Abstract
Parallel studies were performed with methionineless derivatives of Escherichia coli 15 T− and Bacillus megaterium KM: T−. Methylated bases are present in the total cell ribonucleic acid (RNA) of B. megaterium. The level of RNA methylation in E. coli is about 60% greater than that in B. megaterium. Although E. coli deoxyribonucleic acid (DNA) was found to contain 0.12% 5-methylcytosine (5-MC) and 0.24% 6-methylaminopurine (6-MA), methylated bases were not detected in the DNA of B. megaterium. Assuming a molecular weight of 7 × 109 daltons for B. megaterium DNA, it was calculated that this organism could not contain more than one molecule of 5-MC or 6-MA per genome, and that possibly no methylated bases were present. Methylated bases were also not detected in the DNA of thymine-starved B. megaterium. Crude extracts of this organism possess RNA methylase activity but no detectable DNA methylase activity.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bockrath R. C., Osborn M., Person S. Nonsense suppression in a multiauxotrophic derivative of Escherichia coli 15T-: identification and consequences of an amber triplet in the deoxyribomutase gene. J Bacteriol. 1968 Jul;96(1):146–153. doi: 10.1128/jb.96.1.146-153.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambon P., DuPraw E. J., Kornberg A. Biochemical studies of bacterial sporulation and germination. IX. Ribonucleic acid and deoxyribonucleic acid polymerases in nuclear fractions of vegetative cells and spores of Bacillus megaterium. J Biol Chem. 1968 Oct 10;243(19):5101–5109. [PubMed] [Google Scholar]
- DOSKOCIL J., SORMO'VA Z. THE OCCURRENCE OF 5-METHYLCYTOSINE IN BACTERIAL DEOXYRIBONUCLEIC ACIDS. Biochim Biophys Acta. 1965 Mar 15;95:513–515. [PubMed] [Google Scholar]
- DUNN D. B., SMITH J. D. The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem J. 1958 Apr;68(4):627–636. doi: 10.1042/bj0680627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freifelder D. Lack of a relation between deoxyribonucleic acid methylation and thymineless death in Escherichia coli. J Bacteriol. 1967 May;93(5):1732–1733. doi: 10.1128/jb.93.5.1732-1733.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLD M., HAUSMANN R., MAITRA U., HURWITZ J. THE ENZYMATIC METHYLATION OF RNA AND DNA. 8. EFFECTS OF BACTERIOPHAGE INFECTION ON THE ACTIVITY OF THE METHYLATING ENZYMES. Proc Natl Acad Sci U S A. 1964 Aug;52:292–297. doi: 10.1073/pnas.52.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERSHEY A. D., DIXON J., CHASE M. Nucleic acid economy in bacteria infected with bacteriophage T2. I. Purine and pyrimidine composition. J Gen Physiol. 1953 Jul;36(6):777–789. doi: 10.1085/jgp.36.6.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudnik-Plevnik T. A., Melechen N. E. Methylation in vivo of deoxyribonucleic acid during induction of bacteriophage P-1 by thymine deprivation. J Biol Chem. 1967 Sep 25;242(18):4118–4124. [PubMed] [Google Scholar]
- Lark C. Studies on the in vivo methylation of DNA in Escherichia coli 15T. J Mol Biol. 1968 Feb 14;31(3):389–399. doi: 10.1016/0022-2836(68)90416-6. [DOI] [PubMed] [Google Scholar]
- Luzzati D. Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J Bacteriol. 1966 Nov;92(5):1435–1446. doi: 10.1128/jb.92.5.1435-1446.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARKHAM R., SMITH J. D. Chromatographic studies of nucleic acids; a technique for the identification and estimation of purine and pyrimidine bases, nucleosides and related substances. Biochem J. 1949;45(3):294–298. doi: 10.1042/bj0450294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto K., Mudd J. A., Mangan J., Huang W. M., Subbaiah T. V., Marmur J. Properties of the defective phage of Bacillus subtilis. J Mol Biol. 1968 Jun 28;34(3):413–428. doi: 10.1016/0022-2836(68)90169-1. [DOI] [PubMed] [Google Scholar]
- SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
- SICARD N., ANAGNOSTOPOULOS C. ACTIVIT'E TRANSFORMANTE DE L'ACIDE D'ESOXYRIBONUCL'EIQUE DE BACILLUS SUBTILIS LORS DE LA CARENCE EN THYMINE. C R Hebd Seances Acad Sci. 1964 Nov 30;259:4173–4176. [PubMed] [Google Scholar]
- Schaiberger G. E., Giegel J., Sallman B. Functional activity of DNA and DNA polymerase during thymine starvation of Escherichia coli 15T. Biochem Biophys Res Commun. 1967 Jul 10;28(1):30–37. doi: 10.1016/0006-291x(67)90401-9. [DOI] [PubMed] [Google Scholar]
- VENNER H. [Research on nucleic acids. I. On the paper chromatographic determination of pyrimidines, purines and nucleosides]. Hoppe Seylers Z Physiol Chem. 1960 Dec 31;322:122–134. doi: 10.1515/bchm2.1960.322.1.122. [DOI] [PubMed] [Google Scholar]
- Vanyushin B. F., Belozersky A. N., Kokurina N. A., Kadirova D. X. 5-methylcytosine and 6-methylamino-purine in bacterial DNA. Nature. 1968 Jun 15;218(5146):1066–1067. doi: 10.1038/2181066a0. [DOI] [PubMed] [Google Scholar]
- WYATT G. R. The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem J. 1951 May;48(5):584–590. doi: 10.1042/bj0480584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wachsman J. T., Hogg L. Use of thymineless death to enrich for doubly auxotrophic mutants of Bacillus megaterium. J Bacteriol. 1964 May;87(5):1118–1122. doi: 10.1128/jb.87.5.1118-1122.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wachsman J. T., Kemp S., Kogg L. Thymineless death in Bacillus megaterium. J Bacteriol. 1964 May;87(5):1079–1086. doi: 10.1128/jb.87.5.1079-1086.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yudelevich A., Gold M. A specific DNA methylase induced by bacteriophage 15. J Mol Biol. 1969 Feb 28;40(1):77–91. doi: 10.1016/0022-2836(69)90297-6. [DOI] [PubMed] [Google Scholar]
