| 1 | function signal = eq_binding(Et, Lt, Kd, signal, gain, c) | ||||||
| 2 | %binding equilibrium E + L < = > EL; simulate signal proportional to [EL] | ||||||
| 3 | %<gfitModelDescription version=“100”> | ||||||
| 4 | %variable | type | minVal | startVal | unit | comment | |
| 5 | % Et | () | 0 | 1 | uM | ‘total concentration of E’ | |
| 6 | % Lt | independent | 0 | 1 | uM | ‘total concentration of L’ | |
| 7 | % Kd | para | 0 | 0.1 | uM | ‘dissociation constant’ | |
| 8 | % signal | dependent | () | () | () | ‘complex formation’ | |
| 9 | % gain | para | () | 1 | () | ‘signal gain’ | |
| 10 | % c | para | () | 0 | () | ‘signal background’ | |
| 11 | % | ||||||
| 12 | %variable | size | plotVs | ||||
| 13 | % Et | Lt | () | ||||
| 14 | % signal | Lt | Lt | ||||
| 15 | %</gfitModelDescription> | ||||||
| 16 | EL = (Kd + Et + Lt - sqrt((Kd + Et + Lt). ˆ2 - 4 * Et.* Lt))/2; | ||||||
| 17 | signal = c + gain * EL; | ||||||