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In activity-dependent homeostatic regulation (ADHR) of neuronal and network properties, the intracellular Ca 2� concentration is a good
candidate for sensing activity levels because it is correlated with the electrical activity of the cell. Previous ADHR models, developed with
abstract activity sensors for model pyloric neurons and networks of the crustacean stomatogastric ganglion, showed that functional
activity can be maintained by a regulation mechanism that senses activity levels solely from Ca 2�. At the same time, several intracellular
pathways have been discovered for Ca 2�-dependent regulation of ion channels. To generate testable predictions for dynamics of these
signaling pathways, we undertook a parameter study of model Ca 2� sensors across thousands of model pyloric networks. We found that
an optimal regulation signal can be generated for 86% of model networks with a sensing mechanism that activates with a time constant of
1 ms and that inactivates within 1 s. The sensor performed robustly around this optimal point and did not need to be specific to the role
of the cell. When multiple sensors with different time constants were used, coverage extended to 88% of the networks. Without changing
the sensors, it extended to 95% of the networks by letting the sensors affect the readout nonlinearly. Specific to this pyloric network
model, the sensor of the follower pyloric constrictor cell was more informative than the pacemaker anterior burster cell for producing a
regulatory signal. Conversely, a global signal indicating network activity that was generated by summing the sensors in individual cells
was less informative for regulation.

Introduction
Central pattern generating (CPG) neuronal networks produce
rhythmic motor activity patterns that are vital for the survival of
the organism. Although the constituent cells of CPG networks are
faced with changes in environmental conditions and constant
molecular turnover, the ability to generate these activity patterns
is always maintained (Marder and Calabrese, 1996; Marder and
Bucher, 2001). An activity-independent component of this regula-
tion is controlled inherently (MacLean et al., 2003, 2005) or by neu-
romodulators endogenous to the stomatogastric ganglion (STG)
(Thoby-Brisson and Simmers, 1998; Khorkova and Golowasch,
2007). In contrast, in the pyloric CPG network of the crustacean STG
that controls the dilation of the pylorus, long-term changes in iso-
lated neurons can result from external stimulation (Turrigiano et al.,
1994; Thoby-Brisson and Simmers, 1998; Golowasch et al.,
1999a; Zhang et al., 2009). This activity-dependent homeostatic
regulation (ADHR) affects ion channel properties (Turrigiano et
al., 1994, 1995; Golowasch et al., 1999b; Baines et al., 2001;

Nelson et al., 2003) that govern the electrical activity of the
neurons (Foster et al., 1993; De Schutter and Bower, 1994;
Prinz et al., 2003; Günay et al., 2008). ADHR also affects syn-
apses in CPG networks (Soto-Treviño et al., 2001; Thoby-
Brisson and Simmers, 2002) and elsewhere (Turrigiano et al.,
1998; Stellwagen and Malenka, 2006; Ibata et al., 2008; Wilhelm and
Wenner, 2008). In both isolated and networked cases, ADHR re-
quires an activity sensing mechanism.

The electrical activity of a cell is correlated with the intracel-
lular Ca 2� concentration (Ross, 1989), which was found to play a
role in ADHR (Turrigiano et al., 1994) by possibly affecting ion
channels (Linsdell and Moody, 1995; Golowasch et al., 1999a,b)
through Ca 2� sensing proteins (Carrión et al., 1999; An et al.,
2000; Mellström and Naranjo, 2001; Gomez-Ospina et al., 2006).
For instance, the protein frequenin in Xenopus oocytes (Nakamura et
al., 2001) and STG cells of the spiny lobster, Panulirus interruptus
(Zhang et al., 2003), affects the inactivation gate of the voltage-
gated K� transient outward current (IA). IA, by modulating the
interspike interval, is crucial in regulating activity (Tierney and
Harris-Warrick, 1992; Golowasch et al., 1999a).

Such a sensing mechanism was modeled previously (Abbott
and LeMasson, 1993; Liu et al., 1998) and succeeded in main-
taining a predefined target activity pattern. Also, a model of
regulation in the pyloric network showed that stable network states
can be reached by modulating ion channels in individual cells (Golo-
wasch et al., 1999b). However, these models only demonstrated
regulation with few, fixed sensor parameters. For biological sys-
tems, which often exhibit redundant, nonlinear mechanisms, it
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has proved beneficial to explore the model parameter space (Fos-
ter et al., 1993; Golowasch et al., 2002) and store exploration
results in databases (Prinz et al., 2003, 2004; Calin-Jageman et al.,
2007; Günay et al., 2008). Here, we built a model Ca 2� activity
sensor database to test the robustness of sensor performance by
using an existing database of 20 million pyloric network models
(Prinz et al., 2004) as a repository of different network configu-
rations. From these networks, we tested whether the sensors can
indicate (1) that a given network is producing functional activity
patterns and, if not, (2) the direction into which network param-
eters need to change to reach a functional state. We achieved this
by estimating the network activity from a statistical classifier that
is trained as a sensor readout.

Materials and Methods
Model pyloric network database. This study used a previously described
database of 20,250,000 model pyloric networks (Prinz et al., 2004). In the
database, each model network consists of three single-compartment
conductance-based model neurons, constructed with the Hodgkin–
Huxley (Hodgkin and Huxley, 1952) formalism, of a combined anterior
burster and pyloric dilator (indicated as AB/PD or just PD throughout
this paper) neuron, a lateral pyloric (LP) neuron, and a pyloric constric-
tor (PY) neuron (Fig. 1). Different network models have model neurons
selected from pools of five AB/PD, five LP, and six PY models, whose
parameters were described previously (Prinz et al., 2003). The model
neurons contain eight currents: a fast sodium current, INa; slow and
fast transient calcium currents, ICaS and ICaT; a transient potassium
current, IA; a calcium-dependent voltage-gated potassium current,
IK(Ca); a delayed rectifier current, IKdr; a hyperpolarization-activated
mixed-ion inward current, Ih; and a leak current, Ileak. The voltage
dependence and kinetics of these currents are based on recordings
from STG neurons in the spiny lobster (Turrigiano et al., 1995),
except Ih, which is modeled after that found in guinea pig lateral
geniculate relay neurons (Huguenard and McCormick, 1992). These
conductance parameters are identical in all model neurons (Prinz et
al., 2003). The selected maximal conductances for each current and
their selection criteria were described in detail previously (Prinz et al.,
2004). The synapses between the model neurons are modeled with the
dynamics used by Prinz et al. (2004), in which glutamatergic and
cholinergic synapses were modeled differently. Each synapse was var-
ied to five or six different maximal synaptic conductance values in
different networks. The networks were simulated using a custom
C�� program.

Model calcium sensors. The calcium sensors explored here are inspired
by an ADHR model for STG neurons (Abbott and LeMasson, 1993;
LeMasson et al., 1993; Siegel et al., 1994; Liu et al., 1998) and measure
the electrical activity of the model cell from the Ca 2� inflow, ICa (Fig.
2). Here, ICa � ICaT � ICaS and affects the Ca 2� dynamics from the

same model, which describes the intracellular Ca 2� concentration
([Ca 2�]) by

�Ca

d[Ca2�]

dt
� �f � ICa � [Ca2�] � �Ca2�]0

. (1)

In this model, f � 14.96 �M/nA is a factor that relates ICa to the derivative
of [Ca 2�], �Ca � 200 ms is the time constant for Ca 2� removal from the
cytosol, and [Ca 2�]0 � 0.05 �M is the intracellular equilibrium value of
[Ca 2�]. This model successfully generates Ca 2� transients similar to
those measured in pattern-generating neurons (Viana di Prisco and Al-
ford, 2004) for different types of electrical activity (Liu et al., 1998),
although it assumes that the rate of removing, sequestering, and buffer-
ing of Ca 2� is proportional to [Ca 2�].

Homeostatic regulation, for example through gene transcription,
works on timescales much slower (minutes to hours) than the network
rhythm period, which is why the readings of these ICa-dependent sensors
were time averaged (Fig. 2). The sensors were averaged over a network
rhythm period to simulate an integrative process with a very long time
constant, as opposed to the study by Liu et al. (1998), in which they were
averaged over a fixed period of 5 s. The disadvantage of a fixed integration
period is that it interacts with the length of the rhythm period, which
varies across networks. In either case, averaging loses information about
the temporal patterns of ICa, which are found to be important for influ-
encing regulatory signal transduction pathways in experiments (Gallin
and Greenberg, 1995; Bito et al., 1997). We follow the proposal of Liu et
al. (1998) that the temporal information can be retained by averaging
with different types of sensors, X, each of which is defined by a product of
activation, M, and inactivation, H, variables (Fig. 2 B) that depend on ICa

with different timescales and sensitivities:

X � M2H. (2)

For non-inactivating sensors, H is omitted. Both variables, y � {M, H},
obey the formula

�y

dy

dt
� y�(ICa) � y, (3)

where �y is the activation or inactivation time constant and the function
y�(ICa) determines the steady-state activation or inactivation, which is
defined as

y�(ICa) �
1

1 � exp(k(Zy � ICa))
. (4)

Here, k respectively becomes �1 and �1 for defining M� and H� variables.
The Zy parameters indicate current density thresholds (in nanoamperes
per nanofarad). In addition to the temporal averages of sensors, we also
investigate the hypothesis that regulation may use the minimal and max-
imal values of a sensor.

To study the performance of these sensors, we varied their �m, �h, Zm,
and Zh parameters according to rules consistent with previous work (Liu
et al., 1998): �m � �h, because activation should be faster than inactiva-
tion (Eq. 3), and Zm � Zh such that the sensor activates with larger
currents (Eq. 4). The time constants are chosen across orders of magni-
tude from a logarithmic scale of 100 �s, 1 ms, 10 ms, 100 ms, 1 s, and 10 s;
and current thresholds were chosen from the values of 0, 5, 10, 15, 20, 30,
40, and 50 nA/nF. This yielded 330 inactivating and 36 non-inactivating
sensors. The inactivating sensor parameters were limited by the rules for
the fast and slow sensors below.

To detect different types of activity, we also used a case with multiple
sensors in each cell (Liu et al., 1998). The fast (F), slow (S), and non-
inactivating (D) sensors in this case (see Fig. 5E) were defined by,

F � MF
2HF, S � MS

2HS, D � MD
2 , (5)

where the M and H activation and inactivation variables were defined as
above in the single-sensor-per-cell case. The FSD sensors were selected
from the available single sensors using rules consistent with Liu et al.
(1998):

Figure 1. Biological pyloric rhythmic activity pattern and the model circuit architecture.
A, The triphasic rhythm recorded intracellularly from the American lobster (Homarus america-
nus) pyloric neurons. The figure was reproduced from Prinz et al. (2004) B, Simplified model of
the pyloric network. All synapses in the circuit are inhibitory. Open circles represent fast gluta-
matergic synapses, and filled circles represent slow cholinergic synapses.
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�m,D � �m,S � �m,F
,

�h,S � �h,F
,

Zm,D 	 Zm,S 	 Zm,F
,

Zh,S 	 Zh,F
. (6)

These rules reduced the number of possible
FSD sensor combinations from 254,803,968 to
85,750.

During simulation, the time-averaged read-
ings, maxima, and minima of sensors with
varying parameters were saved into a file cor-
responding to the network number. In this
manner, a “sensor database” was generated of
sensor average and extremum values from each
of the three model cell types in the 20,250,000
networks. This sensor database was then read
into a relational database management system
(Codd, 1970), MySQL (MySQL AB). The data-
base occupied 285 gigabytes (GBs) of space in a
table and another 90 GBs for its index structure
that enabled optimized access and query to
the table for the analysis of the results. The
sensor database is available on request from
the authors. File management and analysis
were performed with scripts in PERL (The
PERL Foundation) and Matlab (Math-
Works); those scripts are also available on
request. The Matlab analysis scripts took ad-
vantage of the database analysis functions of
the Pandora Toolbox (http://software.inc-
f.org/software/44/view/PANDORA) (Günay
et al., 2009). The sensor database was used to
separate networks with functional and non-
functional activity patterns using a classifier
algorithm.

Using a classifier. Of the networks in the database, only 2% were pre-
viously categorized as functional because they were within �2 SDs of
recorded data from the lobster in terms of 15 salient features (such as
burst period, durations, and phases) of their activity patterns (Prinz et al.,
2004). The difference between functional and nonfunctional networks
that was reflected in their activity patterns was also captured in their
sensors readings (Fig. 3 B, C). Based on the average of these sensors, we
detected whether a network is functional by training a custom classifier
(Fig. 2C).

To find a classification solution that is simple and easily interpretable,
we first used a linear classifier. We used the perceptron classifier (Rosen-
blatt, 1958) using the newff function of Matlab. The perceptron is a
single-layered, feedforward artificial neural network (ANN) classifier
(Rumelhart and McClelland, 1986) that defines an optimal hyperplane to
linearly separate its inputs. Such optimal separating hyperplanes were used
previously in similar work to separate neural activity types (Goldman et al.,
2001; Taylor et al., 2006).

In the space of multiple sensor readings from the same or different
cells, the classifier finds a hyperplane defined by the weight vector w and
the offset, b, parameters, w � Xj � b � 0 that best separate functional
networks (Fig. 3B) from nonfunctional networks (Fig. 3C) using the
sensor vector, Xj, across all networks 1 
 j 
 N (Fig. 2C). It does this by
minimizing the sum of squares, S, of the differences between the classifier
score, cj � h(w � sj � b) and the labels, ĉj, which are 0 for nonfunctional
or 1 for functional for each network j. To match these labels, we normal-
ized the inputs and output of the function h. The function h is a linear
function, which provides a low or high output based on which side of the
hyperplane the given sensor values lie. The classifier was initialized with
random weights and optimized with the Levenberg–Marquardt training
algorithm (Levenberg, 1944; Marquardt, 1963). We judged the success of

the classification by the average percentage of correctly and incorrectly
classified networks:

r � 100 � � cF

nF
�

cN

nN
��2, (7)

where c and n, respectively, denote the correctly classified and total num-
ber of networks, and the subscripts F and N, respectively, stand for func-
tional and nonfunctional networks (Taylor et al., 2006).

Training the classifier would suffer from the imbalance in the database
between positive and negative samples (2% functional vs 98% nonfunc-
tional networks), which was also preserved in its selected smaller subsets
(see Results). To overcome this, we presented each set equally by ran-
domly repeating the fewer functional networks (Lawrence et al., 1998;
Günay and Prinz, 2009).

The ANN classifier reached a different suboptimal local minimum for
repeated training even with the same sensor inputs because of the ran-
dom initial conditions, yielding variable success rates. However, the vari-
ability was low: the success rate obtained from training a linear classifier
20 times from the readings of the best sensor varied �1% (supplemental
Fig. S1, available at www.jneurosci.org as supplemental material). Con-
sistent with our search for an optimal classifier, here we always report the
maximum success rate obtained across 10 repeated classifier training
runs. We also verified ANN training using a 50% cross-validation set
(data not shown).

As a more complex classifier, we used a multilayered perceptron
(MLP), or multilayered ANN (Rumelhart et al., 1986). In this classifier,
an output layer unit linearly weights the outputs of several single-layer
perceptrons, as described above, with ej � h(	ivicij � d), where h is a
sigmoidal function, cij are the outputs of perceptrons, vi are linear coef-
ficients, and d is another offset. In the multi-hyperplane case, the weights
of sensors within each hyperplane, w, as well as the hyperplane weights,
vi, vastly varied across different training runs of the classifier, preventing

Figure 2. The sensor and readout components within the context of ADHR. A, Engineering-style schematic illustrating the full
feedback loop of ADHR. The scope of this paper is depicted with the dashed rectangle, in which ICa is used to generate an error
signal. The error is calculated by the readout as the difference between the average of the sensors (average) over the network
rhythm period, T, and a set point. Based on this error, a hypothetical regulatory mechanism can use a direction, Aj, to adjust each
maximal conductance, such as g�Ca that modulates ICa based on voltage, V. B, The sensors are defined with the steady-state curves
of their activation ( M) and inactivation ( H) variables (Eqs. 2– 4). C, The readout can be a linear classifier that separates functional
networks from nonfunctional networks by drawing a hyperplane in the average sensor parameter space of two example (fast and
slow) sensors. D, When the input classes are linearly nonseparable, the readout must use multiple hyperplanes.
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extraction of consistent rules (supplemental Fig. S5, available at www.
jneurosci.org as supplemental material). Two factors contributed to get-
ting different weights every time: (1) sensor weights are multiplied with
hyperplane weights, allowing them to switch signs to achieve the same
result, and (2) hyperplanes need not be in the same order to achieve the
same result. We eliminated these two factors that added to the variation
of the resulting weights by: (1) switching all output hyperplane weight
signs to positive by inverting their sensor weights if necessary, and (2)
sorting hyperplane positions according to the magnitude of their output
weights (Guha et al., 2005; Günay and Prinz, 2009).

Training for neither perceptrons nor MLPs required manually speci-
fying any parameters such as learning rate or momentum.

Results
For ADHR, the feedback element should be capable of sensing
network activity levels. Here, we show that the proposed calcium
sensors perform activity sensing as needed.

Activity sensors are sensitive to firing rate and duty cycle
It was shown previously in individual and networks of model cells
(Liu et al., 1998; Golowasch et al., 1999b) that homeostasis can be
maintained with activity sensors based on calcium current, ICa.
When we place sensors of this type in all model cells of our pyloric
network (Fig. 3A), firing activity is apparent in sensor readings. In
particular, sensor readings look vastly different between example
networks with functional (Fig. 3B) and nonfunctional (Fig. 3C)
activity patterns.

However, it is not known which fea-
tures of these activity patterns are impor-
tant for homeostatic regulation. For
instance, the duration of membrane de-
polarizations in cultured hippocampal
neurons affects which gene expression
targets are triggered by ICa (Mermelstein
et al., 2000). Assuming that our ICa-based
sensors serve a regulatory function also,
we asked which activity pattern features
are reflected by the sensor outputs. We
achieved this by looking for correlations
between activity characteristics and sen-
sor averages.

Among all activity characteristics, we
found significant correlations between
burst duration, number of spikes per
period (i.e., firing rate), and bursting
duty cycle. It is straightforward to as-
sume that a longer burst duration will
increase the sensor average. Traces from
example model cells (Fig. 4 A) confirm
that this relationship is true; however, it
is only true when only the burst dura-
tion increases and the period is fixed.
Without fixing the period, the relation is
still true for some model cell types
across the networks in the database (re-
gression p � 10 �4 for PY cell) (Fig. 4 E)
but does not generalize to others (re-
gression p � 0.7 for the AB/PD cell) (Fig.
4C) because the AB/PD cell maintains a
fixed duty cycle—the ratio of the burst du-
ration to the cell period (supplemental Fig.
S3, available at www.jneurosci.org as sup-
plemental material)—that is consistent with
recent experimental evidence from spiny
lobsters (Reyes et al., 2008).

A measure of activity that correlates better with the sensor
average is the number of spikes in a period (Fig. 4D). However,
the number of spikes does not generalize as an activity measure
because it does not take into account the effect of the network
period on the sensors (Fig. 4B). Duty cycle, which accounts for
the period, is consistently and positively correlated with sensor
averages from all three model cells ( p � 10�4) (Fig. 4F–H). We
next investigated what this means for homeostatic regulation.

An optimal sensor readout can estimate success of
homeostatic network regulation
The original networks in the database were categorized as func-
tional if they were producing activity patterns that are within 2
SDs of 15 electrophysiological criteria, including the burst dura-
tion, number of spikes in burst, and burst start time (Prinz et al.,
2004). Based on this categorization, we trained an optimal clas-
sifier to quantify the sensor performance independent of a spe-
cific readout or regulatory mechanism (Fig. 2A). If this optimal
readout can accurately estimate the functional network state
across many network configurations, based alone on the activity
sensors, it demonstrates that the sensors provide sufficient infor-
mation for ADHR. The accuracy of this estimate provides the
qualitative measure of goodness for the sensors used, which is
calculated as a success rate (see Materials and Methods). Using
this readout, we evaluated different parameters of previously pro-

Figure 3. Functional versus nonfunctional activity patterns of the model network are reflected in the sensor readings. A, Model
network with a single, same activity sensor (X) in each of the three cells. B, Example functional activity pattern produced by the
model network (top; see parameters of network #4950096 in supplemental Table S1, available at www.jneurosci.org as supple-
mental material) and corresponding ICa (middle) and sensor readings (bottom traces from sensor #87; for parameters, see supple-
mental Table S2, available at www.jneurosci.org as supplemental material). Color coding is the same as in A. C, An example
nonfunctional network producing tonic and silent firing activity patterns (network #4950003). D, Using the outputs of the best
performing sensor, the classifier separated previously labeled functional and nonfunctional networks by assigning different
weights to the activity sensor of each cell. The offset value is a constant (see Materials and Methods). E, The classifier score
distribution shows the separation between functional and nonfunctional networks with a threshold of 0.5 (dashed vertical line).
Scores of networks in other panels are marked on the x-axis line. F, An example nonfunctional model network (#4959071) that lies
at the extreme of false-positive classifier estimations with a score of 0.8 (see E).
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posed sensors (Liu et al., 1998) and their placement in the model
networks (Prinz et al., 2004).

Sensors were individually weighted to optimally separate a
randomly selected 10,000-network subset of the original network

database into functional and nonfunctional networks. Sensor
data from all cells were used at the same time, as a global signal, to
find the optimal sensor properties. We addressed more realistic
cases with sensor data from single cells further below. With a

Figure 4. Activity sensors represented both the bursting activity and the rhythm period of a cell, being a good indicator of the bursting duty cycle. The sensor used is the same as in Figure 3.
A, Traces from AB/PD models in two example networks (solid and dashed lines) show that, when the cell rhythm period is invariant (
1.6 s), an increase in the burst duration (from 0.6 to 0.8 s)
increases the sensor cumulative average (sensor cum. avg.; bottom trace) and, therefore, the sensor period average (dotted line). Network model parameters are given in supplemental Table S1
(available at www.jneurosci.org as supplemental material). burst dur., Burst duration. B, Other example AB/PD models show that increasing the rhythm period (from 1.6 to 2.4 s) decreased the
sensor period average for cells with similar burst durations (0.7– 0.8 s). C, The AB/PD burst duration was not significantly correlated with its sensor average. D, The AB/PD sensor average and number
of spikes were significantly correlated (*p � 10 �4). To avoid saturation in the scatter plot, uniform noise between �0.5 and �0.5 was added to the number of spikes after regression. E, The PY
sensor average was significantly correlated with its burst duration. F–H, All three model cell sensor averages showed significant correlations to their duty cycle characteristic. The correlation was no
longer positive for LP in G for physiologically unrealistic duty cycles larger than 0.5.
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single activity sensor in each model cell (Fig. 3), each sensor
weight indicated the importance of the sensor readings of that cell
(Fig. 3D). The LP and PY cell sensors were almost twice as influ-
ential as AB/PD in determining the functionality of the sensed
activity pattern. From the weighted sensors, we calculated a clas-
sifier score that successfully distinguished 86.40% of the net-
works with triphasic bursting activity (Fig. 3E). In the classifier
score distribution, most nonfunctional networks are grouped
around zero, which also contains tonic-firing networks (Fig. 3C).
Some of the nonfunctional networks were estimated to be func-
tional (i.e., classified as false positive), such as ones showing de-
polarization block during bursts (Fig. 3F). Most functional
networks (95%) produced scores above 0.5 (Fig. 3E).

To test whether the results obtained from this random selec-
tion of model networks can predict the rest of the model network
database, we used the classifier obtained from the selected ran-
dom subset to classify other sensor subsets from up to 100,000
networks and consistently obtained maximal success rates �85%
(supplemental Fig. S2, available at www.jneurosci.org as supple-
mental material). Next, we tested whether this prediction perfor-
mance is specific to our sensors.

Sensors are more informative than activity characteristics
If the sensor readings are highly correlated with specific activity
characteristics, we asked if, in theory, these characteristics can
provide sufficient information for homeostatic regulation and
replace the sensors completely. To answer this, we compared the
estimation power from the optimal readout strategy using the
activity characteristics versus the sensors. We found that the duty
cycle characteristic has the most estimating power (70%) com-
pared with other activity characteristics, such as spike rate (Fig.
5A). However, although the duty cycle is highly correlated with
the sensors, the sensors were �16% better in estimating the net-
work output. Thus, the sensors convey more information than
any of these activity characteristics alone or even all combined
together (Fig. 5A). To address exactly what features of the sensors
are responsible for this added information, we examined the es-
timation power of the underlying observed quantity, ICa.

Activity sensing using ICa is as informative as using Ca 2�

For ADHR, ICa may be more informative than the intracellular
[Ca 2�] (Turrigiano et al., 1994) because the mode of Ca 2� entry
into the cell matters for gene regulation targets (Murphy et al.,
1991; Gallin and Greenberg, 1995; Tadross et al., 2008); however,
it is not known whether this makes a difference in a model of
ADHR. To answer this question, we used a test bed identical to
the one used above to make estimations from the three model
cells, but instead of sensors, we compared the estimating power of
total ICa and of [Ca 2�]. To establish a control case, we shuffled
[Ca 2�] values by assigning them to random networks, which
disrupted the classifier and caused it to estimate at close to chance
levels (53.37%). Without shuffling, we achieved success rates
above the control level and above success obtained from activity
characteristics but also found that using either ICa or [Ca 2�]
resulted in very similar rates at 77% (Fig. 5B) (supplemental Ta-
ble S3, available at www.jneurosci.org as supplemental material).
This suggests that ICa is as informative as [Ca 2�] for use in ho-
meostatic regulation. However, because the sensors can achieve
�9% better success than using ICa alone, we investigated the
benefits of the activation and inactivation mechanisms in the
sensor model.

Sensor inactivation is essential for detecting
functional activity
The activation and inactivation of sensors roughly correspond to
the production and removal of second-messenger proteins in the
cell, and it was shown that inactivation is necessary for detecting
different types of activity patterns (Liu et al., 1998). Compared
with the 77.14% estimation success obtained with using ICa di-
rectly, using sensors with only an activation variable increased the

Figure 5. Activity sensors provide more information than activity characteristics such as
bursting duty cycle, and activation and inactivation variables improve the estimation from
sensors. A, Comparison of estimation success rates obtained from various activity characteristics
compared with the success achieved by using activity sensors (#87; for parameters, see supple-
mental Table S2, available at www.jneurosci.org as supplemental material) in each model cell.
all char., Estimation done with all characteristics. 50% success indicates estimation at chance
level. B, Comparison of success obtained from Ca 2�-related quantities and different types of
sensors. The best activation-only sensor (#365) is inferior to the best inactivating sensor (#87).
C, In the normalized frequency of success obtained from the 366 different calcium sensors tested
at the same time in all three model cells, non-inactivating sensors (n � 36) were inferior to
inactivating sensors (n � 330). The maximum estimation success reached 86.40%. Success
rates were collected in 50 bins for inactivating and in 10 bins for the non-inactivating sensors.
D, Using minimum and maximum values of a single (activating and inactivating) sensor in
addition to its average increased the estimation success to 87.46%. E, Using the same fast, slow,
and DC (FSD) sensors in all model cells (see Materials and Methods) yielded 85,750 combina-
tions of the FSD sensors from which we found a maximum estimation success of 88.17%.
Histograms contain 50 bins in last two panels.
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success to 82.57% (Fig. 5B) (supplemental
Table S3, available at www.jneurosci.org
as supplemental material). Adding an in-
activation variable further increased the
estimation success to 86.40%. To find
the optimal sensor from each type of
sensor compared, we tested 366 sensors
with different activation and inactiva-
tion parameters (Fig. 5C). The optimal
sensor activated with a time constant of
1 ms and a half-activation threshold of 5
nA/nF of calcium current and inacti-
vated with a time constant of 1 s and a
half-inactivation threshold of 0 nA/nF
(sensor #87 in supplemental Table S2,
available at www.jneurosci.org as sup-
plemental material).

Sensor minimum and maximum are
also informative for regulation
In the slow timescale of homeostasis,
ADHR may use activity sensor features
other than the average. Adding the sensor
minimum and maximum to the sensor
average in the estimation by using their
weighted sum, combined the same way as
in FSD sensors (see Materials and Meth-
ods), increased the success rate to 87.69%
(Fig. 5B,D) (supplemental Table S3,
available at www.jneurosci.org as supple-
mental material). Compared with the op-
timal sensor, the sensor that had the most
information in its minimum and maxi-
mum has different parameters (sensor
#268 in supplemental Table S2, available
at www.jneurosci.org as supplemental
material); it is a non-inactivating [direct
current (DC)] sensor with Zm � 0 nA/nF
and �m � 0.1 s. This suggests that inacti-
vation could be replaced without loss of information by the min-
imal and maximal values of a slowly activating sensor. Because
prediction using multiple values derived from a single sensor
improved classification, we also tested using multiple different
sensors in each cell.

Using fast, slow, and DC sensors in each cell
For ADHR of conductances in a model neuron, Liu et al. (1998)
suggested that a fast, a slow, and a non-inactivating DC sensor
(FSD sensors) that correspond to homeostatic regulation path-
ways operating at different speeds can be combined to detect
activity at different timescales. We used these FSD sensors, but
they barely improved our success to 88.17% (supplemental Table
S3, available at www.jneurosci.org as supplemental material). We
generated 85,750 combinations of FSD sensors following previ-
ous rules (see Materials and Methods) (Liu et al., 1998). The
distribution of classification success obtained these FSD sen-
sor combinations was unimodal (Fig. 5E), similar to the suc-
cess distribution obtained from networks with a single, same
sensor in each cell (Fig. 5C).

Functional sensor parameters are broadly tuned
It is important to understand the parameters of successful
activity sensors to make predictions about possible biological

mechanisms that may underlie them. By comparing the max-
imal success rates obtained for different parameter configura-
tions, we found optimal values for each of these parameters for
the non-inactivating (Fig. 6A) and inactivating (Fig. 6B) sensors
types separately. The most successful sensor is an inactivating-
type sensor with low current threshold values of Zm � 5 and Zh �
0 nA/nF and time constant values of �m � 1 ms and �h � 1 s (same
as sensor #87 above in Figs. 2B, 3, 5A). The tendency to select a
low activation current threshold implies that the ideal sensor is
sensitive to small Ca 2� currents, whereas an inactivation thresh-
old of zero indicates that the sensor never inactivates completely,
because the calcium current is always negative because of its re-
versal potential (see Materials and Methods).

In general, lower current threshold values yielded higher suc-
cess, except in the non-inactivating sensors as observed from the
success rate distributions. The distributions were unimodal: the
success rate diminishes smoothly as parameters vary away from
the optimal point, indicating that the sensor is tuned broadly.
The parameters have no critical values beyond which the sensors
failed, except the DC sensors with Zm � 0, which are significantly
worse. The optimal points found by the mean success value are
generally consistent with the points found from maximal success,
except for few parameters (e.g., �m of inactivating sensors and Zm

on non-inactivating sensors). When assessing optimal values

Figure 6. Sensor time constant (�) and calcium current sensitivity ( Z) parameters are broadly tuned. In the bar plots, the inner
bars show the maximal success, and open bars show the mean success. The dotted horizontal line shows the mean success from all
sensors. A, Success with varying activation variable parameters of the non-inactivating sensors (n � 33; 3 sensors that always
produced 0 output were omitted). The n values for each bar vary based on the sensor construction rules (see Materials and
Methods). B, Same as A but for inactivating sensors (n � 330). C, Success for parameter values for each of the fast (F), slow (S), and
DC (D) sensors.
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from sensors with multiple varying parameters, the mean and
maximal values may be artifacts from dependencies between
two or more parameters (Golowasch et al., 2002). However,
independently selecting the value of each parameter at the
peak of its maximal success corresponds to the parameters of the
best sensor (#87) found previously, suggesting that parameters
are not interdependent. We completely ruled out the possibility
of interdependency by inspecting interactions among all possible
parameter pairs for inactivating and non-inactivating sensor
types (supplemental Fig. S4, available at www.jneurosci.org as
supplemental material).

The parameters of the FSD sensors are also broadly tuned (Fig.
6C). The peaks of the maximal success tuning curves are consis-
tent with the optimal FSD sensor combination (#34,457) we
found, whose parameters slightly differ from those used in pre-
vious work (Table 1). Although the FSD sensor current thresh-
olds are in decreasing order and time constants are in increasing
order (see Materials and Methods), each of the three sensors we
found are specialized to different roles (Fig. 6C). Specifically, we
observed the following: (1) The activation time constant, �m, of
the fast and slow sensors tends to be as fast as possible, whereas
the DC sensor has no preference. (2) The inactivation time con-
stant, �h, of the slow sensor prefers a long value of 
1 s, which
is similar to the case of a single sensor (Fig. 6 B), except that the
fast sensor produced high success rates irrespective of the se-
lected �h. (3) The activation current threshold, Zm, tends to be
higher for fast sensors (20 –50), consistent with the idea of DC
and slow sensors detecting the bursting envelope and the fast
sensor detecting the spike firing activity, which causes larger
calcium currents.

Once we found the most effective sensor type and its param-
eters, we investigated the advantages of local versus global place-
ment of sensors in achieving the best separation between
functional and nonfunctional network patterns.

Local sensors can estimate network activity
In the above results, we allowed the readout to access sensors
from all three cells. However, readouts in living cells are most
likely to have access to the local activity sensors only. To test
whether local sensors from a model cell can estimate the outcome
of the network activity, we measured the estimation power of
sensors from each individual model cell (Fig. 7A). From individ-
ual cell sensors, we obtained estimation success levels well above
chance (Fig. 7A). In particular, different model cells provided
different levels of estimation power: the PY cell sensor output is
most informative, yielding an 83.34% classification success,
whereas the sensors in the LP and AB/PD model cells are less
informative, both yielding a success of 
76%. As opposed to the
limited information given by a local sensor, a global sensor may
give a more accurate estimation of network activity.

A global sensor can estimate network activity
To test whether a global activity sensor can be more informative,
we built an abstract model of a global sensor by summing the
activity sensors from each model cell into a single value. First, we

summed the optimal sensors of each model cell found above,
which resulted in a estimation success of 82.46%. Second, we
summed the same sensor in all three cells to find the success
distribution across all possible sensor parameters, which reached
a higher success of 83.66% (Fig. 7B). Considering that the SD of
the success rate is 0.15% (supplemental Fig. S1, available at www.
jneurosci.org as supplemental material), the global sensor esti-
mations were not better than, but at about the same level with,
estimations obtained from individual model cell sensors.

Cells with different roles in the network need not have
different activity sensors
The different optimal sensors from each cell estimated the net-
work outcome well independently, but, when they were summed
before classification, the estimation success did not increase. Can
they generate a better estimation if all of their information is
passed to the readout, that is, when their sensors are individually
weighted and summed by the classifier? To answer this question,
we classified the networks using the optimal sensors from all
model cells. If the information given from the PY sensors would
add to the information from the other two cells, we would predict
reaching a success rate higher than 83.34%. However, this was
not the case, and the best three-sensor classifier reached a similar,
83.33%, success rate, almost identical considering an SD of
0.15%. This indicated that (1) the sensors in the three cells con-
tain redundant information that does not add up when com-
bined, and (2) using the optimal sensors for each cell is less
informative (83%) than finding one general sensor that maxi-
mizes the estimation in the whole network (86%).

Optimal sensors found by independent estimation also gave
insights about the sensor readout: the classifier weights for the
best sensors for each cell (Fig. 7C) were different from the weights
found when the same optimal sensor was used in all cells (Fig.
3D). Specifically, the weight and offset for the LP cell sensor was
the reverse of the AB/PD and PY cells. This indicated that the role
of the LP cell in affecting the outcome of the network activity is
different from the two other cells. This relationship between sen-
sors from the different cells was maintained in the weights ob-
tained from the classifier trained on the combined sensor outputs
from the three cells (Fig. 7D) but was inconsistent with weights of
the optimal sensor readings (Fig. 3D). The difference between
weights may mean that sensors are tuned to best read the activity
of a specific neuron based on its function in the network. To
address the function of each cell in the network, we looked for a
relation with its sensor outputs.

Sensor readings in each cell contribute differently to
classifying functional network activity
The classifier weights trained to the best sensor (#87) indicated
that the AB/PD activity is approximately half as important as the
LP and PY activity (Figs. 3D, 8A). The classifier weights obtained
from the next best 10 sensors (Fig. 8A), as well as the statistics of
all sensors performing better than a 80% success rate (Fig. 8B)
were consistent with this distribution of weights. The weights
found were significantly different from cell to cell for the most

Table 1. Comparison of the parameters of the optimal FSD sensor combination (#34,457) with those of the previously published FSD sensor from the study of Liu et al.
(1998)

Zm,F �m,F Zh,F �h,F Zm,S �m,S Zh,S �h,S Zm,D �m,D

Opt. FSD 50 10 �4 30 10 �2 40 10 �3 10 10 �2 10 10 �1

Prev. FSD 14.2 5 � 10 �4 9.8 1.5 � 10 �3 7.2 5 � 10 �2 2.8 6 � 10 �2 3 5 � 10 �1

All Z values are in nanoamperes per nanofarad, and all � parameters are in seconds. Opt. FSD, Optimal FSD sensor; Prev. FSD, previously published FSD sensor.
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successful sensors ( p � 10 �4 with one-
way ANOVA) (Fig. 8 B).

One explanation for the imbalance be-
tween contributions of the activity of the
AB/PD cell versus the other cells can be
found by inspecting the average sensor
readings of the networks: the readings of
the AB/PD cell were generally higher than
those of the other two cells, PY producing
the lowest readings (Fig. 8C). This means
that generally the AB/PD cell has a larger
duty cycle than the LP cell, and LP has a
larger duty cycle than the PY cell. When all
networks (n � 9915) are considered (Fig.
8C), activity from nonfunctional net-
works may confound these results. How-
ever, the ranking between the sensed
activity of the three cells is preserved for
the smaller subsets of networks with func-
tional (n � 221) (Fig. 8D) and networks
that were found functional by the classi-
fier (“classified functional,”, n � 2834)
(Fig. 8E), with the exception of high activ-
ity in the PY cell sensors in the functional
networks. From these sensor reading dis-
tributions, we were also able to predict
types of activity patterns produced by the
network (supplemental Fig. S6 and sup-
plemental data, available at www.
jneurosci.org as supplemental material).

Linear readout failed to correctly
classify specific activity patterns
With the linear classifier, although using
FSD sensors from each cell improved the
estimation of functional network pat-
terns, 
12% of the networks were still
misclassified. This may point to a limita-
tion of either the model calcium sensors
or their readout, the linear classifier. To
distinguish between these two possibili-
ties, we investigated the types of activity
changes that were misclassified. To find hard-to-classify exam-
ples, we searched the sensor database subset for examples of sim-
ilar network activity at the decision threshold of the classifier
score: to find two networks that produce activity patterns as sim-
ilar as possible, while one of them is misclassified. Such an exam-
ple network pair illustrates that our estimation test bed can
confuse two similar types of activity (Fig. 9). In this example, both
network activity patterns were estimated as functional, although
the activity of one network was categorized previously (Prinz et
al., 2004) as nonfunctional (Fig. 9A). The nonfunctional network
exhibited an excessive activity in the LP cell that was reflected as
an increase in its DC sensor average (Fig. 9B). In turn, this sensor
had a negative classifier weight (Fig. 9C), translating the
increase in the sensor average into a decrease in the classifier
score. This reduced the score of the nonfunctional network down
to 0.7 from an initial score of 1.1 in the functional network.
However, this decrease was insufficient to cross the decision
threshold at 0.5. Therefore, this example demonstrates that the
calcium sensors can correctly detect slight changes in activity but
the linear classifier used to interpret the sensor readings is too
simple to produce the correct output. This suggests that, to im-

prove estimation from sensors, it is necessary to have a better
readout mechanism than a classifier that is linear.

Using a nonlinear readout increased success to 95%
A linear classifier fails when the decision boundary between func-
tional and nonfunctional networks are linearly nonseparable in
the sensor space (Fig. 2C). Linearly nonseparable sensor inputs
require multiple hyperplanes to correctly separate the two net-
work populations (Fig. 2D). When we increased the number of
hyperplanes in classifying from the FSD sensor readings, we
reached success rates of 95% correct (Fig. 10A). The success rate
saturated after 5–10 hyperplanes, indicating that a small number
of decision boundaries is sufficient to make accurate estimations.

Solutions provided by the multi-hyperplane classifier con-
tained more weights that were harder to interpret than solutions
of the linear classifier. The magnitude of contribution to the clas-
sifier estimation by each hyperplane is revealed by sorting hyper-
planes by their weights (Fig. 10B). The sensor weights within each
sorted hyperplane were similar across training runs (Fig. 10C),
which indicated that specific sensor rules carried a specific im-
portance in estimating whether the model network activity pat-

Figure 7. Local sensors can estimate network activity and sensor variety between cells does not yield better estimation success.
A, A different activity sensor (Xi, i � 1, 2, 3) in each model cell used individually to estimate the network outcome. The distribution
of success rates from 366 sensors (20 bins) in each of the three cells are superimposed for comparison, which showed a different
maximal success from each cell sensor. B, Combined sensor readings from three model cells to simulate a global sensor reading (50
bins). C, Classifiers with different weight and offset values were found for each of the different sensor types in each cell (for sensor
parameters, see supplemental Table S2, available at www.jneurosci.org as supplemental material) for obtaining the best success
rates in A. D, When the outputs of the best sensors from each cell are used together to classify functional networks, the signs of the
individual weights found in C are maintained.
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tern is functional. Consistent with the linear classifier results
showing that PY and LP sensors contain more information in
making estimations (Figs. 3D, 7A, 8), the sensor weights in the
most important hyperplane (H3) weighed higher the sensors
of PY exclusively. The next important hyperplane (H2)
weighed both LP and PY sensors high, and the least important
hyperplane (H1) weighed sensors from all cells but used a rule
that complements the other two hyperplanes.

Discussion
We generalized and explored an existing, biophysically inspired,
abstract Ca 2� sensor model (Abbott and LeMasson, 1993; Le-
Masson et al., 1993; Siegel et al., 1994; Liu et al., 1998) to make
predictions about dynamics of Ca 2� sensing mechanisms.

A classifier can be used as an optimal readout for regulation
Instead of explicitly defining the readout mechanism as done
previously (Golowasch et al., 1999b), we assumed that there is an
optimal mechanism by replacing it with a classifier [using a sim-
ilar approach to that of Poirazi and Mel (2001) and the ideal
observer in the study by Felsen and Mainen (2008)]. This classi-
fier generates a single score for each network that indicates on
which side of the functional boundary the network lies. It has
been shown that such a single error measure can be sufficient,
under certain conditions in ADHR modeling studies, to regulate
ionic conductances along a line in the parameter space (Liu et al.,
1998; Golowasch et al., 1999b; Olypher and Calabrese, 2007;

Zhang et al., 2009; Olypher and Prinz,
2010). Linear correlations found between
conductances in experimental and mod-
eling studies also support this result (Ma-
cLean et al., 2005; Schulz et al., 2006, 2007;
Khorkova and Golowasch, 2007) (T.
Smolinski, P. Rabbah, C. Soto-Treviño, F.
Nadim, and A. A. Prinz, unpublished ob-
servation; A. E. Hudson and A. A. Prinz,
unpublished observation) (but see Taylor
et al., 2009).

Cell activity characteristics correlate
with model Ca 2�

The value of the Ca 2� sensors in this study
represents the average firing activity and
correlates highly with the cell bursting
duty cycle (Fig. 4). However, when we
used activity characteristics such as duty
cycle to make predictions about the net-
work activity, we found that the Ca 2� sig-
nal and sensors were better predictors
(Fig. 5A,B). This indicates a limitation to
modeling studies that use spike time-
based activity characteristics that disre-
gard the subthreshold voltage dynamics of
the cell (Prinz et al., 2003, 2004; Günay et
al., 2008; Taylor et al., 2009).

Both Ca 2� concentration and current
are informative for homeostatic
regulation
In general, our methodology is not lim-
ited to comparing only one type of sensor,
because we showed that the controlling
quantity in the sensors is interchangeable
between the total Ca 2� current (ICa) and

concentration ([Ca 2�]) (Fig. 5B); we could as well have chosen to
use the membrane voltage as in the study by Rabinowitch and
Segev (2006). In this comparison, our [Ca 2�] dynamics in Equa-
tion 1 was limited to only one set of fixed parameters (Prinz et al.,
2003). Although varying these parameters would have given a
more realistic range of Ca 2� dynamics, it would have also in-
creased the parameter space significantly and thus was kept out-
side the scope of this work. Our use of ICa for activity sensing is
consistent with experiments showing that ADHR is modulated
not by the steady state of the activity level but by its change
(Thoby-Brisson and Simmers, 2000). We assume that the change
in activity reflects [Ca 2�] close to the membrane in which it is
more likely to affect ion channels (see Materials and Methods).
Although this assumption may exclude processes that involve
transport and signaling between the nucleus and the cell mem-
brane, it is consistent with the localization of some Ca 2� sens-
ing proteins (e.g., frequenin) near the plasma membrane
(O’Callaghan et al., 2003).

Despite the experimental evidence connecting Ca 2� to regu-
latory processes (Turrigiano et al., 1994; Linsdell and Moody,
1995; Golowasch et al., 1999a), another modeling study sug-
gested that the Ca 2� concentration across different cells may be
too variable to be useful for homeostatic regulation (Achard and
De Schutter, 2006, 2008). This is inconsistent with our results
that correctly predict network regulation targets from read-
ings of [Ca 2�], ICa, and ICa-based activity sensors across the

Figure 8. Classifier weights of best performing sensors consistently selected specific proportions of the sensor of each cell for
classifying functional network activity. A, Weights found by the top 11 best sensors were consistent (best sensor being the
rightmost, brown color). B, Mean and SD of the sensors with success �80% (n � 63) maintained the same proportions between
the weights of sensors of different cells and the offset value. The weight of each cell sensor was significantly different from each of
the others ( p � 10 �4, same for separate one-way ANOVA for each pair and also one for all together). C–E, Distribution of the
average optimal sensor readings from the three cells (each into 100 bins) for all networks classified (C; n � 9915, the truncated 0
bins showing no activity were 4208 for AB/PD, 663 for LP, and 5662 for PY), for functional networks (D; n � 221), and for classified
functional networks (E; n � 2834).
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vastly different pyloric network models
found in our database (Fig. 5 A, B). The
discrepancy can be explained if the lob-
ster CPG pyloric network uses a very
different regulation rule than mouse
cerebellar Purkinje cells considered by
Achard and De Schutter (2008).

Single, same Ca 2� sensor in each cell
can indicate whether a network
is functional
The use of multiple FSD sensors by Liu et
al. (1998) was justified because Ca 2� af-
fects ion channel properties through mul-
tiple parallel pathways, triggered by
proteins such as frequenin, the down-
stream regulatory element antagonist
modulator (Carrión et al., 1999; Mell-
ström and Naranjo, 2001), and a tran-
scription factor encoded by the C
terminus of the L-type voltage-gated cal-
cium channel Cav1.2 (CCAT) (Gomez-
Ospina et al., 2006). Consistent with the
specialization of FSD sensors for a divi-
sion of labor in parallel pathways, our re-
sults showed that FSD sensors increased
estimation success rates. However, this in-
crease was too small to be important in
our simpler task of separating functional
from nonfunctional network activity (Fig.
5B) (supplemental Table S3, available at
www.jneurosci.org as supplemental ma-
terial), and rather a single sensing mecha-
nism with activation and inactivation
variables in each cell was able to estimate
the network activity pattern up to 86%
correct (Fig. 5C), which is consistent with
other recent pyloric network models
(Zhang et al., 2009). Furthermore, this
sensor need not be specific for each cell in
the network (Fig. 7); thus, it could be one
of the possible Ca 2� sensing proteins.
This prediction can potentially be experi-
mentally tested by blocking these candi-
date sensor pathways (Carrión et al., 1999;
An et al., 2000; Zhang et al., 2003; Gomez-
Ospina et al., 2006).

In the search for the optimal sensor, if
access to minimal and maximal values of
the sensor are also used for the estimation,
the success increases to 87% (Fig. 5D). However, this sensor need
not have an inactivation variable (supplemental Tables S2, S3,
available at www.jneurosci.org as supplemental material), which
suggested that inactivation could be replaced without loss of infor-
mation by the minimal and maximal values of a slowly activating
sensor. These peak values were found to be important in the control
loops of signaling pathways in the living cell (Pouvreau et al., 2006).

Local activity sensors are capable of network homeostasis
Can global features of network activity be detected by local sen-
sors? Consistent with other models (Golowasch et al., 1999b;
Zhang et al., 2009), in this pyloric network model, local sensors in
the PY cell were successful estimators across 83% of networks in

the database with varying connection topologies (Fig. 7). This
follower cell produced higher success rates than the other two
cells because of the asymmetric connections specific to the pylo-
ric network (Fig. 1B) (no feedback connection from PY to AB/PD
cell), in which observing PY indicates the state of both AB/PD and
PY; PY would not burst if AB/PD was not properly bursting. The
same asymmetry is confirmed in the weights of the classifier (Fig.
8A) that performs better than local sensors (up to 95% in Fig.
10A) using all global features. This classification paradigm was
only used to find optimal sensor configurations for ADHR, be-
cause it may be unrealistic for sensors to have global access.

One such global signal appears in mice outside the neurons: in
the glial cells. These glial cells were found to regulate the levels of the

Figure 9. The calcium sensors misclassified
12% of the networks. A, Two example network traces, one from a functional (top;
network #4950161) and one from a nonfunctional (bottom; network #4950088), producing very similar activity patterns, except
when the LP activity overlap with PY activity pushes it outside of the biological range of functional patterns. The two networks have
similar parameters (supplemental Table S1, available at www.jneurosci.org as supplemental material). B, The FSD sensor outputs
from these two networks were identical, except a larger DC sensor average indicated the longer LP activity in the nonfunctional
network. C, Comparison of the classifier weights for each of the nine sensors in the network indicated that the LP sensors were most
important in determining the classifier score.

Figure 10. Increasing the number of decision boundaries (hyperplanes) of the classifier allowed to make finer and more
accurate estimations of functional network patterns. A, Adding hyperplanes in classifying with the optimal FSD sensor triplet
(#34,457; see Table 1) from all cells improved classification success from 88 to 95%. B, Hyperplane weights indicate the importance
of each hyperplane in the estimation. C, Mean and SD of sensor weights for hyperplanes 1, 2, and 3.
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TNF-� (pro-inflammatory cytokine tumor-necrosis factor-�) to
mediate homeostatic synaptic scaling in an activity-dependent
manner (Stellwagen and Malenka, 2006). In the pyloric network,
although a similar global, activity-dependent homeostatic regu-
lation mechanism is not known, global neuromodulatory inputs
to the network modulate ion channel conductances independent
of activity (Thoby-Brisson and Simmers, 1998; Khorkova and
Golowasch, 2007). However, a single global sensor that we sim-
ulated with a simple, instantaneous model by summing individ-
ual cell sensors was only as informative as the PY sensors (Fig.
7B). These results together suggest that more complex, network-
level communication is necessary between the cells to achieve
better ADHR (e.g., through synaptic or intracellular signaling
mechanisms).

Optimal sensor parameters are consistent with
biological data
The optimal parameters of the calcium sensors that we found
predicted suitable ranges of operational parameters for Ca 2�

sensing proteins that can be tested experimentally by blocking
specific proteins and by applying artificial stimulation protocols
to drive the regulation. The optimal parameters were consistent
with observed biological properties of the pyloric network (Fig.
6), which indicated that homeostatic regulation is insensitive to
unphysiologically long bursts but is sensitive to single spike
events in the bursts at the millisecond range. This is too fast for
many Ca 2� sensing proteins that operate a Ca 2�/myristoyl
switch and need to translocate from the cytosol to membranes,
except NCS-1/frequenin, whose N-terminal myristoylation tar-
gets it at the plasma and trans-Golgi membranes, allowing it to
respond quickly to local changes in Ca 2� (Burgoyne, 2004).

Similar tuning properties of the parameters were found also
for the case of three FSD sensors in each cell (Fig. 6C). For in-
stance, the fast sensor did not prefer an inactivation time con-
stant, because a fast activation variable can follow the ICa, making
the inactivation unnecessary. This is confirmed by the increasing
success of faster non-inactivating sensors (Fig. 6A).

Sensor readout approximates a simple nonlinear boundary
The architecture of the optimal classifier gave us information about
the readout mechanism reacting to the calcium sensors. The specific
predictions about readout mechanism can be tied to how Ca2� sens-
ing proteins affect their downstream targets, such as ion channel
voltage dependence and surface expression (Zhang et al., 2003). Be-
cause our results did not improve for more than 5–10 hyperplanes,
we can speculate that a nonlinear, biologically feasible decision
boundary would be sufficient for the regulatory mechanism to be
correct for 95% of the networks (Fig. 10).

Together with the results that a single sensor with a low-
dimensional readout decision can perform well for estimation,
we can hypothesize that a single optimal sensing pathway (e.g.,
frequenin) that produces an informative quantity can be used by
multiple downstream targets to push the cell toward a functional
activity regimen.
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