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Abstract
Differences in cardiovascular disease outcomes between men and women have long been recognized
and attributed, in part, to gender and sex steroids. Gender dimorphisms also exist with respect to the
roles of progenitor and stem cells in post-ischemic myocardial and endothelial repair and
regeneration. Understanding how these cells are influenced by donor gender and the recipient
hormonal milieu may enable researchers to further account for the gender-related disparities in
clinical outcomes as well as utilize the beneficial effects of these hormones to optimize transplanted
cell function and survival. This review discusses (1) the cardiovascular effects of sex steroids
(specifically estradiol and testosterone); (2) the therapeutic potentials of endothelial progenitor cells,
mesenchymal stem cells, and embryonic stem cells; and (3) the direct effect of sex steroids on these
cell types.
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Introduction
Gender differences exist in numerous types of injuries and disease states including renal
ischemia/reperfusion (I/R) injury [1], trauma/hemorrhage [2], sepsis [3], intestinal ischemia-
induced organ injury, cardiovascular disease [4], and myocardial inflammation [5]. With regard
to cardiovascular disease, premenopausal women are at lower risk for atherosclerosis, coronary
artery disease, and myocardial infarction compared to postmenopausal women and age-
matched men [4,6]. Such gender dimorphisms have been linked at least in part to differences
in sex steroid expression, specifically estrogen.
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Within the last decade, stem cell and progenitor cell-based therapies have been applied to the
injured heart with promising initial results. Clinical trials have utilized bone marrow cell
populations that include endothelial progenitor cells (EPCs) and mesenchymal stem cells
(MSCs). As a circulating population, EPCs may home to areas of tissue injury and augment
endothelial protection and repair [7]. MSCs in addition to other bone marrow-derived
mononuclear cells may also be mobilized from bone marrow and traffic to injured myocardium
or may be therapeutically applied in a more directed fashion [8]. In vitro and animal models
have also investigated the similar application of embryonic stem cells (ESCs) [9].

Therefore, it is not surprising that as estrogen has been observed in multiple models to confer
direct protective on the vasculature, its effect on the function of progenitor and stem cells has
also drawn increasing interest. It is becoming increasingly important to understand how these
cells are affected by endogenous and exogenous influences including sex steroids as well as
how their function may be optimized prior to their therapeutic application. To this purpose, we
review the cardiovascular effects of sex steroids; the therapeutic potentials of EPCs, MSCs,
and ESCs; and the direct effect of sex steroids on these cell types.

Roles of Sex Steroids in Cardiovascular Disease
Estrogen, specifically 17β-estradiol (E2), has been demonstrated to exert multiple
cardiovascular protective effects in animal models [10]. Many of these effects are exerted
directly on the vasculature and involve modulation of atherogenic and vasoreactive
mechanisms (Table 1). The further recognition of the role of endothelial dysfunction in
atherosclerosis and cardiovascular disease has also guided investigation into how estrogen
protects and repairs damaged endothelium.

Estrogen functions primarily by signaling via estrogen receptors (ER)α and β which belong to
the steroid/thyroid superfamily of nuclear receptors [11,12]. These receptors are expressed by
a wide variety of cells including vascular smooth muscle cells, endothelial cells, EPCs, MSCs,
and other progenitor and stem cells. Following ligand binding, ERs mediate their effects
through either genomic or non-genomic mechanisms. Genomic mechanisms include regulation
of gene transcription through the direct binding of the nuclear estrogen receptor to estrogen
response elements or other transcriptional regulator sequences (Fig. 1) [13]. Consequently,
estrogen may suppress pro-atherogenic genes and induce athero-protective genes,
downregulate interleukin (IL)-6 expression [14], and increase production of protective growth
factors including vascular endothelial growth factor (VEGF) and insulin-like growth factor-1
(IGF-1) [15,16]. E2 has also been shown to upregulate suppressor of cytokine signaling (SOCS)
protein expression with resultant resistance to deleterious tumor necrosis factor-α (TNF-α)
signaling in females [17,18]. Non-genomic effects involve the direct action of estrogen on the
vasculature including the rapid activation of endothelial nitric oxide synthetase (eNOS) and
vasodilation which may augment tissue perfusion [19,20].

Evidence supporting the protective role of E2 in the setting of vascular injury includes the
observations that E2 increased re-endothelialization, increased endothelial functional recovery
(increased nitric oxide production), and decreased neointimal formation in a dose-dependent
fashion in ovariectomized (OVX) mice following carotid artery injury [21]. This E2-induced
re-endothelialization appears to be mediated by ERα [22,23]. ERβ, on the other hand, has
separately been shown to mediate vasculoprotective effects in reproductive organs [24] and
myocardial protection during ischemia/reperfusion injury via upregulation of PI3K/Akt and
decreased cardiomyocyte apoptosis [25]. Interestingly, E2 may also protect the vasculature in
the absence of ERα or ERβ as shown in mouse knockout models [26,27]. Specifically, early
atheroprotection has recently been shown to occur independently of ERα in OVX ERα −/− mice
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treated with exogenous E2 [12]. Thus, while ERα and ERβ are important mediators of E2-
induced vasculoprotection, other receptors or signaling pathways are likely involved.

The promising results of these early animal studies have not been fully realized in clinical trials,
however. In the Heart and Estrogen/Progestin Replacement Study that included menopausal
women with documented coronary artery disease, there was no reduction in cardiovascular
events with exogenous hormone therapy [28,29]. In addition, hormonal therapy was associated
with an increased risk of early coronary events and venous thrombo-embolic events. The
Women’s Health Initiative Estrogen/Progesterone Study was also stopped early due to
increased risks of breast cancer, coronary events, and stroke [30]. Similarly, the unopposed
estrogen arm of this study was stopped due to an increased risk of stroke without any change
in heart disease risk [31]. Further research is warranted to explain these discrepancies between
the results of the animal studies and the clinical outcomes following estrogen therapy.

The evidence that men have a greater incidence of coronary artery disease (CAD) and
myocardial infarction (MI) than age-matched women also raised the hypothesis that
testosterone (T) negatively affects the cardiovascular system. As demonstrated in a rat model
of I/R injury, T exhibits deleterious effects on the myocardium specifically by downregulating
signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling
3 (SOCS3) expression during acute I/R [32]. However, other evidence suggests that T may
actually possess vasculoprotective properties as well. Exogenous T was shown to inhibit aortic
atherosclerosis in castrated male rabbits [33]. In addition, reduced plasma T was associated
with increased arterial stiffness in men [34,35], and the oral administration of T in men with
CAD improved brachial artery vasoreactivity [36]. Furthermore, the acute administration of T
in men with CAD had beneficial effects on exercise-induced myocardial ischemia [37].

Endothelial Progenitor Cells
Bone marrow-derived endothelial progenitor cells are self-renewing and capable of
differentiating into mature endothelial cells. As a circulating pool, EPCs offer an immediate
mechanism of repair of endothelial damage [7], and it was this ability to home to ischemic sites
and differentiate into mature endothelial cells that led to their discovery [38]. Given the
protective endothelial effects of E2 as well as the eventually recognized role of EPCs in
maintaining endothelial integrity, it was further hypothesized that E2 may confer some of its
vasculoprotective effects through regulation of EPC function.

Ischemic/injured tissue recruits EPCs through the local release of growth factors and cytokines.
Both endogenous and exogenous granulocyte colony-stimulating factor and granulocyte
colony-stimulating factor have been directly shown to enhance EPC mobilization and
migration [39,40]. Hypoxia-inducible factors, which are activated under low oxygen levels,
induce expression of stromal cell-derived factor-1 (SDF-1) in endothelial cells with subsequent
increase in the adhesion, migration, and homing of circulating EPC to ischemic areas via the
CXCR4 receptor [41]. In a rat model of MI, skeletal myoblasts over-expressing SDF-1
produced an endogenous gradient that facilitated stem and progenitor cell home migration to
areas of infarction and increased angiogenesis [42]. EPC migration has also been shown to be
mediated by VEGF receptor 1 (flt1) and 2 (flk1) in an eNOS-dependent fashion [43,44]. These
receptors may also facilitate the increased levels of circulating EPCs following acute MI and
vascular trauma [45,46] and in relation to plasma VEGF levels [47].

EPCs have demonstrated therapeutic efficacy for ischemic disease in early animal and human
studies. Mice hindlimb ischemia models have shown that endogenously mobilized and
exogenously delivered EPCs improve tissue perfusion and limb recovery [40,48]. Post-
ischemic injection of EPCs resulted in improved myocardial capillary density and function 28
days later in a rat coronary artery ligation model [49]. Clinical trials investigating the use of
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EPC mobilization as well as exogenous intracoronary infusion or direct intramyocardial
injection in patients with acute and chronic myocardial ischemia have shown promising
preliminary results with improvements in left ventricular (LV) function and myocardial
neovascularization following these directed therapies (reviewed in [50]). While one study
ended early due to a greater-than-expected rate of in-stent restenosis in patients who received
cell therapy [51], phase I and II trials are on-going.

In addition to their therapeutic potential, EPCs may also serve as predictors of cardiovascular
disease outcomes. Hill et al. [52] found EPCs to be more predictive of vascular reactivity
compared to conventional cardiac risk factors. In the same study, EPCs from high-risk subjects
exhibited greater in vitro senescence compared to low-risk subjects. Werner et al. [53] observed
that increased levels of EPCs were associated with a reduced risk of adverse cardiovascular
disease outcomes but were not predictive of MI or death from all causes. Similarly, levels of
circulating EPCs and function have also inversely correlated with age-related decreases in
VEGF [54], diabetes [55,56], cardiac allograft vasculopathy [57], unstable angina [58], chronic
renal failure [59], essential hypertension [60], and acute stroke patients [61].

Sex Steroids and Endothelial Progenitor Cells
Investigations into the effect of E2 on EPCs have focused primarily on EPC mobilization,
survival, and promotion of re-endothelialization. Numerous studies have demonstrated either
a positive association between levels of circulating EPCs and E2 or an ability of E2 to directly
stimulate mobilization of these cells (Fig. 2) [62,63]. E2 mediates this action via ERα and
ERβ; however, ERα may play a more significant role [15]. Following ER ligand binding,
activation of the PI3K pathway, eNOS induction, and fibroblast growth factor (FGF)-2
production appear to be critical steps in bone marrow EPC mobilization [62,64–66]. E2-
induced EPC mobilization is also associated with accelerated re-endothelialization following
vascular injury [62,63] and direct incorporation into areas of myocardial ischemia with
subsequently reduced LV scarring and increased LV function [65].

E2 also affects EPC survival and growth kinetics. Specifically, E2 inhibits apoptosis via
attenuation of caspase 8 activity [62]. It also inhibits EPC senescence onset in culture, increases
telomerase activity, increases mitogenic activity, and activates the Akt survival pathway [60].

Hormonal status may be an important determinant of in vivo EPC function. Levels of
circulating EPCs are greater in premenopausal women compared to postmenopausal women
[67]. EPC levels also correlate with the level of circulating E2 during the menstrual cycle
[68,69] and are higher in fertile women than in young men or postmenopausal women.
However, there is no difference in levels of EPCs between postmenopausal women and age-
matched men [68]. In addition, EPCs from middle-aged women exhibit greater colony-forming
capacity and migratory activity in vitro compared to those from age-matched men, providing
further evidence of the effect of endogenous E2 on EPC function [70]. Finally, linear regression
analysis indicates that gender and age correlate with EPC levels independent of other
cardiovascular parameters.

While EPCs express androgen receptors (AR), there are more limited data regarding the effect
of androgens on EPCs [71]. In one study, hypogonadal males had decreased basal circulating
EPCs which increased following T treatment [71]. However, in this study, both T and estrogen
levels increased following T treatment, and the peripheral conversion of T to estrogen could
not be excluded as a cause of the increased EPC levels. As a follow-up study, EPCs were treated
with a synthetic nonaromatizable androgen in vitro and demonstrated increased migration and
proliferation by an AR-mediated mechanism [72].

Herrmann et al. Page 4

J Cardiovasc Transl Res. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The effects of androgens on EPC mobilization have recently been challenged. By separately
isolating early and late EPCs, Fadini et al. [73] found that androgen stimulation had no effect
on late EPC expansion and adhesion in vitro. Castration decreased levels of circulating EPCs,
but this effect was not reversed with exogenous T administration. In a sample of healthy middle-
aged men, the level of circulating EPCs more closely correlated with E2 than with T. Pro-
survival and growth-stimulatory effects of T may also be restricted to more mature progenitor
cells [74]. Furthermore, in an analysis of plasma steroid levels in males with inflammatory
bowel disease, EPC levels did not correlate with T levels [75]. Thus, while the data are
conflicting regarding the full role of androgens in EPC proliferation and function, T appears
to be less influential than E2 in this capacity

Mesenchymal Stem Cells
MSCs derived from bone marrow are self-renewing cells capable of differentiating into
multiple cell types including osteoblasts, adipocytes, chondrocytes, endothelial cells, and
potentially cardiomyocytes [76,77]. In addition to their potential for differentiation, MSCs may
protect ischemic tissue via the paracrine release of growth factors and anti-inflammatory
cytokines that mitigate the ischemia-induced local inflammatory response [78]. MSCs also
exhibit unique immunologic characteristics in that allogeneic MSCs may be able to evade the
host immune system and potentially even suppress local activation of host T lymphocytes
[79]. These latter properties in particular have spurred interest in developing the cells as a
readily available source of cells for the treatment of various tissue injuries.

Several randomized and nonrandomized clinical trials have evaluated the use of autologous
bone marrow-derived mononuclear cells for the treatment of acute and chronic myocardial
ischemia [80,81]. While this population of cells represents both hematopoietic and
mesenchymal progenitor and stem cells, the cumulative beneficial effects of transplantation of
these cells has promoted further investigation into the use of the individual cell types for
myocardial and peripheral ischemia.

Sex Steroids and Mesenchymal Stem Cells
MSCs exhibit gender-related differences in paracrine function [82]. In vitro, female MSCs as
compared to male MSCs produced more VEGF and less TNF-α in response to stress stimuli
such as lipopolysaccharide and hypoxia. Since VEGF is an important paracrine factor in MSC-
mediated myocardial protection following ischemia [83], this suggested that source gender
may be an important determinant of MSC function and potential cardioprotection. In addition,
the decreased production of TNF-α, a pro-inflammatory mediator of I/R-related myocardial
dysfunction and apoptosis, suggests that female MSCs are more resistant to certain injurious
stimuli [84]. Using an ex vivo model of isolated heart perfusion, intra-coronary infusion of
female MSCs was associated with greater post-ischemic myocardial functional recovery
compared to male MSCs [85]. Given that these cells were removed during the in vivo estrous
cycle, these observed responses may reflect the inherent chronic effects of estrogen or estrogen-
independent functions. Exogenous administration E2 may also play a role on MSC function
as E2 stimulates male MSC production of VEGF in vitro [86]. Moreover, hearts infused with
E2-treated MSCs exhibited greater functional recovery after I/R compared to those infused
with untreated MSCs [86]. Cumulatively, these data suggest that exposure to estrogen may
augment MSC function and potentially MSC-mediated cardioprotection.

The roles of ERα and ERβ in MSC function have also been evaluated. Our lab observed that
E2 as well as ERα but not ERβ agonism can stimulate production of VEGF and hypoxia-
inducible factor-1α (HIF-1α) as well as activate STAT3 in vitro (Fig. 2) [87]. These effects
were abolished in ERα and STAT3 but not ERβ-KO MSCs. The HIF-1 family of cytokines is
upregulated in response to reduced tissue oxygenation and may mediate growth factor
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production including VEGF [88]. Following induction by cellular stress and growth factors,
STAT3 participates in several cell functions including cell survival/apoptosis, proliferation,
inflammation, and angiogenesis [89,90]. STAT3 functions as a direct transcriptional activator
of VEGF in MSCs and other cell types [89,91], a process that is in part mediated by HIF-1α
[92]. In addition, STAT3 is a direct target gene of E2 as evidenced by its upregulation in
response to E2 or ERα agonism [93]. E2-stimulated MSC production of HIF-1α and VEGF
occurs also via protein kinase C, PI3K, Akt, SAPK/JNK, and ERK-mediated mechanisms
[94]. E2 also stimulates MSC production of bone morphogenetic protein-2 (BMP-2) via both
ERα and ERβ, although with greater reliance on ERα [95].

Following the demonstration that TNFR1 plays a detrimental role in the myocardium during
I/R injury [96], attention was given to the potential roles of TNFR1 and TNFR2 in MSC
function. MSCs from male TNFR1-KO mice produce more VEGF and less TNF-α and IL-6.
In vitro, we observed that male TNFR1KO MSCs underwent less apoptosis in vitro compared
to wild-type MSCs and were equal to that of wild-type female MSCs [97]. Ablation of TNFR1
in female MSCs also resulted in improved paracrine function. Similar investigation into the
role of TNFR2 signaling in gender-related MSC functional differences demonstrated that
TNFR2 is a more significant regulator of VEGF and IGF-1 production in male but not female
MSCs [98].

In addition to enhancing MSC paracrine functions, E2 has been shown to increase MSC
proliferation [94,99] and differentiation [100]. The osteogenic differentiation of murine MSCs
appears to be promoted by ERα and possibly inhibited by ERβ in response [101]. Lastly, E2
may induce MSC telomerase activity via ERα and delay the onset of senescence [102].

The role of androgens in MSC function is less clear. In vitro, MSCs from castrated male rats
showed increased VEGF production compared to MSCs from normal rats, and exogenous T
decreased VEGF production by female MSCs, thereby suggesting that T may have an inhibitory
effect [103]. The full effect of T on MSCs including its mechanisms of action remains to be
elucidated.

Embryonic Stem Cells
ESCs are undifferentiated, totipotent cells obtained from the inner cell mass of blastocysts that
exhibit an extensive capacity for differentiation. This potential has led to the investigation of
their use in the regenerative therapy for a wide range of pathologies. Early animal studies in
which undifferentiated murine ESCs were transplanted into ischemic myocardium resulted in
cardiac recovery following ischemia primarily via the paracrine release of growth factors [9,
104]. However, undifferentiated ESCs also possess potential for disorganized growth and
induction of intramyocardial immune reactions [105,106], and the former may be due to a
lesser capability of the native myocardial environment to drive cardiogenic transformation of
ESCs compared to the embryo itself [107]. One strategy for overcoming this limitation involves
preprogramming ESCs to cardiac-specific differentiation through treatment with TNF-α
[108]. Transplantation of these preprogrammed cells resulted in no teratoma formation at any
cell load in contrast to the observed 70% rate of teratoma formation following delivery of
equivalent ESC loads. In addition, these preprogrammed stem cells also promoted recovery of
cardiac function following LAD ligation. Alternatively, more differentiated, ESC-derived
cardiomyocytes obtained from postnatal tissue exhibit similar functional and molecular
characteristics as mature cardiomyocytes but lack the adverse growth characteristics of
undifferentiated ESCs [109,110]. Similarly, Nelson et al. [111] recently demonstrated that
fibroblasts can be reprogrammed with the human stemness factors OCT3/4, SOX2, KLF4, and
c-MYC and exhibit ESC characteristics. Importantly, these induced pleuripotent stem cells
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demonstrated the ability to engraft into the native myocardium in an organized fashion and to
restore post-ischemic myocardial function.

ESCs express ERα and ERβ during early embryonic development [112]. E2 has been shown
to stimulate ESC expression of ERα and ERβ expression; increase mRNA expression of the
proto-oncogenes c-fos, c-jun, and c-myc; and increase proliferation in part via ERK [113].
Little is known regarding the effect of E2 on the paracrine properties of ESCs, however.

ESCs also express androgen receptors [114], and treatment with nilutamide, a nonsteroidal
antiandrogen, stimulates their growth and Akt expression. However, ESC proliferation is
unaffected by androgen treatment. Treatment of murine ESCs with T in vitro resulted in the
development of a cardiomyocyte-like phenotype with spontaneous contractility and expression
of cardiac markers [115]. This effect was inhibited with the addition of flutamide, providing
further evidence for the role of the AR-mediated signaling in this cell population. Interestingly,
these ESCs were also found to produce T at levels similar to unstimulated Leydig cells,
suggesting a possible autocrine role of T.

The recent development of proteomics is enabling investigators to conduct large-scale analyses
of paracrine factors involved in cell differentiation as well as characterization of intracellular
secretory processes (secretome) [116]. In addition, transcriptome investigation including
systems expression profiling with bioinformatic network analysis is facilitating the
investigation of spatiotemporal expression patterns of surface biomarkers and cardiogenic
genes which may allow for the selection of specific progenitor and stem cell subpopulations
that possess the greatest potential for organized cardiac differentiation [117]. These techniques
will undoubtedly play important roles in the investigation of the role of sex hormones in stem
cell differentiation and function as well as the development of strategies for optimizing the
therapeutic efficacy of these cells.

Conclusion
Source gender may be a significant determinant of progenitor and stem cell function via direct
actions of sex steroids on these cells. Understanding these mechanisms may enable us to further
understand the apparent discrepancy in cardiovascular disease outcomes between men and
women. In addition, by utilizing the beneficial effects of E2 on stem and progenitor cell
function, these cells may be optimized during ex vivo expansion prior to their therapeutic use
in order to improve post-transplantation function and survival.
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Abbreviations

AR Androgen receptor

BMP-2 Bone morphogenetic protein-2

CAD Coronary artery disease

E2 17β-estradiol

eNOS Endothelial nitric oxide synthase

ER Estrogen receptor

EPC Endothelial progenitor cell
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ESC Embryonic stem cell

FGF Fibroblast growth factor

HIF Hypoxia-inducible factor

IGF-1 Insulin-like growth factor-1

IL Interleukin

I/R Ischemia/reperfusion

MI Myocardial infarction

MSC Mesenchymal stem cell

OVX Ovariectomized

SDF-1 Stromal cell-derived factor-1

SOCS/3 Suppressor of cytokine signaling

STAT3 Signal transducer and activator of transcription

T Testosterone

TNF Tumor necrosis factor

TNFR Tumor necrosis factor receptor

VEGF Vascular endothelial growth factor

VEGR Vascular endothelial growth factor receptor
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Fig. 1.
After entering the cytoplasmic space, estrogen and androgen bind to and induce dimerization
of their respective receptors. The dimers then translocate to the nucleus where they engage
either estrogen response elements (ERE) or androgen response elements (ARE) to regulate gene
transcription. ER estrogen receptor, AR androgen receptor
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Fig. 2.
Effects of estradiol on endothelial progenitor cell and mesenchymal stem cell function. EPC
endothelial progenitor cell, MSC mesenchymal stem cell, VEGF vascular endothelial growth
factor, HIF-1 hypoxia-inducible factor-1, BMP-2 bone morphogenetic protein-2
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Table 1

Protective effects of estrogen (17β-estradiol) on the vasculature

Site of action Effect Reference

Vascular smooth muscle ↓ Vasoreactivity [118]

↓ LDL oxidation

↓ Proliferation

Tunica intima ↓ Atherosclerosis [119,120]

↑ NO synthesis

Vascular endothelium ↓ Macrophage and platelet adhesion [121–123]

↓ Reactive oxygen species

↑ Post-injury re-endothelialization

Pulmonary vasculature ↓ Hypoxia-induced vasoreactivity [124]
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