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Abstract
A diverse array of nitrosoalkenes derived from both acyclic and cyclic ketones, as well as aldehydes,
via the Denmark protocol using α-chloro-O-TBS-oximes can be trapped efficiently in situ by a wide
variety of potassium ester enolates to afford conjugate addition products in good yields.
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Vinylnitroso compounds are highly reactive, generally unstable species which have only found
sporadic use in organic synthesis.1 There are presently two procedures most commonly used
to generate nitrosoalkenes (Scheme 1). The most widely applied method involves base-
promoted 1,4-elimination of an α-halo oxime 1 to produce the vinylnitroso species 3. These
transient intermediates are known to undergo rapid conjugate additions with a variety of hetero
and carbon nucleophiles in a Michael-type reaction to produce adducts 4 in good yields. When
forming the vinylnitroso species via this process it is common to utilize at least two equivalents
of a nucleophile, one of which acts as the base for the initial elimination step. Such a procedure,
however, is inefficient when using valuable nucleophiles.

A second, less widely used method for nitrosoalkene generation developed by Denmark, et al.
relies on treatment of an O-silyl-α-halo oxime 2 with a fluoride source to form 3.2 Several
scattered examples have appeared describing the production of vinylnitroso compounds via
this procedure in the presence of a nitrogen or oxygen heteronucleophile to afford the
corresponding conjugate addition products.3 In addition, two reports exist of the generation
and intermolecular trapping of carbon nucleophiles starting from silyl-α-halo oximes like 2.4
Recently we have used the Denmark procedure to effect the first examples of intramolecular
conjugate additions of enolates to vinylnitroso compounds.5

In view of our interest in exploring the potential of nitrosoalkenes as enolonium ion equivalents
in organic synthesis,7 we have studied effecting intermolecular conjugate additions of a number
of vinylnitroso compounds formed by the Denmark strategy with a wide variety of ester
enolates. It should be noted that vinylnitroso compounds derived from cyclic ketones6 as well
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as aldehydes4a are still relatively rare and therefore we have opted to explore reactions
involving such systems to probe the scope of the methodology.

We have developed a general experimental procedure to effect this transformation as shown
in Scheme 2 and have explored the scope and limitations of this methodology. Thus, an ester
derivative 5 (1.2 equiv) is first converted into its potassium enolate with potassium
hexamethyldisilazide in THF at -78 °C. Addition of an α-chloro-O-TBS-oxime 6 (1.0 equiv)
to the enolate solution is followed by slow addition of tetrabutylammonium fluoride solution
in THF (1.2 equiv). The mixture is then slowly warmed to 0 °C, and after two hours the reaction
is worked up to yield alkylation product 7. A number of examples of this process along with
chromatographically isolated yields of oxime products 7 are listed in Table 1. In most cases a
single oxime geometric isomer is formed, assumed to have the more stable (E)-configuration,
although occasionally oxime mixtures are produced (see Table 1). We were pleased to find
that in general the alkylation procedure works well with a variety of α-chloro-O-TBS-oxime
substrates including those derived from cyclic ketones and aldehydes. Moreover, it was
gratifying to see that with the aldehyde-derived nitrosoalkene in entries n and o it is possible
to produce adjacent quaternary carbon centers.

One interesting observation which was made is that with some ester and α-chloro silyl oxime
combinations, the nature of the base used for the enolization can affect the product yield. For
example, using ethyl α-nitroacetate (entry d) KHMDS gave the desired alkylation product in
57% yield whereas with NaHMDS and LiHMDS none of the product was formed. With diethyl
malonate and the aldehyde-derived substrate in entry t, KHMDS and NaHMDS gave similar
product yields but LiHMDS gave a substantially reduced yield. On the other hand, using diethyl
malonate and the cyclic ketone derived silyl oxime substrate in entry a, the yield of alkylation
product is only slightly dependant upon the base: 95% with KHMDS, 94% with NaHMDS and
91% with LiHMDS. In a few of the examples in the table (entries h, l, m, o, v,w,x) it was found
that there was a significant improvement in product yield if the amount of the ester potassium
enolate is increased to 2 equiv.

To our surprise, it was observed that enolates of 1,3-diketones and simple ketone enolates do
not add to vinylnitroso compounds under these conditions. At present we cannot rationalize
this failure since there are a number of examples in the literature of such Michael reactions of
nitrosoalkenes generated from base elimination of simple α-halo oximes.1,8 In addition, all
attempts to add ester enolates to the more highly substituted nitrosoalkene 9 formed from α-
chloro-O-TBS-oxime 8 only led to the tautomerized α,β-unsaturated oxime 10 in varying yields
(Scheme 3).

Finally, the potassium anion from α-phenylsulfonylacetonitrile (11) reacts with the
nitrosoalkene from α-chloro-O-TBS-oxime 12 but produces adduct 13 where the oxime
hydroxyl group has cyclized onto the initially formed cyano sulfone (Scheme 4). The moderate
yield of 13 is probably due to its instability on silica gel chromatography.

In conclusion, we have described a general procedure whereby vinylnitroso compounds formed
via the Denmark protocol from a diverse array of α-chloro-O-TBS-ketoximes and -aldoximes
can be trapped in situ with a wide range of potassium ester enolates to give Michael-type
adducts in good yields. We are currently exploring some extensions of the methodology and
applications to the synthesis of complex molecules

General procedure for intermolecular Michael additions of carbon nucleophiles to in situ-
generated nitrosoalkenes

To a -78 °C solution of ester derivative 5 (0.46 mmol) in THF (1 mL) was added KHMDS
(917 μL, 0.5 M in PhMe, 0.46 mmol). The resulting solution was then stirred for 45 min at that
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temperature. The O-TBS-oxime 6 dissolved in THF (0.38 mmol in 0.3 mL of THF) was added
slowly over 1 min, followed by the dropwise addition of TBAF (458 μL, 1.0 M in THF, 0.46
mmol) over 3 min. The resulting solution was immediately transferred to a 0 °C ice bath and
stirred for an additional 2 h. The reaction mixture was diluted with conc. aqueous NH4Cl and
EtOAc. The organic layer was separated and the aqueous layer was extracted with EtOAc. The
combined organic layers were dried over MgSO4 and concentrated in vacuo to give a residue,
which was purified by flash column chromatography on silica gel eluting with a mixture of
ethyl acetate and hexanes. Isolated yields of conjugate addition products 7 are shown in Table
1.
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Scheme 1.
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Scheme 2.
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Scheme 3.
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Scheme 4.
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Table 1

Intermolecular Michael additions of carbon nucleophiles to nitrosoalkenes

entry ester derivative nitrosoalkene precursor product yield

a 95%a

b 84%
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entry ester derivative nitrosoalkene precursor product yield

c 69%
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entry ester derivative nitrosoalkene precursor product yield

d 57%b,c

e 71%c
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entry ester derivative nitrosoalkene precursor product yield

f 95%c
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entry ester derivative nitrosoalkene precursor product yield

g 79%c

h 85%d,e

i 72%
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entry ester derivative nitrosoalkene precursor product yield

j 73%

k 82%c

l 55%c,d
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entry ester derivative nitrosoalkene precursor product yield

m 64%d,e
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entry ester derivative nitrosoalkene precursor product yield

n 74%
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entry ester derivative nitrosoalkene precursor product yield

o 69%d
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entry ester derivative nitrosoalkene precursor product yield

p 63%

q 88%
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entry ester derivative nitrosoalkene precursor product yield

r 71%

s 75%
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entry ester derivative nitrosoalkene precursor product yield

t 51%f

u 69%
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entry ester derivative nitrosoalkene precursor product yield

v 68%d,g

w 75%c,d
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entry ester derivative nitrosoalkene precursor product yield

x 67%d

a
Use of LiHMDS and NaHMDS gave yields of 91% and 94%, respectively.

b
No desired product was formed when using LiHMDS or NaHMDS.

c
An accurate stereochemical assignment could not be made since the products exist as a complex mixture of E/Z-isomers and/or diastereomers which

were not separable by column chromatography.

d
2 eq of KHMDS and 2 eq of ester derivative were used.

e
The deprotonation step was performed at 0 °C to prevent freezing of the reaction mixture.

f
Use of LiHMDS and NaHMDS gave 34% and 51%, respectively.

g
E:Z ratio could not be determined.
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