1 |
function signal = eq_binding(Et, Lt, Kd, signal, gain, c) |
2 |
%binding equilibrium E + L < = > EL; simulate signal proportional to [EL] |
3 |
%<gfitModelDescription version=“100”> |
4 |
%variable |
type |
minVal |
startVal |
unit |
comment |
5 |
% Et |
() |
0 |
1 |
uM |
‘total concentration of E’ |
6 |
% Lt |
independent |
0 |
1 |
uM |
‘total concentration of L’ |
7 |
% Kd |
para |
0 |
0.1 |
uM |
‘dissociation constant’ |
8 |
% signal |
dependent |
() |
() |
() |
‘complex formation’ |
9 |
% gain |
para |
() |
1 |
() |
‘signal gain’ |
10 |
% c |
para |
() |
0 |
() |
‘signal background’ |
11 |
% |
12 |
%variable |
size |
plotVs |
|
|
|
|
13 |
% Et |
Lt |
() |
|
|
|
|
14 |
% signal |
Lt |
Lt |
|
|
|
|
15 |
%</gfitModelDescription> |
16 |
EL = (Kd + Et + Lt - sqrt((Kd + Et + Lt). ˆ2 - 4 * Et.* Lt))/2; |
17 |
signal = c + gain * EL; |