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Our laboratory recently reported the 
identification of a peptide region, 

QVNI, within the prion domain of the 
yeast protein Ure2 that may act as an ini-
tiation point for fibril formation.1 This 
potential amyloid-forming region, which 
corresponds to residues 18–21 of Ure2, was 
initially identified by systematic cysteine 
scanning of the Ure2 prion domain. The 
point mutant R17C, and the correspond-
ing octapeptide CQVNIGNR, were found 
to form fibrils rapidly under oxidative 
conditions due to the formation of a dis-
ulfide bond. Deletions within the QVNI 
sequence cause the fibril formation ability 
of R17C Ure2 to be inhibited. The aggre-
gation propensity of this region is strongly 
modulated by its preceding residue: 
replacement of R17 with a hydrophobic 
residue promotes fibril formation in both 
full-length Ure2 and in the corresponding 
octapeptides. The wild-type octapeptide, 
RQVNIGNR, also forms fibrils, and is the 
shortest amyloid-forming peptide found 
for Ure2 to date. Interestingly, the wild-
type octapeptide crystallizes readily and so 
provides a starting point towards obtain-
ing high resolution structural information 
for the amyloid core of Ure2 fibrils.

Unravelling Amyloid Structure

The association of amyloid-like fibrils with 
a number of human diseases2 as well as 
with other biological processes3 has pro-
voked considerable research interest in 
understanding the mechanism by which 
fibrils form and how this process can be 
controlled. Obtaining detailed struc-
tural information about how the protein 
chains are arranged within amyloid fibrils 

has been the work of several decades, 
and only recently has significant progress 
been made.4-6 NMR has provided impor-
tant insight into the fibrillar structure of 
the fungal prions Het-s7,8 and Sup35.9,10 
Atomic resolution X-ray structural data 
was obtained first from microcrystals of 
a Sup35 peptide11 and this approach has 
since been extended to a range of amy-
loid peptides related to human diseases.12 
Techniques such as solid-state NMR13,14 
and H/D exchange combined with mass 
spectrometry15 have also been applied to 
Ure2; however, to date, these have yielded 
only limited structural information.5,6 The 
availability of activity assays for Ure2 has 
yielded insight into the overall architecture 
of the protein monomers within the fibrils, 
indicating that the globular GST-like 
C-domains have native structure16,17 and 
are arranged as dimers within the fibrillar 
arrays.18 However, the precise arrangement 
of the amyloid-like core is unknown and 
is a topic that has attracted some contro-
versy.19,20 The slow rate of progress in defin-
ing the molecular structure of Ure2 fibrils 
may be attributed in part to several factors, 
including heterogeneity of the fibrils,21-24 
the presence of a long flexible linker region 
between the N- and C-domains,14 and the 
lack of identifiable short amyloid-forming 
peptides which might provide a starting 
point to obtaining high-resolution struc-
tural data.1
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a Gln nor an Asn residue, producing a 
total of 35 mutants (Fig. 1). Each of these 
point mutants of the full-length Ure2 pro-
tein was expressed in E. coli, purified and 
then incubated under oxidizing condi-
tions (i.e., in the presence of 3 mM H

2
O

2
). 

Under these conditions, R17C formed 
fibrils significantly more rapidly than the 
WT protein (i.e., within hours instead 
of days when allowed to stand at 8°C), 
and was the only cysteine mutant that 
formed fibrils on a measurable time scale. 
(Reduced R17C or R17S formed fibrils on 
a similar timescale to WT). The fibrils of 
R17C were examined by electron micros-
copy and far-UV CD, and were found to 
be morphologically and structurally indis-
tinguishable from WT fibrils, before and 
after proteinase K digestion. Further, the 
fibrils of R17C could seed the formation 
of WT fibrils, suggesting that the packing 
within the two types of fibrils is identical.

Having established that linking the 
polypeptide chains with a disulphide 
bond at site 17 dramatically facilitates 
fibril formation of Ure2, we then made a 
series of deletions in the surrounding resi-
dues, in order to identify which residues 
within Ure2 are critical for fibril forma-
tion.1 We narrowed the crucial sequence 
region down to a 4-residue stretch imme-
diately following on from site 17, QVNI 
(residues 18–21), as deletion of any one 
of these residues completely removed the 
ability of oxidized R17C to form fibrils, 
whereas even quite substantial deletions 
in other parts of the prion domain (e.g., 
∆1-16, ∆22, ∆23, ∆24-42 or ∆42-81) still 
allowed fibril formation of R17C.

We then characterized a series of 
short peptides derived from the R17C 
Ure2 sequence, each containing the 
CQVNI sequence.1 This pentapeptide 
had extremely low solubility and no fibrils 
could be formed from it, but the hexa-
(CQVNIG), hepta-(CQVNIGN) and 
octa-(CQVNIGNR) peptides could all 
form fibrils; the octapeptide, as the most 

Understanding the Driving Force 
for Amyloid Formation

In order to understand the mechanism of 
fibril formation, one of the pressing issues is 
to identify the driving force, or the trigger, 
for this reaction i.e., the first event during 
protein conformational change from the 
soluble state to amyloid fibrils. This infor-
mation might allow us to control the ini-
tiation of amyloid formation in both prion 
diseases and other neurodegenerative dis-
eases, such as Alzeimer and Parkinson. 
The “amyloid stretch hypothesis” pro-
poses that a short peptide stretch bearing a 
highly amyloidogenic motif might supply 
most of the driving force needed to trig-
ger the self-catalytic assembly of a protein 
into amyloid fibrils.31 This hypothesis 
is consistent with the finding that many 
amyloidogenic polypeptides contain 
shorter sequence regions that readily form 
amyloid;12,32,33 further, the insertion of 
an amyloidogenic peptide stretch into a 
non-amyloid-related protein can induce 
the protein to form amyloid.34 Currently 
available computational algorithms for 
predicting amyloid-forming regions have 
shown good agreement with experiment, 
at least for hydrophobic amyloid-forming 
sequences.33,35,36 The yeast prion proteins 
including Sup35, Ure2, Rnq1 and Swil1 
are different in the fact that they lack con-
tinuous stretches of hydrophobic residues, 
but instead are rich in Gln and Asn,37 anal-
ogous to the Gln-rich sequences seen in 
some disease-related human proteins such 
as the Huntingtin protein.38 Hydrogen 
bonding between these polar residues is 
suggested to form the basis for their ten-
dency to aggregate.11,39

Defining a Potential Amyloid 
Stretch within Ure2

In our study1 we systematically mutated 
every residue within the first 70 residues 
of the Ure2 prion domain that was neither 

approaches that have been used to gain 
insight into the structure of amyloids,25 
including fibrils of Sup3526 and Ure2.27,28 
Accessibility of cysteine residues26,29 or for-
mation of disulphides or other linkages26-28 
in preformed fibrils can provide insight 
into the packing structure of the mono-
meric polypeptide chains within the fibrils. 
However, the introduction of exogenous 
linkers, especially when combined with flu-
orescent or other labels, could potentially 
disrupt the packing within fibrils and so 
prevent the very interactions that are being 
probed by the technique. In general, intro-
duction of disulphide-forming cysteine 
residues into amyloid-forming proteins 
has been found to inhibit formation of 
fibrils.21,26-28 Therefore, our discovery of a 
unique site within the Ure2 prion domain 
(R17) where the introduction of a disulphide 
bond dramatically increases the rate of fibril 
formation was particularly unexpected and 
interesting.1 Importantly, the disulphide-
containing fibrils are indistinguishable 
morphologically from the wild-type (WT) 
fibrils and are able to seed the WT protein 
to form fibrils, suggesting that the presence 
of the disulphide bond constrains the poly-
peptide chains in a way that promotes fibril 
formation and is compatible with the WT 
fibril structure.1 The R17C mutation was 
also identified in a previous in vivo screen 
for prion inducing mutations in Ure2: this 
mutant was functional and was found to 
increase the prion induction rate, though 
only when combined with other mutations 
in the N and/or C domains.30 In our in 
vitro study, R17C had no effect on the fibril 
formation rate under reducing conditions1 
i.e., under conditions that mirror the reduc-
ing environment of the cytosol, and so our 
results obtained in vitro are consistent with 
the previous observations in vivo.30

Figure 1. The prion domain sequence of Ure2. The Gln/Asn-rich region of the 354-residue Ure2 protein extends from residues 1–89.43 The residues 
mutated to Cys and tested for amyloid-forming ability under oxidizing conditions1 are underlined. R17 is shown in bold.
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circumstances, and so it is likely that the 
Ure2 sequence has evolved to limit its 
tendency to switch to the prion state.5,41,42 
The dramatic increase in the ability of the 
protein to form fibrils when disulphide 
cross-linked at site 17 suggests that this 
site and its downstream residues may act 
as an initiation point for assembly of the 
polypeptide chains into Ure2 fibrils, and 
that tethering at site 17 brings the poly-
peptide chains together in a manner that 
is not only compatible with the WT Ure2 
fibril structure, but promotes its forma-
tion, thus mimicking the trigger for fibril 
formation in this protein.1
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