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Abstract

Trapping of 10-nm-sized single fluorescent bio-molecules in solution has been achieved using high-
speed position sensing and electrokinetic feedback forces in the Anti-Brownian ELectrokinetic
(ABEL) trap. The high diffusion coefficient of small objects in solution requires very fast, real-time
sensing of position, and this has been previously achieved using a simple rotating beam, but improved
strategies are needed for the smallest objects, such as single nanometer-sized fluorescent molecules.
At the same time, single molecules are limited in photon emission rate and total number of photons,
so each emitted photon must be used as efficiently as possible. We describe a new controller design
for the ABEL trap which features fast, knight’s tour scanning of an excitation beam on a 2D square
lattice and a Kalman filter-based estimator for optimal position sensing. This strategy leads directly
to a maximum-likelihood-based method to extract the diffusion coefficient of the object held in the
trap. The effectiveness of the algorithms are demonstrated and compared to the simple rotating beam
design through Monte Carlo simulations. Our new approach yields tighter trapping and a much
improved ability to extract diffusion coefficients.

1 Introduction

Recently, researchers have made significant progress in feedback control and tracking of single
Brownian objects in aqueous solution using optical microscopy, typically fluorescence [1].
Observing a single molecule in the liquid phase for an extended amount of time provides the
capability to measure intrinsic properties of the single molecule over timescales from
nanoseconds to seconds [2], without perturbations from surface attachment or other methods
of immobilization. The general approach has been to combine real-time position sensing and
closed-loop feedback actuation to compensate for thermally driven diffusion [2—4]. Both tasks
are technically challenging, especially for single biomolecules or single small fluorophores,
which are both fast and dim. High diffusion coefficients are unavoidable for nanoscale objects,
placing a strong requirement for fast updating of position sensing and feedback. In addition,
single molecules are limited in photon emission rate and total number of emitted photons before
photobleaching occurs, so the trapping design must use each emitted photon as efficiently as
possible.
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The Anti-Brownian Electrokinetic (ABEL) trap, invented by Cohen and Moerner [4-6], is one
elegant approach. The ABEL trap uses two-dimensional electrokinetic forces to push the object
back to the target position once position deviation caused by Brownian motion is detected.
Electrokinetic forces provide an effective handle on colloidal objects because they scale more
favorably for small objects, both in terms of strength (compared to dielectrophoretic forces in
optical tweezers) and frequency response (compared to mechanical stage motion). At the
position sensing end, the first implementation of the ABEL trap used a CCD camera and
centroid-based image processing to extract position in-formation of a fluorescently labeled
Brownian object [4,7] and achieved trapping of objects as small as 20 nm in size, limited only
by the software update time (~4 ms). To trap smaller objects, an all-hardware version of the
trap [6,8] was developed that used a rotating beam/lock-in detection method [9-12] to sense
position. These improvements reduced the update time and enabled successful trapping of 10
nm fluorescent objects in solution. However, it is still difficult to trap dimmer (<20 kHz count
rate) and/or faster (D>40 um?2 s™1) objects; furthermore, extracting diffusion information from
the object held in the trap directly from the feedback voltages is less straightforward compared
to the camera-based design [5,6].

Many feedback controller designs have been described [10,13,14]; however, they all require
relatively high photon count rate in order to average among the many photon detection events
within the integration window. Efficient feedback strategies in the low-count-rate regime are
lacking, mainly due to the limitation of the highest achievable bandwidth set by the mechanical
stage used in the tracking experiments [2,3,15]. However, with much faster electrokinetic
feedback, we are in the good position to explore optimal strategies in the low-count-rate regime
for the first time. In this paper, we propose a feedback controller specifically tailored to trap
fast and dim objects in the ABEL trap platform, as well as a maximum likelihood estimator
(MLE) to extract the diffusion coefficient of the trapped object. The rest of the paper is
organized as follows. In Sect. 2, we introduce a new beam-scanning scheme and describe the
structure of a real-time feedback algorithm. In Sect. 3, we develop the MLE for estimating
diffusion coefficient. Simulation analyses of the proposed schemes are provided in Sect. 4. We
discuss practical implementation issues and conclude in Sect. 5.

2 Beam scanning on a 2D grid and photon-by-photon position estimation

In feedback control of a Brownian object, position information is carried by the fluorescent (or
scattered) photons.l When designing the controller, one trades off localization precision for
feedback bandwidth. Berglund et al. [11] suggest that the optimal feedback bandwidth for
lockin detection should be chosen so that the rms distance of a Brownian displacement during

the integration window (~ VA1) balances the localization error (~ 1/ VA1), In the low-count-
rate/small-object regime, the photon detection rate (I') can easily be on the order of or less than
the characteristic feedback bandwidth needed to trap (or track) a fast diffusing object

T < 4D/aﬁ, ap is the maximum displacement that can be tolerated before loss of the object).
In this regime, it might be more advantageous to design a controller that provides feedback on
every detected photon, as was described for the rotating beam case by Cohen et al. [6].

We propose a new beam scanning pattern on a 2D square lattice as illustrated in Fig. 1, where
the Gaussian excitation spot dwells on each reference position (y;, j = 1-40) for a short period
of time (~1 us) before making a “knight’s tour” jump to the subsequent position. Such a scan
pattern aims to encode more position information on each detected photon. After a complete
traversal over the 40 points (defined as one frame), each spot will be covered exactly once,
resulting in a flat excitation profile in the time-averaged sense (Fig. 1b). Such a “flat-top”

Lin this paper, the focus will be on emitted fluorescence, since nano-sized objects are poor scatterers.
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excitation profile uniformly covers the trapping region, and would be beneficial to study
fluorescence intensity fluctuations on time scales much longer than the beam scanning period

[8].

The tracking algorithm works as follows. For each detected photon, the position of the scan
beam (one of the 40 possible positions in Fig. 1) at the time of the photon-detection event is
recorded to be the unfiltered position estimate (y; ) of the object. We now examine the statistical
meaning of the unfiltered measurement by seeking an expression for P(y; [x), namely, the
probability of detecting a photon when the beam is at y; , given that the real position of the
object is at x. If intrinsic intensity fluctuations that may arise from photophysics or
conformational dynamics can be ignored, we write the instantaneous photon emission rate of
the fluorescently labeled object as

x|
2

I'j(x,y;)=Loexp l—
v (1)

where I'g is the count rate when the object overlaps with the center of the Gaussian excitation
profile, X is the position vector of the object, y; is the position vector of the scanning beam at
index j , and w is the 1/e2 waist (radius) of the excitation Gaussian profile. In the low-count-

rate regime, the average number of photon detections per frame is smaller than unity. To make
progress, we make two additional assumptions concerning the object’s motion:

1. The movement (diffusion and translation) of the object is much smaller than the size
of the scanning region, allowing x to be approximated as constant during the time of
one frame

2. The object remains close to the center of the trapping region, i.e., we consider
situations when trapping is tight

The first assumption places an upper limit on the diffusion coefficient, and the second will be
verified by direct simulation (vide infra): Under these assumptions, when a single photon is
detected, the probability that the photon originates from scan point y; while the object is at x
can be expressed as

Lj(xy)) - exp(-1)
D Tixy) - exp(=1)

)
X—y;j|”

p(y j|X) =

(2

where the Poisson probability of exactly one photon detection has been included.

We can now use (2) to develop a model for the measurement process, which is driven by the
actual photon detection events at times 7. The photon detection selects one of the beam
positions, which we call yy, indexed by k, because this set of positions is critical to the time
evolution. Note that since our set of y; (Fig. 1) discretizes the 2D plane with uniform density,
(2) means that y, samples the real position of the object (x) with Gaussian measurement noise
Nk ~ N(Xk, Q), where the covariance matrix resulting from finite beam profile is given by Q =
(W/2)2 1 (1 is the 2x2 identity matrix). The unfiltered measurement can thus be modeled by

Yk = X0y (3)
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Between photon detection events, the dynamics of the Brownian particle in the trap can be
modeled in a fine-grained state space as [8]

Xiy] = Xt -y - dt+w; (4)

where uy is the feedback voltage vector updated at photon detection events, u is the mobility
matrix, and w; is the Brownian increment term with wj ~ N(0, 2D dt I). In (3) and (4), index
k denotes photon detection events, while index i represents small fixed sampling intervals
(dt) where Brownian motion is updated. Under the conditions of Gaussian process noise and
Gaussian measurement noise, the optimal state estimation problem can be solved analytically,
and a recursive implementation is the celebrated Kalman filter [16].

Following the standard algorithm, we thus construct a state estimator comprised of a prediction
update (or prior estimate, superscript —)

X =X HUey - e Al (5)
which describes how the mean of the estimate propagates according to the deterministic
feedback forces, and a filtering update (or posterior estimate, superscript +)

X =X +K - (k= X)) ®)
which describes how the mean of the estimate gets refined given the newest measurement yj .

Ky is the Kalman gain that weighs the importance of the most recent information. The feedback
voltages are taken to be proportional the posterior estimate

_ <+
U= -8 - X (7

where g is the voltage gain in units of V/um. The duration of each electrokinetic kick is set to
be

Aty = min(Tpy | — T, Afax) ®

where Atyay is a predetermined upper bound of feedback voltage duration, which might be
useful in practice to prevent escape of the object during rarely occurring long photon waiting
times. The estimator ((5) and (6)) and controller (7) are updated at photon detection events.
We ignore the computational delay and electrokinetic response time in this model.

We now consider position tracking accuracy. Because the two Cartesian coordinates are
independent and statistically equivalent (provided that Assumption 2 is satisfied), we restrict
the following discussion to 1D. The variances of estimation errors, defined as

Py =E[(x — }f)z], can be shown to propagate according to [16]

P, = PZ,'+2D c (Tke1 — Tr) (9)
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Pr=(- Ky - Pak? - (L)
=1 - K k+k'(5) (10)

Equation (9) expresses the broadening of the estimation error variance due to diffusion, and
(10) describes how the observer refines the estimation uncertainty after new measurement
information becomes available. If the diffusion coefficient is known a priori, given the known
photon arrival times, P}, can be updated at each measurement instant and used to determine the
optimal Kalman gain that minimizes the posterior estimation error variance. We find

P
— (w2

opt _
K™=

The optimal Kalman gain dynamically adjusts the importance of previous knowledge and new
measurement information in forming the optimal posterior estimate (note that when the photon

waiting time is large, 2D - (i1 — ) > (w/2)%, KX\ — 1, which means the previous
estimates become obsolete so that only the newest measurement is used in forming the posterior
estimate in (6)). Practically speaking, we often face the problem in reverse: the diffusion
coefficient is usually unknown, and it is desirable to extract information about the object’s
diffusion statistics from experimentally available data. \We show in Sect. 3 that such a parameter
estimation problem can be solved by a maximum likelihood approach.

We note that the statistical properties of the estimation error and the expression for the optimal
Kalman gain are only valid when there are no background photons. In case of low signal-to-
background, the estimator and controller in (5), (6), and (7) can still be used, but the
interpretation of each measurement becomes obscured. Due to the fact that D is unknown and
the presence of background photons, a fixed Ky should be used to provide sub-optimal position
tracking in practice. The value of Ky might be chosen by simulation or trial and error.

3 Maximum likelihood estimation of diffusion coefficient

Extracting the diffusion coefficient of the trapped (tracked) object can be easily done when the
position can be sampled with considerable precision during the experiment [3,5,15]. Here we
develop an algorithm to extract D from our photon-by-photon position estimation data.

In a real trapping experiment as described in Sect. 2, the available data include photon arrival

times ({zc}), unfiltered measurement vectors ({yx}), prior and posterior estimates? {xh,
feedback voltage records ({ug}), excitation beam waist w, and Kalman gain ({K}) (or a fixed
Kk ). We estimate D by maximizing the likelihood of observing N photons in sequence during
the trapping experiment. The likelihood function is given by

y =
— Iy - exp(-1
2T py=] [ 22D

k=1 ’ (12)

where Iy is the (estimated) local rate of photon emission at time z,. How I is related to the
diffusion coefficient D can be seen from the following argument. We start with the background-
free case. At time 7,—1, our knowledge of the object’s position is described by a Gaussian

2\We assume that electrokinetic mobility of the object can be characterized separately, for example, by an FCS approach [17].
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distribution centered at x;_,, with a variance of P;_, along both Cartesian coordinates (assuming
isotropic diffusion). After time i — ty—1, right before the detection of the kth photon, the mean
of the distribution translates to x;_ by the applied feed-back force while the variance broadens
to P, due to diffusion (Fig. 2). Meanwhile, the excitation Gaussian profile is located at yj, with
a variance of (w/2)2. The likelihood of emitting the kth photon is maximized when the prior
estimation distribution and the excitation beam profile share the biggest overlap. The
instantaneous rate of photon emission can therefore be expressed as the overlap integral,

S I
LiD)= 5 ;(D)

< [[ el

For a given diffusion coefficient and the complete record of photon arrival times, the prior and
posterior estimates as well as their error variances can be recovered at each photon detection

event according to (5), (6), (9), and (10). With the reconstructed trajectory containing N prior
estimates and their variances, the most likely value of D is the one that maximizes the overlap
integral between two N x 2 dimensional Gaussians, constructed by all the prior distributions

and the corresponding beam profiles, which can be seen mathematically by plugging (13) into
(12).

|X X

2P, (D)

exp [—2"‘1”"2] dx

W

(13)

We now consider the case with background photons. We model background photons as being
generated by a Poisson process with constant rate I'ng. In calculating the instantaneous
fluorescence rate as in (13), we take into account the possibility that photon detected at 7, ¢
might be a background photon. If that is the case, no position information is gained, so we
heuristically replace the prior estimate distribution with a 2D uniform distribution (defined
within the square-shaped trapping region) in the integrand. The approximation here is to ignore
the fact that the error variance P, in the presence of background photons should be modified.
Specifically, let the signal-to-background ratio be SBR = I'/T',g; then

T _  _SBR ¥
I(D)= SBR+1 27 I’D(D)
x-% 2/x — yil?
——|d
ﬂ exp|— 2P D) J exp 2 b

SBR+1 : (7\[ o)’

X f f trap €XP

where the second integral is defined on the square-shaped trapping region with an area of
(2xt,ap)2. The likelihood function in (12) is modified consequently to be

_-Ix nl

dx

(14)

. -
_ (Ti+The) - exp(=1)
2(Ep)=] [
k=1 ’ (15)

The value of D maximizing (15) is determined numerically.

4 Simulation results

In this section, we validate the proposed algorithms by numerical simulations. The object’s
two-dimensional dynamics is updated according to (4) with a time resolution of dt = 150 ns.

Appl Phys B. Author manuscript; available in PMC 2011 April 1.
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The beam traversal pattern is updated simultaneously as illustrated in Fig. 1 with a dwell time
of 1.05 ps on each reference position. The 1/e2 beam waist radiusS is set to be w = 0.4 pm, and
the spacing of the 2D grid is 0.3 um. The trapping region is approximated to be a square with
edge length 2xg,p of 0.8 um (central constant-intensity region of Fig. 1b). Photon detection is
simulated as a Poisson process with a time-dependent rate determined by the distance between
the excitation beam and the object (1). The observer is implemented as described by (5) and
(6), while the feedback law is implemented according to (7) and (8). In the rare cases when
more than one photon is detected within one dwell time of the scan beam, only the first photon
is retained.

Figure 3 shows an example trapping trace, where a fixed Kalman gain is used, with simulation
parameters chosen to mimic trapping of a small protein labeled with a single bright fluorophore.
In Fig. 3a, the brightness fluctuations at one millisecond appear to arise from standard Poisson
photon emission statistics at constant intensity, as opposed to the large fluctuations that would
occur for a molecule diffusing through a simple Gaussian-shaped focal spot. (Of course, there
are emission fluctuations near the frame rate frequency.) In Fig. 3b, we confirm that the object
remains close to the center of the trapping region; moreover, the object would have diffused a

root mean square distance of V4DAr ~ 13 um without the trap.

In Fig. 4, we compare the algorithm developed in this work to the circular rotation/lock-in
demodulation scheme [6,15]. The comparison is made at constant signal to background (I" =
14 kHz and I'hg = 2 kHz). Parameters for the circular rotation scheme are chosen to be rejrc =

0.85 UM, w o= V2 X reire @Nd @cire = 27%26 kHz (Fig. 4 inset left). This set of parameters
guarantees that the time-averaged intensity is flat near the center [11,13], and the size of the
“top-hat” region (as well as the frame rate of scan) approximately matches that of the 2D grid
scan scheme (Fig. 4 inset right). The lock-in algorithm generates a quadrature output by
multiplying a rotating phasor reference by the pulse train of photon detection events, here
averaged over one cycle of rotation. The resulting vector output of the lockin is used to generate
the feedback voltages. Previous work [11] has shown that at high count rates, the quadrature
outputs approach a Gaussian distribution in x and y centered at the origin. However, in the low-
count-rate regime, the circular rotation algorithm degrades to a phase-only scheme, as
evidenced by the cumulative vector plot of the lock-in outputs and radius histogram in Fig. 4b
and c. Here, phase-only means that most of the feedback vectors are located on the circle. As
a comparison, the outputs of our Kalman-filtered position estimator and a histogram of the
estimates along one dimension are plotted in Fig. 4d and e. The estimated positions follow a
Gaussian distribution, a direct result of the Gaussian measurement model (3) used in the
controller design. Our new algorithm is thus more capable of estimating positions near the
trapping center, presumably due to more positional information being encoded on every
detected photon. We chose the standard deviation of position to gauge the performance of the
two controllers in Fig. 4a. Our new algorithm is capable of trapping the objects more tightly,
with up to 30% suppression of position fluctuation in the trap.

In Fig. 5, we show the performance of the maximum likelihood D estimator developed in Sect.
3. In this part of the simulation, objects are trapped at 14 kHz average signal, and the first 150
ms (~2400 detected photons) of trapping data are used to estimate the object’s diffusion
coefficient using the likelihood function in (14) and (15). A constant Kalman gain of K = 0.4
is used. We tested the MLE for different levels of background photons, and it performs well
at a signal-to-background ratio as low as 4.7 (Fig. 5b), although the uncertainty in the estimates
increased significantly compared to the low-background case (Fig. 5a). The MLE estimator

3The corresponding confocal distance of the beam would be 2zR = 27w/ = 1.5232 pm (for & = 0.66 um), still much larger than the z
confinement depth of the ABEL trap (0.5-0.8 um) [7]. Thus we expect trapping performance to be approximately the same as the object
freely diffuses in the trapping channel in the z dimension.
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has also been tested with different values of trapping parameters (feedback gain, Kalman gain,
beam waist, etc.) and proved to be quite robust except at the very lowest D (~1 pm?/s, where
the object does not move much between photon detection events) and very highest D (>120
um?/s, where the detected count rate is insufficient for stable trapping, and the assumptions of
the model fail).

5 Conclusions

Using electrokinetic forces for feedback actuation enables controller designs that can operate
at several tens of kHz and will hopefully make trapping of smaller and faster-moving objects
possible. In this paper we have developed a controller that estimates the position and applies
feedback control for every detected photon. We show that by scanning the excitation beam on
a 2D square lattice, every detected photon yields more information about the object’s
position, with an accuracy limited by the size of the scanning beam. In our approach, the
dominant Gaussian measurement noise is a result of the TEMgg mode profile of the laser
excitation spot, even at low count rate. Our position estimator is based on the well-established
Kalman filter that takes advantage of the Gaussian statistics in providing (tractable) optimal
state estimation. We also propose an MLE for estimating D, and the accuracy of this MLE is
a direct validation of the measurement model in (3).

We expect the algorithm to work best in the regime where it is designed (i.e., fast diffusion
with low signal count rate). To trap slow or bright objects, it is preferable to integrate the
measurements to obtain sub-diffraction-limit localization accuracy before providing feedback
[11,13].

We envision the algorithm to be easily implemented on a Field-Programmable-Gate-Array
platform [18]. Two-dimensional beam steering can be achieved by a pair of acousto-optical
beam deflectors (AOBD), and fast switching can be accomplished by direct digital synthesizers
[19], where the switching speed would be limited only by the aperture time of the AOBDs. In
principle, one would like to scan a smaller beam using more points on a 2D grid for better
position estimation accuracy. However, too small a scan beam would produce a large intensity
variation in the z direction, and too many scan points would slow down the frame rate. The
beam scanning scheme described here is thus a trade off in consideration of practical
implementation issues. Moreover, we note that in calculating the MLE for the diffusion
coefficient, (14) can be expressed in analytical form involving Gaussian and error functions
(Erf(x)), soan on-line implementation is also possible. Real-time information about the object’s
diffusion coefficient could be used to fine-tune the feedback loop as in (11) when the signal-
to-background ratio is high. Such D estimates should also have a number of biophysical
applications such as sorting biomolecules and detecting binding/unbinding events of different
species.

Our goal is to optimally trap and study single bio-molecules in aqueous buffer. 100 kDa and
20 kDa proteins are estimated to have diffusion coefficientsz of ~60 um?2/s and ~100 pm#/s
(in water), respectively [20]. The simulation results in this paper show that both proteins can
be trapped tightly with only a few fluorescent labels and their diffusion statistics be recovered
by our new approach.
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Fig. 1.
Two-dimensional beam scanning on a grid with full traverse defined as one frame. (a) Scan
trajectory. (b) Frame-averaged intensity produced by the scan pattern in (a)

Appl Phys B. Author manuscript; available in PMC 2011 April 1.



1duasnuely Joyiny Vd-HIN 1duosnuey JoyIny vd-HIN

1duasnuely Joyiny vd-HIN

Wang and Moerner Page 11

N (X, P N(xk 1’P+)

Fig. 2.

Maximum likelihood estimation of diffusion coefficient from a one step prediction process.
N;_,,P;_ ) and N(X,P,) are 2D Gaussian distributions that characterize previous step
posterior estimates and current step prior estimate, respectively. The translation of the means
represents the deterministic feedback kicks while the increase in uncertainty is due to diffusion.
The likelihood of detecting a photon at time 1y is proportional to the overlap integral between
the prior estimate and the excitation beam profile (red Gaussian centered at yy )
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Fig. 3.

Simulated performance of the ABEL trap controller as described in Sect. 2. The diffusion
coefficient of the fluorescent object is 100 um?/s. Other parameters include: g - p = 7000 s~1
(overall feedback gain), Ky = 0.4, Atmax = 76.8 ps. The initial position is set to be outside the
trapping region (X = (3.5, 0) um). The object luckily entered the trapping region at about 20
ms and became trapped until the end of the simulation run. (a) Fluorescence intensity
fluctuation during the trapping run, in 1 ms bins. The fluorescence count rate is set to I" = 14
kHz (I'y = 200 kHz) and the background level is 2 kHz. At 1 ms timescale, the intensity
fluctuation is essentially Poissonian (Mandel Q parameter 0). (b) Position trajectory of the
object
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Fig. 4.

Comparison of trapping performance between the circular rotation/lock-in demodulation
scheme [6,15] (black) and the algorithm developed in this work (red). The setup and time-
averaged intensity of the circular rotation scheme are depicted in the inset of (a). The rotation
is implemented as 256 point traversal on the circle at a rate of 26 kHz. Feedback voltages are
generated after each rotation cycle and last throughout the subsequent cycle. For both
algorithms, 300 ms of trapping data is generated for characterizing the position fluctuations
(o) of the object in the trap and a total of 20 trapping traces are simulated for a specific diffusion
coefficient. For each algorithm and each D value, the feedback gain (g - 1) was fine tuned to
minimize the position variance. Other simulation parameters for the new algorithm are the
same as in Fig. 3. (a) Standard deviation of (1-D) position fluctuation as a function of diffusion
coefficient. Outliers at high D arose from trapping runs during which the object had escaped,
and those runs are eliminated from calculation of the mean. The solid lines are linear fits of
the means. (b) Cumulative vector plot of the lock-in outputs during a trapping event of a D =
100 um?/s object. (c) Radial distance histogram of the lock-in outputs. The cycles with one
photon detected produce vectors on the periphery of the circle in (b) and the right peak in (c).
(d) Cumulative vector plot of the Kalman filtered posterior estimates (6) during a trapping run
of a D = 100 pm?/s object. (e) Histogram of the posterior estimate along one dimension
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Maximum likelihood estimation of diffusion coefficients using the algorithm developed in
Sect. 3. The parameters used in the simulation are K = 0.4, g - = 8000 S71, Atyax = 76.8 ps.
Only the first 150 ms of trapping data are used in the estimation. (a) In case of high signal-to-
background ratio (SBR = 280). (b) In case of low signal-to-background ratio (SBR = 4.7). Each
diffusion coefficient is estimated 40 times and plotted as black circles, averages of the 40
estimates are shown as red squares. Dashed blue lines are linear fits of the means, y = 0.98x
—0.43in (a) and y = 0.96x + 4.6 in (b). Left inset: behavior of log likelihood vs. assumed D
from single trapping runs (with assumed D = 80 um&/s). Right inset: histograms of 500
estimates with assumed D = 80 um?/s and Gaussian fits. The standard deviation of the estimated
diffusion coefficients are 8.7 um?/s in the high SBR case and 13.9 um?/s in the low SBR case
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