Skip to main content
. Author manuscript; available in PMC: 2010 Apr 7.
Published in final edited form as: Am Sociol Rev. 2010 Feb 1;75(1):126–150. doi: 10.1177/0003122409359165

Table 2.

Growth Curve Models of Aging, SES, and Cohort Effects on Health in China (N = 34,282)

Whole Sample
Urban
Rural
p Value for Z Test
Fixed Effects Model 1 Coef. Model 2 Coef. Model 3 Coef. Model 4 Coef. Model 5 Coef. Model 6 Coef. Model 7 Coef. Models 6 and 7
For Intercept
 Intercept 2.57***
(226.21)
2.29***
(167.86)
2.27***
(118.07)
2.27***
(116.84)
2.20***
(97.46)
2.28***
(49.57)
2.28***
(106.61)
94
 Education
  (≤primary = 0)
.27***
(21.61)
.05***
(4.63)
.09***
(3.96)
.08***
(3.80)
.05*
(2.30)
.07*
(1.98)
.11***
(3.60)
.46
 Income
  (lowest 20 percent = 0)
.05***
(5.54)
.07***
(6.86)
.07***
(3.41)
.06***
(3.29)
.05**
(2.61)
.05
(1.09)
.08***
(3.63)
.56
 Cohort .11***
(34.38)
.12***
(19.50)
.12***
(19.55)
.11***
(18.76)
.11***
(6.61)
.12***
(18.34)
.43
 Education × Cohort −.01*
(−1.97)
−.01*
(−2.02)
−.00
(−.72)
.01
(.67)
−.02**
(−2.88)
.04
 Income × Cohort .00
(.13)
.00
(.14)
−.00
(−.00)
.01
(.58)
−.00
(−.67)
.42
 Urban .02
(1.46)
.01
(1.12)
 Northeast .14***
(9.43)
 Coastal .21***
(15.88)
 Inland
 (Reference category:
  mountainous south)
.05***
(4.52)
For Linear Growth Rate
 Intercept −.27***
(−14.89)
−.30***
(−14.00)
−.35***
(−11.20)
−.36***
(−11.20)
−.37***
(−11.12)
−.30***
(−4.03)
−.37***
(−10.49)
.47
 Education
  (≤primary = 0)
.09***
(6.03)
.05**
(3.05)
.09*
(2.46)
.09*
(2.42)
.08*
(2.24)
.08
(1.37)
.09+
(1.83)
.90
 Income (lowest
  20 percent = 0)
.03
(1.40)
.01
(.60)
.07*
(2.02)
.07*
(1.97)
.06+
(1.67)
.02
(.30)
.08*
(2.07)
.52
 Cohort .02***
(3.66)
.04***
(3.97)
.04***
(4.00)
.03**
(2.76)
−.01
(−.37)
.05***
(4.40)
.04
 Education × Cohort −.01
(−1.05)
−.01
(−1.08)
−.01
(−.97)
−.01
(−.26)
−.01
(−.86)
.81
 Income × Cohort −.02*
(−2.05)
−.02*
(−2.05)
−.02*
(−1.97)
.03
(1.16)
−.03**
(−2.64)
.03
 Urban .01
(.58)
.02
(1.11)
 Northeast
  (mountainous south)
.07**
(2.79)
 Coastal
  (mountainous south)
.07***
(3.33)
 Inland
  (mountainous south)
.07***
(3.48)
For Quadratic Growth Rate
 Intercept −.08***
(−6.02)
−.07***
(−5.44)
−.07***
(−5.29)
−.07***
(−5.28)
−.06***
(−4.64)
−.05*
(−2.25)
−.07***
(−4.84)
.46
Control Variables
 Died −.34***
(−15.40)
−.18***
(−8.46)
−.18***
(−8.25)
−.18***
(−8.23)
−.16***
(−7.22)
−.14**
(−3.22)
−.20***
(−7.74)
.25
 Sex (female = 0) .06***
(6.39)
.10***
(10.46)
.10***
(10.37)
.10***
(10.41)
.04**
(3.22)
.08***
(4.64)
.10***
(9.49)
.20
 Married .02
(1.37)
 Smoking .04***
(3.41)
 Drinking .07***
(7.48)
 BMI .01***
(8.99)
Random-Effects Variance
 Components
 Level-1: within-person .11*** .09*** .09*** .09*** .07*** .09*** .09***
 Level-2: in intercept
  in linear growth rate
.04***
.07***
.03***
.07***
.03***
.07***
.03***
.07***
.03***
.07***
.03***
.07***
.04***
.07***
Goodness-of-fit
 BIC (smaller is better) 73,147.70 72,014.30 72,036.80 72,048.30 71,593.70 21,500.50 50,614.90

Note: t ratios are in parentheses.

+

p<.10

*

p<.05

**

p<.01

***

p<.001 (two-tailed tests).