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Abstract
Objective—Variations in the noncoding single-nucleotide polymorphisms (SNPs) at positions
560 and 832 in the 5′ promoter region of the apolipoprotein E gene define genotypes that
distinguish between high and low concentrations of plasma total and high-density lipoprotein
cholesterol and triglycerides. We addressed whether these genotypes improve the prediction of
ischemic heart disease (IHD) in subsamples of individuals defined by traditional risk factors and
the genotypes defined by the ε2, ε3, and ε4 alleles in exon 4 of the apolipoprotein E gene.

Methods and Results—In a sample of 3686 female and 2772 male participants of the
Copenhagen City Heart Study who were free of IHD events, 576 individuals (257 women, 7.0%
and 319 men, 11.5%) were diagnosed as having developed IHD in 6.5 years of follow-up. Using a
stepwise Patient Rule-Induction Method modeling strategy that acknowledges the complex
pathobiology of IHD, we identified a subsample of 764 elderly women (≥65 years) with
hypertriglyceridemia who had a history of smoking, a history of hypertension, or a history of both
in which the A560T832/A560T832 and A560T832/A560G832 5′ 2-SNP genotypes had a higher
cumulative incidence of IHD (172/1000) compared to the incidence of 70/1000 in the total sample
of women.

Conclusions—Our study validates that 5′ apolipoprotein E genotypes improve the prediction of
IHD and documents that the improvement is greatest in a subset defined by a particular
combination of traditional risk factors in Copenhagen City Heart Study female participants. We
discuss the use of these genotypes in medical risk assessment of IHD in the population represented
by the Copenhagen City Heart Study.
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Cholesterol accumulation in arterial walls is an important contributing factor in the
development of ischemic heart disease (IHD).1 A plethora of variations in genes and their
expressed products involved in lipid metabolism have been characterized.2–7 Fast and
inexpensive gene measurement technologies can be used to identify genetic variations that
predict interindividual variation in measures of lipid metabolism and risk of IHD.8–11 The
promise is that the identified variants then would be used as additional information in risk
assessment to guide the selection of nonpharmacological and pharmacological interventions
to prevent initiation, progression, and severity of IHD.11

Variations in the gene coding the apolipoprotein E (apoE) protein have been implicated in
predicting variation in plasma lipids and risk of IHD. APOE is a constituent of many
atherogenic lipoprotein particles, such as triglyceride (TG)-rich chylomicrons and high-
density lipoproteins (HDLs). The APOE molecule has 3 common isoforms (E2, E3, and E4)
encoded by variation in 3 common alleles (ε2, ε3, and ε4) defined by 2 single-nucleotide
polymorphisms (SNPs) in exon 4 of the APOE gene. Studies assessing the role of the APOE
gene in lipid metabolism have repeatedly demonstrated that variations in plasma total
cholesterol (T-C) and TG levels are associated with variation among genotypes defined by
the ε2, ε3, and ε4 alleles.12,13 Both animals and humans carrying the ε4 allele also are at a
higher risk for developing atherosclerosis.14–17

In a previous study, we15 demonstrated that common variations in the noncoding SNPs
located at positions 560 and 832 in the 5′ promoter region of the APOE gene define 3
genotypes (A560T832/A560T832, A560T832/A560G832, and A560T832/T560T832) that distinguish
between high and low concentrations of plasma T-C, HDL-cholesterol (HDL-C), and TG in
4 independent samples ascertained to represent the human population at large. This
observation led us to hypothesize that interindividual differences in the risk of developing
IHD may be associated with variation in these 5′ genotypes. A test of this hypothesis using a
large population based sample ascertained by the Copenhagen Heart Study (CCHS)
established an increased hazard of developing IHD in women carrying the A560T832/
T560T832 genotype.18 Although quantitatively not very large, the estimated hazard remained
statistically significant after the effects of dyslipidemia; other established risk factors and the
genotypes defined by the ε2, ε3, and ε4 alleles were considered in the prediction model.

Assumptions that are implicit in the application of the Cox proportional hazards model that
we used to evaluate IHD risk in the previous study may limit the medical use of the risk
information obtained. Most important, use of a single model assumes that the expected
relationship between disease status and variation in risk factor traits is the same for all
individuals in the sample under study. The complex multifactorial nature of the
pathobiology of IHD end points renders this assumption untenable. Development of IHD is
an emergent property of interactions of many susceptibility genes and many environmental
factors. There is no evidence that any of these factors act as independent agents whose
phenotypic effects are additive, exchangeable with one another, and the same for each
individual in the population at large. Furthermore, because the combined number of
interacting genes and environments is large, every incident IHD case cannot have
experienced effects of the same combination of genetic variants and exposures to high-risk
environments. These considerations suggest that the goal of a model building strategy is not
to determine which combination of risk factors in a single linear model predicts risk for
every individual at risk, but how many models are necessary to best predict risk of disease.
In this article, we explore whether variation in 5′ genotypes of the APOE gene that
contribute to the prediction of IHD when a single prediction model is used makes a larger
contribution to the prediction when multiple models are used to estimate risk of disease in
subsamples of individuals defined by particular combinations of risk factor values.
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The augmented Patient Rule-Induction Method (PRIM) developed by Dyson et al19,20 (G
Dyson, CF Sing, submitted for publication) is a novel model building strategy for evaluating
risk that acknowledges the etiologic heterogeneity of the disease. It is designed to identify
combinations of risk factor values that characterize mutually exclusive subgroups of
individuals that differ in average risk as measured by the cumulative incidence of the disease
of interest. This analytical strategy addresses which combination of values of which subset
of risk factors best predicts the disease of interest in which subset of individuals of the
population from which the sample under study was drawn.

In this article, we use a stepwise application of the PRIM to test the hypothesis that
information about 5′ APOE genotypes significantly improves the prediction of IHD in
particular subsamples of individuals characterized by selected subsets of values of the
traditional risk factors. We identified a subsample of 764 elderly women with
hypertriglyceridemia who had a history of smoking, a history of hypertension, or a history of
both in which the A560T832/A560T832 and A560T832/A560G832 5′ APOE genotypes had a
significantly higher cumulative incidence of IHD (172/1000) compared to the cumulative
incidence of 70/1000 in the total sample of 3686 women. The implications for the added
value of this genetic information in the practice of medicine are discussed.

Methods
Study Participants

The CCHS is a prospective study of the Danish population at large age 20 years or older on
entry into the study.21–23 The initial survey was carried out between 1976 and 1978. A
follow-up survey was performed between 1991 and 1994. This follow-up survey serves as
the baseline survey for the study reported here. Altogether, 16 563 individuals were invited
to take this survey, 10 135 participated (response rate, 61%), and 9259 gave blood for DNA
extraction. A subsample of middle-aged and elderly individuals who were at least 45 years
old and free of IHD when they were seen for the follow-up survey was selected for our
study. Clinical data and genotype information on the 4 APOE SNPs considered in this study
were available on 3686 women and 2772 men who satisfied the selection criteria. Informed
consent was obtained from all participants. More than 99% were Europeans of Danish
descent. The study was approved by the Danish Ethics Committee for the City of
Copenhagen and Frederiksberg (No. 100.2039/91).

Variable Definitions
All 6458 participants of the CCHS selected for this study were free of IHD at baseline. IHD
was evaluated during the period from baseline to December 31, 1999. Information to
establish the diagnoses of IHD (World Health Organization International Classification of
Diseases, 8th edition, codes 410 to 414; 10th edition, codes I20 to I25) was gathered from
the Danish National Hospital Discharge Register, the Danish National Register of Causes of
Death, and medical records of general practitioners and hospitals. During the follow-up, 576
participants (257 of 3686 women, 7.0%; 319 of 2772 men, 11.5%) had developed IHD. The
observed average follow-up time until an IHD event or the censure date of December 31,
1999, was 6.5 years (range, 0.01 to 8.2). The total exposure to risk of developing IHD was
39 648 person-years.

Baseline plasma HDL-C, TG, and T-C concentrations were measured by standard enzymatic
assays (Boehringer Mannheim, GmbH Diagnostics, Mannheim, Germany) at the
Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital
(Copenhagen, Denmark).21–22 Recommendations of the National Cholesterol Education
Program Expert Panel, National Institutes of Health (Bethesda, Md) were used to define
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dyslipidemic subgroups (National Cholesterol Education Program, National Heart, Lung,
and Blood Institute 2002).23 Dyslipidemia was diagnosed when an individual’s plasma T-C
concentration was ≥200 mg/dL (5.18 mmol/L), TG was ≥150 mg/dL (1.60 mmol/L), or
HDL-C was <40 mg/dL (1.04 mmol/L).

The definitions of smoking habit, glucose metabolism, and blood pressure used in our study
are described in a previous report of the CCHS.24 Briefly, each factor was dichotomized to
define a high-risk group; a history of smoking (current-smoker at any examination), a
history of diabetes (self-reported disease, use of insulin, use of oral hypoglycemic drugs,
nonfasting plasma glucose ≥11.1 mmol/L at any examination), or a history of hypertension
(systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, use of
antihypertensive drugs, or any combination of these at any examination).

The 4 SNPs in APOE were genotyped by polymerase chain reaction and restriction enzyme
digestion as previously described in other studies.21,22,25

Statistical Analyses
The χ2 statistic was used to test homogeneity of the relative frequencies of dichotomous risk
factor traits between genders.

The PRIM Algorithm—The PRIM algorithm was first introduced by Friedman and
Fisher26 and augmented by Dyson et al19,20 (G Dyson CF Sing submitted for publication)
for application to genetic studies. The PRIM enables one to partition the total sample of
individuals into multiple subsamples, each defined by a subset of predictor variables. The
augmented the PRIM algorithm selects the subset of statistically significant terms, defined
by values of 1 or more predictor variables, that maximize the mean outcome of a response
variable of interest in a selected subsample of individuals. The selected subsample satisfies
the minimum size criterion denoted by the support parameter, β. β defines the minimum
proportion of the sample of individuals not previously assigned to a subsample as a
consequence of applying the PRIM algorithm who must be included in establishing a new
subsample. The optimum value of β for a particular application of the PRIM is chosen
according to the algorithm described by Dyson et al.19 We applied the PRIM algorithm
using terms for the peeling and pasting processes defined by combinations of values of 2
predictor variables.20 The hypergeometric distribution was used to derive the theoretical null
distribution (G Dyson, CF Sing, unpublished data) used to test whether the cumulative
incidence of IHD associated with a particular peeling or pasting term was statistically
significant. The multiple hypothesis tests conducted during the execution of the PRIM each
uses a nominal significance threshold of 0.023, which corresponds to an experiment-wise
significance level of 0.05.20 Multiple mutually exclusive subsamples of the total sample may
be produced. Each subsample of the original sample includes individuals with the same
values for a subset of predictor variables. The individuals who are not included in any of the
subsamples produced by the peeling and pasting processes are assigned to a remainder
subsample.

Stepwise Application of the PRIM Algorithm—The PRIM algorithm was first used to
identify subsamples of individuals who are each characterized by different subsets of values
for age, the 3 plasma measures of dyslipidemia (T-C, HDL-C, and TG), the 3 high-risk
groups defined by 3 established risk factors (diabetes, smoking, and hypertension), and the
combined {ε22, ε32}, {ε33}, and {ε42, ε43, and ε44} APOE genotype groups. We carried out a
second application of the PRIM algorithm in each of the sub-samples to test whether
variation in the 5′ APOE genotypes improved the prediction of the cumulative incidence of
IHD in any of the subsamples. The improvement in prediction of the cumulative incidence
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of IHD using the 5′ APOE genotypes in one of the first step subsamples and not in another is
interpreted as evidence for nonadditive relationships between the effects measured by the
established risk factors that characterize the sub-samples and the genetic effects marked by
the 5′ APOE genotypes. The values of the subset of risk factors that the PRIM selects to
define a subsample are expected to vary from subsample to subsample because of the
heterogeneity of the relationships between the risk of IHD and the etiologic causes among
individuals in a representative sample of the population at large.

Results
A Descriptive Summary of the Sample

Summary statistics that describe the female and male samples are given in Table 1. Using a
5% test criterion, none of the SNP genotypes significantly deviated from the Hardy-
Weinberg expectations in either of the genders, and the relative allele frequencies were not
significantly different between genders. Relative frequencies of the four 5′ APOE genotypes
and the 3 groups of traditional APOE genotypes defined by the ε2, ε3, and ε4 alleles are
given in Table 2. Additionally, there was no statistically significant evidence for
heterogeneity of relative frequencies of these 2 SNP genotypes between genders.

The widely acknowledged evidence that the natural history of IHD is gender specific,
combined with the statistically significant differences in the gender-specific cumulative
incidence of IHD and the statistically significant differences in gender-specific frequency
distributions of the outcomes of the proposed predictor variables (Table 1), justifies carrying
out model building and hypothesis testing strategies separately in the female and male
samples.

Step 1 PRIM Analysis
For women, the optimum value of the support parameter was β = 0.20. The selected risk
factors and their values that characterized each of 2 statistically significant, mutually
exclusive subsamples (FS 1 and FS 2) and a remainder subsample (FS 3) based on the
information obtained from the application of the PRIM are given in Table 3. The estimated
cumulative incidences of IHD in these subsamples ranged from 33 to 139 cases/1000
women at risk. The highest incidence of IHD in the subsample (FS 1) of elderly women is
almost twice as large as the estimate in the total sample of women (139 versus 70 cases/
1000, respectively). Everyone in subsample FS 1 (n=764, 20.7% of the total sample) was
aged 65 years or older at baseline; had hypertriglyceridemia (TG ≥150 mg/dL); and had a
history of smoking, a history of having had hypertension, or a history of both. The second
subsample (FS 2, n=839, 22.8% of the total sample), with the second highest estimate of
cumulative incidence of IHD (99 cases/1000), consisted of 3 subgroups. The first subgroup
consisted of 799 elderly women with low TG (<150 mg/dL) and a history of hypertension.
The second subgroup consisted of 6 elderly women with low TG who had a history of
smoking and a history of diabetes but no history of hypertension. The third subgroup
consisted of 34 middle-aged women (45 to 64 years) who had a history of smoking and a
history of diabetes. The estimated cumulative incidence of IHD in the remainder subsample
(FS 3) of 2083 individuals (56.5%) who were not assigned to either of the 2 high-risk
subsamples was 50% smaller than the estimate in the total female sample (33 versus 70
cases/1000, respectively).

For men, the optimum value of the support parameter was β=0.05. The selected risk factors
and their values that characterized each of the 3 statistically significant, mutually exclusive
subsamples (MS 1, MS 2, and MS 3) and a remainder subsample (MS 4, n=1698, 61.3% of
the total sample) based on the information obtained from the application of the PRIM are
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given in Table 4. The estimated cumulative incidence of IHD in these 4 subsamples ranged
from 65 to 209 cases/1000. On average, the estimates in the first 3 subsamples are 3 times
larger (mean incidence=194 cases/1000) than the estimated cumulative incidence of IHD in
the remainder subsample (65 cases/1000).

Most men assigned to the 3 high-risk subsamples were older than 65 years (985 of 1074
men). Subsample MS 1 consisted of 234 elderly men (8.4% of the total sample) with low
plasma HDL-C concentration. Subsample MS 2 consisted of 741 elderly men (26.7% of the
total sample) with HDL-C ≥40 mg/dL and a history of hypertension. Subsample MS 3
(n=99, 3.6% of the total sample) included 2 subgroups. The first subgroup consisted of 10
elderly men with HDL-C ≥40 mg/dL who had a history of diabetes, had 1 of the 4 genotypes
(ε33, ε42, ε43, or ε44), and did not have a history of hypertension. The second subgroup
included 89 middle-aged men (45 to 64 years) who had a history of diabetes and 1 of the 4
genotypes (ε33, ε42, ε43, or ε44).

Step 2 PRIM Analysis
We next applied the PRIM to select combinations of 5′ APOE genotypes that identify
statistically significant genetic subgroups of each of the 2 subsamples and the remainder
subsample of women and each of the 3 subsamples and the remainder subsample of men
identified in the application of the PRIM to the predictor variables considered in step 1. A
statistically significant high-risk genetic subgroup of the first female subsample (FS 1, Table
5) was identified. It included elderly women with hypertriglyceridemia who had a history of
smoking, a history of having had hypertension, or a history of both and were carriers of one
of the two 5′ genotypes (A560T832/T560T832 or A560T832/A560G832). The cumulative
incidence of IHD in this genetic subgroup of 308 women is 172/1000 compared to 116/1000
in the subgroup with the A560T832/A560T832 or a genotype in the “others” group of
genotypes. There was no statistically significant evidence that 5′ genotypes improved the
prediction of IHD in the FS 2 and FS 3 subsamples (Table 5).

We did not detect a statistically significant genetic subgroup of any of the 3 subsamples or
the remainder subsample identified in the first step the PRIM analysis of the male sample.

Discussion
A Prevailing Prevention Paradigm in Cardiology

A major goal of medical research is to identify subpopulations of individuals at increased
risk of disease to efficiently allocate limited resources in a way that will maximize the
reduction of individual suffering. Cardiovascular research has a long history of establishing
the information collected on individuals that is useful in medical practice to identify those
who are at increased risk of developing clinical symptoms of disease8,27–29 and those who
would benefit from various pharmacological interventions to prevent, or even reverse, the
progression of atherosclerosis.30,31 However, for most common chronic diseases having a
complex multifactorial etiology (including IHD), only a fraction of individuals who develop
disease are identified by the established risk factors.29,32–34 It is widely accepted that the
ability to accurately predict those at risk may be significantly improved by considering
genomic information.9,11

The immensity of the amount of genomic variation that may be considered and the
complexity of how such variation may influence the initiation, progression, and/or severity
of IHD8 makes identifying relevant variations a daunting task. Etiologic heterogeneity
among those with disease and the primary role that interactions between genetic elements
and environmental exposures play in determining risk are biological realities that make the
search for genetic variations with possible predictive value a challenge that has not been
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adequately addressed. The applications of traditional multivariable linear regression to case-
control data and Cox proportional hazards modeling of longitudinal data that identify
predictors to evaluate the contribution of interactions of those predictors to risk of disease
assume etiologic homogeneity among all individuals at risk and no correlations between
predictor variables. These assumptions are untenable when analyzing data from
observational studies designed to represent the population at large. Applications of such
single-model approaches have led to the identification of genetic variations that make very
small improvements to the prediction of common complex disease end points such as IHD.8a

In the study reported here, we used a complementary analytic strategy designed to take
etiologic heterogeneity and nonadditivity of predictor variable effects into consideration
when evaluating the use of genetic variation in the identification of individuals at increased
risk for IHD.

Biological Plausibility of the Risk Information Provided by PRIM Analyses
Using the traditional risk factors for atherosclerosis and 3 groups of traditional APOE
genotypes defined by the ε2, ε3, and ε4 alleles, we found 2 statistically significant, mutually
exclusive high-risk subsamples in women and 3 subsamples in men defined by different
combinations of predictors (Tables 3 and 4). These subsamples are consistent with common
knowledge that all the high-risk values for all the risk factors, which are involved in
determining risk of IHD in the population at large, are not expected to be present in all
individuals at risk.8 Our finding that different combinations of risk factors and their values
are associated with different high-risk subsamples of women and men is consistent with
well-established knowledge that genders differ in the natural history of the development of
IHD.35–37

Variations in the values of a number of established risk factors, which may be internal (eg,
plasma concentrations of T-C, TG, and HDL-C) or external (eg, exposure to tobacco
smoking) to an individual, are hypothesized to combine with variations in the products of
hundreds of genes to determine interindividual differences in initiation, progression, and
severity of atherosclerosis, and these relationships are dynamic over the life cycle.8 The
APOE gene is one of the few extensively studied candidate genes that has been repeatedly
implicated in contributing to the determination of risk of IHD.7,17 In most studies, the
contribution of the traditional genotypes defined by the ε2, ε3, and ε4 alleles add a small
improvement in prediction of IHD risk beyond the traditional risk factors over a wide range
of environmental and genetic backgrounds. We found in our previous study18 of the CCHS
participants that the traditional genotypes defined by the ε2, ε3, and ε4 alleles do not
statistically significantly improve the prediction of IHD in either gender. However, in the
study reported here using the same CCHS sample, the traditional APOE genotypes improved
the prediction of IHD in men in 2 of the 4 subsamples identified by the PRIM (Table 4).

In our earlier studies15,18 of the CCHS sample considered here, we established that
particular 2 SNP 5′ genotypes influenced variability in plasma measures of lipid metabolism
and variation in risk of IHD beyond that contributed by the traditional risk factors and the
traditional APOE genotypes, particularly in women. This inference is supported by studies
that report that estrogen response elements that modulate the response of the gene to
estrogen are marked by the 5′ SNPs.38 Our current study further suggests that the small
contribution of selected 5′ genotypes to improve risk prediction in the total sample of
women is attributable to only 1 of the 3 subsamples obtained from the application of the
PRIM (Table 6), as evidenced by a considerably larger statistically significant hazard ratio.
That this validated effect is greatest in a sample of individuals with high TG suggests that
the 5′ genotypes mark genetic elements that have pleiotropic effects on unmeasured or
unknown intermediate traits that influence risk of IHD.
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Consistent with the conceptual or theoretical biological modeling of the role of genetic
variation in determining the risk of having a complex multifactorial disease,8,39–42 we find
that the added value of genetic information for prediction depends on the genetic
background and environmental contexts, which are characterized by the subsamples
identified by the PRIM. This result supports the argument that traditional statistical
approaches to evaluate genetic variation that estimate only marginal, context-independent
effects are inconsistent with the ubiquity of biological interactions that determine the
pathobiology of IHD.8,11,19,20,43–46 We next turn to a discussion of the implications of
using genetic information for evaluating risk that come from our study of IHD.

Use of 5′ Genotypes of the APOE in Medical Risk Stratification
Any medical act requires the establishment of relevant information and a rationale for using
it in making a decision. A traditional act in everyday medical practice is one in which the
clinician, after logically considering all information available (ie, signs, symptoms, and
laboratory results) assigns an individual under investigation to either a high-risk group or a
low-risk group.47,48 The stepwise the PRIM algorithm used in this study is consistent with,
and complementary to, such a clinical decision-making strategy. In the samples under study,
women can first be stratified into 3 and men into 4 sub-samples that differ in their
cumulative incidence of IHD. Because of the historical precedence established by clinical
practice, these strata would be considered first in the evaluation of risk followed by
consideration of the inclusion of genetic information. In our particular study, we found that
1 high-risk subsample of women (FS 1) can be further stratified into 2 subgroups based on
their 5′ APOE genotype. This kind of context-dependent genetic information is expected to
improve the traditional act of assignment of risk for IHD.

Several kinds of information may be used in making a decision about whether the
statistically significant stratifications based on the 5′ APOE genotypes should be
incorporated into the medical act of making a decision about whether a woman is at high
risk for IHD: (1) age-specific propensity, (2) sensitivity and specificity of the stratification
into high-and low-risk groups, and (3) the positive predictive value (+PV) of the decision
based on the stratification strategy.

The age-specific propensities for developing IHD for individuals in a particular stratum can
be derived from the probability of surviving free of IHD to a particular age. In the Figure,
we present survival curves for elderly women who are included in subsamples FS 1, FS 2,
and FS 3. Those in FS 1 who have high TG (≥150 mg/dL) and who have a history of
smoking, a history of having had hypertension, or a history of both have approximately a
0.50 probability of developing IHD by 90 years of age compared to 0.20 among the elderly
women in the low-risk subpopulation (FS 3). If the women in the FS 1 high-risk
subpopulation carry either the A560T832/T560T832 or the A560T832/A560G832 2-SNP 5′ APOE
genotype (genetic subgroup FS 1-1), their propensity for developing IHD by 90 years of age
is ≈0.65 compared to <0.40 in the women who do not carry either of the proposed high-risk
genotypes (genetic subgroup FS 1-2). The estimated age-dependent propensity of IHD in
elderly women in the FS 2 subsample falls between the propensities observed for those
elderly women in the FS 1 high-risk and those in the FS 3 low-risk subsamples. The
observed variations in the gender, age, and genotype-dependent propensities of IHD among
these subsamples serve as a compelling rationale for embracing a risk stratification
algorithm that includes genotype information in making clinical decisions about the
prevention of IHD.

Sensitivity and specificity are properties of a risk stratification strategy that need to be taken
into account when selecting a risk stratification algorithm in medical practice.49,50 From a
clinical decision-making point of view, it is also important to know the probability that
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individuals in the high-risk stratum actually are at increased risk. The sensitivity and
specificity do not give this information. Instead, the interpretation of the risk analysis needs
to consider the +PV. The +PV is related to the sensitivity and specificity of a risk
stratification algorithm and the prevalence of the disease of interest in the population from
which the individuals are coming from through a mathematical formula derived from an
application of the Bayes’ theorem of conditional probabilities.49

The sensitivity and specificity estimates for an algorithm that assigns women in the FS 1 and
FS 2 to a high-risk stratum and those in the FS 3 subsample to a low-risk stratum are modest
(0.735 and 0.588, respectively, Table 7). An estimate of +PV for the high-risk stratum is
0.118, which is ≈ 1.5 times higher than cumulative incidence of IHD of 0.070 (70 cases/
1000 individuals at risk) in the overall sample of women. If the high-risk stratum includes
the FS 1 subsample of women only, sensitivity of the stratification algorithm decreases, but
its specificity increases to 0.808, and the estimate of the +PV (0.139) is slightly larger than
the estimate for the stratum that includes both the FS 1 and the FS 2 subsamples.

If the high-risk stratum includes only the FS 1-1 genetic subgroup of elderly women with
hypertriglyceridemia who have a history of smoking, a history of hypertension, or a history
of both and who carry either the A560T832/T560T832 or the A560T832/A560G832 5′ genotype in
the APOE promoter region, the sensitivity is low (0.206), but the specificity is highest
(0.926). The estimated +PV for the FS 1-1 high-risk stratum (0.172) is higher than the
estimate for the FS 1 high-risk stratum (0.139), ignoring genotype information, and ≈2.5
times higher than the estimate of 0.070 in overall female sample when assignments of
individuals to sub-samples are ignored (Table 7).

Conclusions
Clinicians and patients need to know which trait(s) and which interventions work best in
particular subsamples of individuals.8,51 The evaluation of the added value of a genetic
variation using the traditional “one model describes all” approach provides information that
has limited use in clinical practice.8,40,42 The stepwise PRIM algorithm that we used to
evaluate the improvement in IHD prediction attributable to information about 5′ APOE
genotypes acknowledges the biological reality of etiologic heterogeneity and nonadditive,
context-dependent genetic effects that are consistent with what we know about the etiology
of IHD. We propose that in Denmark this genetic information has added value when
predicting an individual’s propensity to develop IHD only in a subpopulation of elderly
women who have hypertriglyceridemia and a history of smoking, a history of hypertension,
or a history of both. Intervention studies in Denmark are now needed to determine whether
this context-dependent genetic information improves our ability to deliver the right
treatment to the right patients at the right time, which is the primary goal of a modern
healthcare system.

CLINICAL PERSPECTIVE

Genomics research promises to provide DNA information that can be used in medical
practice to guide selection of interventions to prevent or treat common diseases such as
ischemic heart disease. A first step toward achieving this goal is to identify DNA
sequence variants that are predictors of disease, disease risk factors, or both. To this end,
we have demonstrated that 2 single-nucleotide polymorphisms in the 5′ regulatory region
of the apolipoprotein E gene combine to define genotypes that predict dyslipidemia in
samples from multiple populations. These genotypes also predicted risk of ischemic heart
disease in Danish women. The positive predictive value of combinations of the 2 single-
nucleotide polymorphism genotypes is, however, only marginally larger than the

Stengård et al. Page 9

Circ Cardiovasc Genet. Author manuscript; available in PMC 2010 April 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cumulative incidence (70/1000), suggesting that they would be a poor choice as a
screening test. Using a Patient Rule-Induction Method modeling strategy, we identified a
subsample of elderly Danish women with hypertriglyceridemia who had a history of
smoking, a history of hypertension, or a history of both and who had particular 2 single-
nucleotide polymorphism 5′ apolipoprotein E genotypes that had a statistically
significant association with higher cumulative incidence of ischemic heart disease
(172/1000). This statistical observation is consistent with the established biological
reality that effects of genetic variation on diseases having a complex multifactorial
pathobiology are context dependent. Our investigation also underscores the possibility
that the most relevant question for genetic studies of complex diseases may extend
beyond whether the phenotypic effect of a single-site DNA variation replicates across
multiple populations to which multisite genotype is the best predictor of complex disease
in which subgroup of the population at large.
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Figure.
Age-dependent propensity of being IHD free in elderly women shown separately for the 3
subsamples and for the 2 genetic subgroups of subsample FS 1.
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Table 1

A Description of the CCHS Samples

Trait Women (n=3686) Men (n=2772) P-value (Using χ2 Test)

Cumulative incidence of IHD/1000 individuals at risk 70 115 <0.001

Average follow-up time, y 6.3* 5.9*

Predictors of IHD

 Age older than 65 y, % 51 43 <0.001

Blood measures of dyslipidemia, %

 HDL-C <40 mg/dL 6 20 <0.001

 TG ≥150 mg/dL 41 52 <0.001

 T-C ≥200 mg/dL 89 80 <0.001

Other established risk factor characters, %

 Smoking 57 70 <0.001

 Diabetes 4 8 <0.001

 Hypertension 62 69 <0.001

*
The range of follow-up time was 0.01 to 8.2 years in both genders.
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Table 2

Relative Genotype Frequencies in the CCHS Samples

Relative Frequency (N)

Genotype Groups Women Men P-value (Using χ2 test)

5′ promoter region

 A560T832/A560G832 0.35 (1290) 0.36 (1010) 0.438

 A560T832/A560T832 0.16 (583) 0.15 (416)

 A560T832/T560T83 0.06 (213) 0.06 (174)

 Others 0.43 (1600) 0.43 (1172)

Exon 4 region

 {ε33} 0.56 (2066) 0.58 (1596) 0.335

 {ε22, ε32} 0.13 (475) 0.13 (362)

 {ε42, ε43, ε44} 0.31 (1145) 0.29 (814)
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Table 3

The Subsamples of Women (n=3686, I=70) Defined by the Step 1 PRIM Analysis

Subsample, n (%)
Cumulative Incidence

(95% CI) Description Subgroup, n (%)

FS 1, 764 (20.7) I=139 (119, 161) Age ≥65 y and TG ≥150 mg/dL (and SMK and/or HYT) 764 (20.7)

FS 2, 839 (22.8) I=99 (82, 128) Age ≥65 y and TG <150 mg/dL and HYT 799 (21.7)

Or

Age ≥65 y and TG <150 mg/dL and SMK and no HYT and DIAB 6 (0.2)

Or

Age 45 to 64 y and SMK and DIAB 34 (0.9)

FS 3, 2083 (56.5) I=33 (25, 41) Age ≥65 y and no SMK and no HYT 177 (4.8)

Or

Age ≥65 y and TG <150 mg/dL and SMK and no HYT and no DIAB 157 (4.3)

Or

Age 45 to 64 y and (no SMK and/or no DIAB) 1749 (47.4)

I indicates number of cases per 1000 individuals at risk; HYT, history of hypertension; DIAB, history of diabetes; SMK, history of smoking.
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Table 4

The Subsamples of Men (n=2772, I=115) Defined by the Step 1 PRIM Analysis

Subsample, n (%)
Cumulative

Incidence (95% CI) Description Subgroup, n (%)

MS 1, 234 (8.4) I=209 (185, 273) Age ≥65 y and HDL-C <40 mg/dL 234 (8.4)

MS 2, 741 (26.7) I=189 (171, 248) Age ≥65 y and HDL-C ≥40 mg/dL and HYT 741 (26.7)

MS 3, 99 (3.6) I=192 (123, 296) Age ≥ 65 y and HDL-C ≥ 40 mg/dL and DIAB and (ε33 or ε42 or ε43 or
ε44) and no HYT

10 (0.4)

Or

Age 45 to 64 y and DIAB and (ε33 or ε42 or ε43 or ε 44) 89 (3.2)

MS 4, 1698 (61.3) I=65 (54, 77) Age ≥65 y and HDL-C >40 mg/dL and no HYT and [no DIAB and/or (ε22
or ε32)]

213 (7.7)

Or

Age 45 to 64 y and no DIAB and/or (ε22 or ε32) 1485 (53.6)

I indicates number of cases/1000 individuals at risk; HYT, history of hypertension; DIAB, history of diabetes; SMK, history of smoking.
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Table 5

The Genetic Subgroups Defined by the Step 2 PRIM Analysis in Women

Genetic Subgroup Overall Subsample FS 1 FS 2* FS 3*

A560T832/T560T832 or A560T832/A560G832 N=1503, I=77 N=308, I=172 (134, 217) (FS 1–1) N=348, I=98 N=847, I=34

A560T832/A560T832 or others† N=2183, I=65 N=456, I=116 (82, 143) (FS 1–2) N=491, I=100 N=1236, I=32

The subsample in italics indicates the significant genetic subgroup from subsample S 1. I indicates number of cases/1000 individuals at risk (CI).

*
A CI cannot be calculated because the PRIM did not define this contrast in these subsamples. (See Dyson et al19 for more details.)

†
“Others” is the group of 5′ genotypes that does not include A560T832/T560T832, A560T832/A560G832, or A560T832/A560T832.
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Table 6

Hazard Ratio (P) for Genetic Subgroups Defined by the Step 2 PRIM Analysis in Women

Subsample

Genetic Subgroup Overall FS 1 FS 2 FS 3

Hazard ratio (ignoring established risk factors)

A560T832/T560T832 or A560T832/A560G832 1.242 (0.085) 1.524 (0.031) (FS 1-1) 0.998 (0.994) 1.164 (0.538)

A560T832/A560T832 or others* 1.0 1.0 (FS 1-2) 1.0 1.0

Hazard ratio (conditional on fitting established risk factors)

A560T832/T560T832 or A560T832/A560G832 1.310 (0.038) 1.517 (0.037) (FS 1-1) 1.326 (0.243) 1.066 (0.801)

A560T832/A560T832 or others* 1.0 1.0 (FS 1-2) 1.0 1.0

*
“Others” is the group of 5′ genotypes that does not include A560T832/T560T832, A560T832/A560G832, or A560T832/A560T832.
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Table 7

Epidemiological Summaries of the Clinical Predictive Value of the PRIM-Defined Subsamples

Subsample

High Risk Low Risk Sensitivity Specificity +PV*

FS 2 and FS 1 FS 3 0.735 0.588 0.118

FS 1 FS 3 and FS 2 0.412 0.808 0.139

FS 1-1 FS 3 and FS 2 and FS 1-2 0.206 0.926 0.172

Marginal Estimates

High Risk Low Risk Sensitivity Specificity +PV*

ATTT/ATAG ATAT/others 0.451 0.596 0.077

Smoke† No smoke 0.642 0.435 0.079

Hypertension‡ No hypertension 0.763 0.386 0.085

TG ≥ 150 mg/dL TG <150 mg/dL 0.529 0.600 0.090

>65 y 45 to 65 y 0.770 0.503 0.104

*
+PV reflects an expected proportion of IHD cases assigned to the related high-risk group. The estimate of +PV is related to sensitivity and

specificity of a risk stratification algorithm that uses subsamples as a tool to identify individuals who are at increased risk and the prevalence of the
proposed high-risk subsample in the population of interest through a mathematical formula that is derived from the application of the Bayes’
theorem of conditional probabilities (Fletcher and Fletcher49).

†
History of smoking.

‡
History of hypertension.
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