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Abstract
HIV host genetics seeks to describe as comprehensively as possible the impact of human genetic
variation on the individual response to HIV-1 infection. Many associations between specific gene
variants and HIV-1 disease outcomes have been reported over the past 15 years. While most of
them have yet to be confirmed or were proven false positives, the identification of several
definitive genotype-phenotype associations has shed new light on HIV-1 pathogenesis. This
review discusses these results in the context of the new genome-wide approaches that now make it
possible to globally assess the influence of the host genome on HIV-related outcomes.

Differences between individuals exposed to the HIV-1 virus have been observed since the
early days of the current pandemic. Susceptibility to HIV-1 infection and natural history of
the disease are highly variable, owing to the complex interplay between the virus, its human
host, and the environment. Over the past 20 years, research in HIV host genetics has
unraveled a series of human gene variants that modulate the response to retroviral exposure
[1-3], thereby partially explaining why some individuals remain uninfected even when
repeatedly exposed to HIV-1, or why a subset of infected patients are able to maintain a
normal level of immunity after years of infection.

Most of the discoveries to date resulted from candidate gene studies, in which allelic
variants have been analyzed in genes that were known or suspected to play a role in HIV-1
pathogenesis and immune response. As a consequence, the genetic markers relevant to
HIV-1 disease that have been identified so far are related to genes that can broadly be
classified into one of these 2 categories: (1) host genes that are implicated in HIV-1 life
cycle, from entry into the target cells to the different intracellular steps that are required for
viral replication and propagation; (2) immune-related genes, coding for canonical innate and
adaptive immune response factors, as well as for proteins involved in immune-regulation
and in specific antiretroviral defense mechanisms.

This review will summarize the known host genetic associations with HIV-1 outcomes, and
put this knowledge in the context of the current genomic era. Indeed, the availability of
genome-wide approaches represent a change in paradigm for complex trait genetic studies:
global host influences on HIV can now be assessed in single experiments, and individual
contributions of numerous genetic variants can be ranked and compared to get a
comprehensive view of the impact of human genomic variation on HIV-1 infection [4].

HIV Life cycle
a. Entry: chemokine receptors

The only genetic variants that have been consistently associated with protection against
HIV-1 acquisition are affecting the CC chemokine receptor 5 (CCR5) gene, which encodes
the main co-receptor for macrophage-tropic (or R5) strains of HIV, normally expressed on
CD4 T cells. A number of polymorphisms located in the coding and the promoter regions of
the CCR5 gene have been found to associate with HIV-related outcomes. Most notably, a 32
base pair deletion (Δ32) in the CCR5 coding region results in the production of a truncated
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protein that is not expressed on the cell membrane. The CCR5 Δ32 variant affords
protection against infection by R5 viruses in individuals who are homozygous for this allele,
and slows down disease progression in heterozygotes [5-8]. Several other uncommon
genetic variants of the CCR5 coding region have been described in individuals from various
human populations [9-12], but their impact on HIV co-receptor function has not been
completely established, except for the rare CCR5 303T>A change (also referred to as m303
or C101X) that introduces a premature stop codon and thus prevents functional co-receptor
expression. This mutation was able to entirely block entry of R5 HIV-1 into its target cell in
vitro [11]; the combination of m303 heterozygosity and the Δ32 deletion on the other allele
confers resistance to HIV-1 infection [13]. Both Δ32 and m303 are found exclusively in
patients of European ancestry, with minor allele frequencies of 10% and 0.2%, respectively.

Promoter variants of the CCR5 gene have been reported that influence the pace of
progression to AIDS. By modulating the expression of CCR5, they can have an impact on
cellular susceptibility [14]. The so-called HHE haplotype, which carries the previously
reported P1 variant, associates with increased CCR5 expression and faster disease
progression [15-17].

A Valine to Isoleucine change in the CCR2 gene (CCR2-64I variant) has been shown to
delay progression to AIDS in a dominant way [18]. The frequency of CCR2-64I does not
vary much between populations, with an average frequency of 10 to 20%. Since CCR2 is
only a minor co-receptor that HIV-1 does not directly use for host cell entry in vivo, and
because the V64I substitution is conservative, it is not entirely clear how the 64I allele exerts
its protective effect: one proposed explanation is that the 64I allele acts on CCR2 splicing
variants that result in down-modulation of CCR5 expression [19], but other studies failed to
show an association between CCR2 variation and CCR5 expression levels [20, 21].

Variants of the chemokine receptors CX3CR1, CXCR1 (IL8RA) and CXCR6 have been
reported to associate with various HIV outcomes [22-26], but none of these associations
could yet be convincingly replicated. More recently, a report suggested that a variant in the
Duffy antigen/receptor for chemokines (DARC) modulates HIV susceptibility [27]. DARC
is a non-specific chemokine receptor that binds many inflammatory chemokines but lacks
the ability to signal upon ligand binding; it is also the receptor for Plasmodium vivax. A
−46T>C promoter polymorphism entirely suppresses DARC expression in red blood cells
and confers resistance to vivax malaria. Homozygosity for the null allele (−46C) was
therefore strongly enriched in regions affected by this pathogen: this allele is nearly fixed in
sub-Saharan African populations, while the functional allele (−46T) is fixed in European
populations. He et al. reported that HIV-infected African Americans have a frequency of the
null homozygous genotype of 70% while HIV-negative individuals have a frequency of
60%. Therefore, they argued that DARC −46C/C increases susceptibility to infection [27].
Interestingly, in the same study, the null genotype associated with slower disease
progression if infection occurred.

b. Entry: chemokines
Chemokines are natural ligands for the same receptors that HIV-1 uses to enter the cells.
They can therefore have an impact on HIV-1 entry into host target cells by two means: they
compete with the virus for co-receptor binding and/or they reduce the expression of the co-
receptors on the cell surface by inducing their internalization. Regulated on activation
normal T-cell expressed and secreted protein (RANTES), Macrophage inflammatory
proteins (MIP1α and MIP1β), and stroma-derived factor (SDF-1) are examples of human
chemokines that have polymorphisms in their coding genes that have been reported to play a
role in differential susceptibility to HIV-1.
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The CC-chemokine RANTES, encoded by the CCL5 gene, potently inhibits HIV-1
replication in vitro [28]. In vivo, decreased expression of RANTES was shown to accelerate
progression whereas the opposite effect was observed with RANTES upregulation [29].
Several polymorphisms located in regulatory regions of CCL5 have been grouped in
haplotypes that appear to modulate gene expression and as a consequence associate with
differences in HIV-1 susceptibility and disease progression [30-34].

Several other CC-chemokine genes have been scrutinized in many HIV host genetic studies.
Polymorphisms in the coding and non-coding regions of the CCL3 gene (MIP1α) have been
shown to associate with both resistance and progression [32, 35]. More recently, it was
shown that multiple copies of the CCL3L1 gene (MIP1αP) associate with resistance to HIV
infection and with slower disease progression [36, 37], presumably through modulation of
CCL3L1 expression. Analyses of the CCL2-CCL7-CCL11 gene cluster revealed variants
that lead to differences in susceptibility to infection [38-40]. Here again, an increase in
chemokine expression is proposed as the causal mechanism: notably, a CCL2 promoter
polymorphism (−2578G) that associates with a reduced risk of acquiring HIV-1 was shown
to increase CCL2 protein expression due to differential binding of the transcription factor
IRF-1 to the polymorphic region [41].

SDF-1 is the natural ligand for CXCR4, the co-receptor for HIV-1 X4 strains. Many
publications have looked at variation of the SDF-1 gene (CXCL12) and its relevance to
HIV-1 pathogenesis: in particular, a variant located in the 3′-untranslated region of the gene
(SDF-1 3′A) was reported to have various effects on progression [16, 42-45]. However, no
convincing evidence could finally emerge from a large meta-analysis [46] and the
importance of SDF-1 variation is still controversial.

c. Intracellular life cycle
Inside its target cell, HIV-1 interacts with numerous host proteins: some act as antiviral
factors (see ‘intrinsic immunity’ below), but most of them are necessary for sustaining viral
replication: HIV-1 has the capacity to hijack numerous human proteins in order to
successfully complete its life cycle, as demonstrated in several recent large-scale siRNA
screens [47-49]. Since human genes that act as HIV-1 co-factors represent ideal candidate
genes, many of them have been investigated in host genetic studies. However, only two such
genes have variants that were shown to play a role in the modulation of HIV pathogenesis
and were confirmed in subsequent studies: tumor susceptibility gene 101 (TSG101) and
peptidyl propyl isomerase A (PPIA, encoding the cyclophilin A protein).

The TSG101 protein interacts with the P6 product of HIV-1 Gag and is known to be critical
in the budding process of new viral particles from the plasma membrane of infected cells:
haplotypes constructed from 2 polymorphisms located in the 5′-region of the gene
(−183T>C and +181A>C) were shown to influence multiple outcomes, including viral load
and disease progression measured by CD4 T-cell decrease [44, 50]. The cyclophilin A
protein is incorporated into the HIV-1 virion as a result of an interaction with the viral
capsid protein: the mechanism by which cyclophilin A is able to enhance HIV-1 infection is
still largely unknown, even if it has been suggested that it is involved in the uncoating of the
viral core [51] and can also act as a cofactor for the anti-HIV TRIM5 protein [52]. Several
variants located in regulatory regions of the PPIA gene have been shown to influence CD4
T-cell depletion and possibly susceptibility to infection [44, 53, 54].

d. Intrinsic antiretroviral factors
In addition to those host proteins that are necessary for HIV-1 to efficiently replicate, the
human genome encodes molecules that have an antiretroviral function: most notably,
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TRIM5α and APOBEC3G have both been shown to be potent inhibitors of retroviral
replication.

TRIM5α restricts HIV-1 at a postentry, preintegration stage in the viral life cycle, by
recognizing the incoming retroviral capsid and promoting its premature disassembly. This
inhibition process is species-specific: in fact, the capacity of human TRIM5α to inhibit
HIV-1 replication is limited, whereas its simian ortholog restricts the human virus very
efficiently. In vitro experiments have shown that several polymorphisms in the human
TRIM5α gene correlate with differences in antiretroviral potency, but most the in vivo data
suggest that common human variants of TRIM5α have no effect or only modest influence
on HIV-1 disease outcomes [55-58].

APOBEC3G was first identified as a cellular factor able to restrict replication of HIV-1
viruses lacking the accessory protein Vif [59]. Its cytidine deaminase activity impacts viral
replicative capacity by introducing G to A hypermutations in the HIV-1 DNA. An H186R
coding change observed mainly in African populations was reported to associate with
accelerated progression to AIDS, even if the in vitro antiviral activity of the 186R enzyme
was not inferior to that of the common H186 variant [60]. A thorough analysis of
APOBEC3G polymorphisms in Caucasians did not show any association with HIV-1 control
[61]. Here again, larger studies in ethnically-controlled populations are warranted.

Immunity
a. Human leukocyte antigens

The most prominent and consistent associations identified in HIV host genetic studies are
those between Human Leukocyte Antigen (HLA) genes and disease outcomes. Three genes
(HLA-A, HLA-B, HLA-C) encode the HLA Class I proteins. Fundamental to the adaptive
immune response, HLA molecules are expressed at the cell surface where they present
antigenic epitopes and notably viral peptides to CD8+ T cells, thereby initiating a cytotoxic
T cell response.

The HLA Class I genes present an extreme allelic diversity and are in fact the most
polymorphic genes in the human genome. Once a particular individual gets infected by
HIV-1, the potency of the elicited immune response depends on the retroviral epitopes that
his HLA alleles are able to present to CD8+ T cells. The HLA allele that most consistently
associates with potent control of HIV-1 is B*57 [62-64], with B*5701 observed almost
exclusively in Caucasians and B*5703 mostly seen in individuals of African ancestry. Of
note, a single nucleotide polymorphism that is a proxy for HLA-B*5701 showed one of the
strongest association with HIV-1 viral control or long-term non-progression in all 3 genome-
wide association studies published to date in the HIV field [64-66]. There is also clear
epidemiological and functional evidence for effective restriction of HIV-1 by HLA-B*27
[67, 68]. In contrast, HLA-B*35Px (including B*3502, B*3503, B*3504 and B*5301)
associates with faster progression to AIDS [69, 70]. Several haplotypes in the Major
Histocompatibility Complex (MHC) and various HLA supertypes have been implicated in
HIV-1 control [71-75], but most of the associations are likely to be due to individual alleles
that are included in these groups and to the long-range linkage disequilibrium structure of
the MCH region.

Thus, HLA molecules have the ability to present different HIV-1 epitopes, which result in
variable restriction of the virus by the CD8+ T cells. Yet, this is not the only way the MHC
region contributes to the inter-individual differences observed in HIV pathogenesis:
homozygosity for HLA-A, HLA-B and/or HLA-C reduces the repertoire of antigen
presentation, limits the number of epitopes recognized by CTLs and results in a faster
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disease progression [70, 76]. Additionally, while most of the associations with HIV-1
outcomes identified in the MHC region involve the HLA-B gene, there is some evidence
that the importance of genetic variation in HLA-C may have been underestimated [77]: a
genome-wide association study of determinants of HIV-1 viremia in seroconverters
identified a polymorphism in the 5′ region of HLA-C that associates with both viral control
and expression of the gene [64], suggesting that the amount of available HLA Class I
molecules can also play a role in the efficacy of the immune response.

b. Killer cell immunoglobulin-like receptors
In addition to their importance for acquired immunity processes, HLA molecules are also
ligands for the killer cell immunoglobulin-like receptors (KIR). The KIR receptors are
preferentially expressed at the surface of the natural killer cells (NK) and regulate their
activation status through inhibitory or activating signaling. NK cells represent an essential
innate immune defense mechanism against viruses, being able not only to kill infected cells
but also to produce cytokines.

Certain HLA-KIR combinations have epistatic influences on the outcome of HIV infection
[78]: KIR3DL1 and KIR3DS1, which are expressed as allelic variants of the same locus on
chromosome 19, have both been shown to protect against disease progression when found in
combination with HLA-B molecules that have a Bw4 serologic specificity. Various
combinations of inhibitory KIR3DL1 alleles and HLA Bw4 molecules have been associated
with lower HIV-1 viremia and slower disease progression [79]. On the other hand, the
activating allele KIR3DS1 has been associated with lower viremia and a delayed
progression to AIDS when found alone [80] or in combination with HLA Bw4 molecules
that have an isoleucine at position 80 (Bw4-80I) [81, 82]. Functionally, KIR3DS1 has been
shown to correlate with strong inhibition of HIV-1 replication [83] and with higher NK cell
effector functions in early HIV disease [84]. Recent studies also suggest that KIR3DL1 and
KIR3DS1 could also play a role in differential susceptibility to HIV infection [85, 86].

c. Other immune-related molecules
All human genes that are related to immunity or inflammation can be suspected to play a
role in HIV-1 pathogenesis. Many of them have been the subject of genetic studies: for
example, polymorphisms in genes coding for several cytokines and cytokine receptors,
which are key regulators of the inflammatory homeostasis, have been associated with both
resistance to HIV-1 infection and progression of the disease. Yet, in the absence of
conclusive replication, most of the associations published so far remain controversial.

Defensins are small peptides produced mainly by epithelial cells to help fight pathogens,
including HIV-1. A variant located in the 5′ region of the β-defensin 1 gene (DEFB1) has
been associated with higher level of HIV-1 RNA in breast milk [87]and with an increased
risk of maternal-fetal transmission of the infection [88, 89].

The mannose-binding lectin 2 protein, encoded by the MBL2 gene, is an important element
of the innate immune system that is capable of activating the classical complement pathway.
MBL2-deficiencies have been associated with susceptibility to autoimmune and infectious
diseases. Several non-synonymous coding variants have been associated with lower serum
levels of MBL2, as well as increased susceptibility to HIV-1 infection and/or accelerated
disease progression [90-92].

DC-SIGN, or CD209, is a gene encoding a trans-membrane C-type lectin with an
extracellular portion composed of a tandem repeat region (“neck region”) and a
carbohydrate recognition domain, which is important for pathogen binding. Neck region
alleles with <5 repeat units were recently shown to associate with HVI-1 resistance in
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Chinese [93]. Conflicting results have also been reported regarding associations between
DC-SIGN promoter polymorphisms and HIV-1 outcomes [94, 95]

Finally, recent evidence that HIV-1-derived products are able to activate an immune cells
through Toll-like receptor (TLR) signaling lead to the description of genetic variants in TLR
genes that associate with different rates of disease progression [96-98].

Conclusion
The mission of HIV host genetics is to describe as comprehensively as possible human
genetic influences on HIV control. Even if a number of genetic factors implicated in HIV-1
pathogenesis have been described over the past 15 years, progress is arguably slow, mainly
because of the number of studies with equivocal or controversial results. Technical
limitations to genetic studies have now largely been overcome, but there are still too many
flaws in HIV host genetic studies that could and should be addressed: clinical outcomes and
biological phenotypes should be very precisely defined; the use of ancestry markers to
correct for population stratification should now be the rule; large cohorts of ethnically
diverse origin should be analyzed to decrease the likelihood of false positive findings and
increase the coverage of human diversity. The goal is to provide the HIV research
community with complete, powered and definitive studies on clear endpoints.

To make genetic studies easier to design and quicker to run, an critical step would be to
include in the routine of all prospective cohorts a request for genetic consent, and also to
obtain the permission to perform additional analyses as defined by local or national
guidelines (e.g., waiver for deceased subjects or authorization to study cohorts under
anonymity).

Genome-wide association studies have recently become the approach of choice to search for
host factors involved in HIV-related outcomes and to assess their relative contribution
[64-66]. They notably demonstrated the primary role of the MHC region in HIV-1 control.
Still, these studies are only designed to detect common polymorphisms (generally >5%
minor allele frequency) with effect sizes that are large enough to create significant
associations after correction multiple testing. More common variants with smaller
population effect sizes could be identified through a continuous increase in the number of
subjects included in genome-wide studies. However, since rare genetic variants also play a
role in the inter-individual variability of HIV phenotypes, targeted or whole-genome
resequencing strategies will prove essential to better appreciate the global contribution of the
human genome to HIV-1 control.

The ongoing historical transition into the genomic era brings new hopes that host genetics
will contribute substantially to understanding HIV-1 pathogenesis. This will in turn help
identify new targets for drug and vaccine development and potentially lead to the creation of
predictive tools that would set the stage for personalized HIV medicine.
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