prostate. The formal statement of
Pennes bioheat model is as follows

Find the spatially and temporally varying temperature field u (x, t) such that

given the Cauchy and Neumann boundary conditions

and the initial condition
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Here  and  are bounded functions of u, determined empirically to be of the
form

cp and cblood are the specific heats, ua the arterial temperature, ρ is the density, and h is the
coefficient of cooling. The laser source term Qlaser is a linear function of laser power and
exhibits exponential decay with distance from the source.

P = is the laser power, μa, μs = are laser coefficients related to laser wavelength and give
probability of absorption of photons by tissue, γ is the anisotropy factor, and x0 = is the
position of laser photon source. Tables 1 and 2 contain constitutive data from the work of
Rylander [17].

Our weak form of the Pennes bioheat transfer model is as follows:

Given a set of model, β, and laser, η, parameters,

Find u (x, t) ∈  ≡ H1([0, T], H1(Ω)) s.t.

B(u, β; v) = F(η; v)   ∀v ∈ 

where the explicit functional dependence on the model parameters, β = (k0, k1, k̃3, k̂3, ω0(x),
ω1, ω̃3, ω ̂3), and laser parameters, η= (P(t), x0, μa, μs), expressed as follows

(3)

(4)
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4.1 Calibration, Optimal Control
The control loop involves three major problems: calibration of the Pennes model to patient
specific MRTI data, optimal positioning and power supply of the laser heat source, and
computing goal oriented error estimates. Each of these problems is formally stated below.

The problem of model calibration is to find the set of thermal conductivity parameters k0, k1,
k̃3, k̂3, and blood perfusivity parameters ω0(x), ω1, ω̃3, ω ̂3 that minimize the norm of the
difference between the predicted temperature field and the experimentally determined
temperature field at each time instance of the experimental data. ω0(x) is allowed to vary
over the spatial dimension as the blood perfusivity within the necrotic core of a cancerous
tumor is expected to be significantly lower than the surrounding healthy tissue. The
calibration problem may be stated as follows:

Given a set of laser parameters, η 0, and an experimentally determined temperature field
at time instances tn, n = 1, 2, … Nexp within the region Ωχ ⊂ Ω

find the best combination of model coefficients, β* ∈ ℙ, that produces the temperature
field, u* ∈ , such that

satisfies

The problem of optimal laser heating control is to find the position, x0, power, P (t), and
laser frequency μa, μs that maximizes damage to the cancerous tissue while minimizing
damage to healthy tissue in some metric. The metric shown here is the ℒ2 ([0, T ]; ℒ2(Ω))
norm of the difference between the computed solution and an ’ideal’ temperature field.
Other metrics may be the ℒ2(Ω) norm of the difference between the computed damage
fraction, equation (2), and an ideal damage field within the biological domain at the end of
the treatment process or the ℒ2 ([0, T]; ℒ2(Ω)) norm of the difference between the
computed HSP expression field, equation (1), and an ideal HSP expression field.

Optimal control of the laser source term is stated as:

Given a set of model coefficients, β 0, and the ideal temperature field that maximizes
damage to cancerous tissue while minimizing damage to healthy tissue
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where ΩH and ΩC are the domains of the healthy and cancerous tissue respectively, find
the best combination of laser position and power, η* ∈ ℙ, that produces the temperature
field, u* ∈ , such that

(5)

satisfies

where  is the appropriate space for the bioheat transfer model.

4.2 Mesh Refinement
Goal oriented error estimates [9] are calculated under the following framework:

• Fixing the parameters β0 and η0 denote

• Let  and  represent two finite dimensional spaces such that  ⊂ .

• ||uhp − u||  ≤ || uh −u||  where u, uh, uhp satisfy the Pennes model constraints

We presume that the solution uhp ∈  is a more accurate representation of the exact solution
u ∈  than uh ∈  ⊂ ; likewise an arbitrary quantity of interest, Q, evaluated at Q(uhp) is a
more accurate representation of Q(u) than the quantity of interest evaluated at Q(uh). As an
explicit example, consider the quantity of interest to be an averaged value of the temperature
in a domain defined through the characteristic function, χ(x),

Using the following Taylor series approximations,
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with

we may solve for the adjoint variable php ∈  such that

Then

Where (t) is defined as

This quantity may be used to determine when greater time stepping accuracy is needed. 
(x), ℛ(x), and (x) defined as

may be used to determine when spatial mesh refinement is needed.

4.3 Optimization Framework
The calibration and optimal control problems in the control loop may be posed as the
following optimization problem

Find q* ∈ ℙ s.t.
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where q is a parameter in the control space ℙ,

and u is the state variable determined by a variational PDE of the form

in the appropriate Hilbert space, .

The demands of real-time computation will only permit the computation of the following
Gateaux derivative, δQ, of the objective function.

The gradient is computed by the adjoint method under the assumptions that the solution,
objective function, and constraints admit the following Taylor series expansions.

where the Gateaux derivatives are defined below.

Theorem—Given q ∈ ℙ, (and hence u ∈  by definition), the derivative of the objective
function is

δQ(q,q̂) = δqQ(u(q),q; q ̂) − δqC(u(q),q; q ̂, p)
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where p ∈  is the solution to the adjoint problem.

Find p ∈ :

δuC(u(q),q; û;, p) = δuQ(u(q),q; û)   ∀û ∊ 

Proof: The solution to the adjoint problem, p, implies that

from the first variation of the PDE constraints we have that

the solution follows

The following Taylor series expansion are used in computing the Gateaux derivatives of the
variational form of Pennes model:

Notice that the variational form of the adjoint problem for the calibration, optimal control,
and goal oriented error estimates are all the same:

where the only difference is source term δuQ(u(q), q; û) which depends on the quantity of
interest. The strong form of the adjoint formulation is as follows:

Given the spatially and temporally varying temperature field u (x, t) find the Lagrange
multiplier p(x, t) such that

Oden et al. Page 10

Numer Methods Partial Differ Equ. Author manuscript; available in PMC 2010 April 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



given the boundary conditions

and the terminal condition

When approximations of the temperature field, u(x, t), and the adjoint variable, p(x, t), are
known, the first variation of the quantity of interest for the calibration problem may be
obtained explicitly as follows.

The first variation for the quantity of interest for optimal control is as follows:

5 Results
Two main results are presented in this section. First, the overall computational feasibility of
developing a laser treatment paradigm in which high performance computers control the
bioheat data transferred from a remote site is demonstrated. Second, reliable computational
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predictions are shown when comparing results obtained using the Pennes model to the
experimental MRTI data in canine cerebral tissue.

The typical time duration of a laser treatment is about five minutes. During a five minute
span, one set of MRTI data is acquired every 6 seconds. The size of each set of MRTI data is
≈330kB (256×256×5 voxels) and the bandwidth of a commercial T1 Internet connection is
≈300kB/s. Accounting for connection latency, each set of MRTI data can be transferred
between Houston and Austin in under two seconds. A finite element mesh consisting of
approximately 10000 degrees of freedom is sufficient to resolve the geometry of the
biological domain. The execution time of a representative 10 second bioheat transfer
simulation is presented in Figure 6. The execution times represent 10 nonlinear state solves
of Pennes model (10 one second time steps) combined with 10 linear adjoint solves to be
used for calibration, optimal control, and/or error estimates. Computations were done at the
Texas Advanced Computing Center on Dual-Core Linux Cluster. Each node of the cluster
contains two Xeon Intel Duo-Core 64-bit processors (4 cores in all) on a single board, as an
SMP unit. The core frequency is 2.66GHz and supports 4 floating-point operations per clock
period. Each node contains 8GB of memory. The fastest time recorded is .67 seconds,
meaning that in a real time 10 second span Pennes model can predict out to more than two
minutes! Equivalently, in a 10 second times span roughly 14 corrections can be made to
calibrate the model coefficients or optimize the laser parameters.

Preliminary computations comparing the predictions of Pennes model to experimental
MRTI taken from a canine brain show very good agreement. A manual craniotomy of a
canine skull was preformed to allow insertion of an interstitial laser fiber. Thirty-six two
dimensional 256×256 pixels MRI images, Figure 7, of the canine brain were acquired. The
field view was 200mm × 200mm with each image spaced 1mm apart. A finite element mesh
of the biological domain generated from the MRI data is shown in Figure 8. The mesh
consists of 8820 linear elements with a total of 9872 degrees of freedom. MRTI thermal
imaging data was acquired in the form of five two dimensional 256×256 pixel images every
six seconds for 120 time steps. The spacing between images was 3.5mm. The MRTI data
was filtered then projected onto the finite element mesh. Figure 9 shows a cutline
comparison between the MRTI data and the predictions of Pennes model. It is observed that
the results delivered by the computational Pennes model slightly over diffuses the heat
profile peaks compared to measured values. However, at early times the maximum
temperature value is within 5% of the MRTI value.

6 Conclusion
Results indicate that adaptive hp-finite element technology implemented on parallel
computer architectures and employing modern data transfer infrastructure and thermal
imaging modalities are capable of predicting and guiding computer controlled temperature
field within a biological domain at very good accuracies. Reliable finite element model
simulations of laser therapies can be computed in a fraction of the time that the actual
therapy takes place. These prediction capabilities combined with an understanding of HSP
kinetics and damage mechanisms at the cellular and tissue levels due to thermal stress,
together with recent advances for controlling discretization and modeling errors through
adaptive control strategies combined with the modern methods of inverse analysis,
calibration, uncertainty quantification, sensitivity analysis, and optimization
[22,12,11,14,2,8,10,9,1,3] provide a powerful methodology for planning and optimizing the
delivery of thermo-therapy for cancer treatments. Moreover, from a computational point of
view, changing the thermal delivery modality merely amounts to changing the source term
in the governing PDE. This technology has the potential to be extended to many areas of
thermal treatment including RF, microwave, ultrasound, and even cryotherapy applicators.
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Fig. 1.
The Control Loop.
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Fig. 2.
Mouse and Mesh (from [16])
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Fig. 3.
MRI Data of Mouse

Oden et al. Page 16

Numer Methods Partial Differ Equ. Author manuscript; available in PMC 2010 April 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
HSP Expression Model
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Fig. 5.
Comparison of arctan fit to text book values.
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Fig. 6.
Executions times for a representative 10 second simulation (10 nonlinear state solve
combined with 10 linear adjoint solve on 10000 dof system)
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Fig. 7.
Selected Slices of Canine MRI Brain Data and Iso-surface visualization of Canine MRI
Brain Data
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Fig. 8.
Finite Element Mesh of Canine MRI Brain Data
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Fig. 9.
Cutline Comparison of MRTI Data to Pennes model predictions
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Table 2

Model Coefficients

k(u) = k0 + k1 · atan(k2(u− k3)) ω(u) =ω0 + ω1 · atan(ω2(u − ω3))

k0

0.6489
J

s · m · K

ω0

0.6267
kg

s m 3

k1

0.0427
J

s · m · K

ω1

− 0.137
kg

s m 3

k2

0.0252
1
K

ω2

2.3589
1
K

k3 315.314 [K] ω3 314.262 [K]
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