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Background: The intracellular and plasma concentrations of HIV protease inhibitors (HPIs) vary widely in vivo.
It is unclear whether there is a concentration-dependent effect of HPIs such that at increasing concentration
they may either block their own efflux (leading to ‘autoboosting’) or influx (leading to saturability/decreased
intracellular accumulation).

Method: The effects of various concentrations (0–30 mM) of lopinavir, saquinavir, ritonavir and atazanavir on
the accumulation of [14C]lopinavir, [3H]saquinavir, [3H]ritonavir and [3H]atazanavir, respectively, were investi-
gated in CEMparental, CEMVBL [P-glycoprotein (ABCB1) overexpressing], CEME1000 (MRP1 overexpressing) and
in peripheral blood mononuclear cells (PBMCs). We also investigated the effects of inhibitors of ABCB1/ABCG2
(tariquidar), ABCC (MK571) and ABCC1/2 (frusemide), singly and in combination with HPIs, on cellular
accumulation.

Results: In all the cell lines, with increasing concentration of lopinavir, saquinavir and ritonavir, there was a sig-
nificant increase in the cellular accumulation of [14C]lopinavir, [3H]saquinavir and [3H]ritonavir. Tariquidar,
MK571 and frusemide (alone and in combination with lopinavir, saquinavir and ritonavir) significantly increased
the accumulation of [14C]lopinavir, [3H]saquinavir and [3H]ritonavir. Ritonavir (alone or in combination with tar-
iquidar) decreased the intracellular accumulation of [3H]ritonavir in PBMCs. Atazanavir decreased the accumu-
lation of [3H]atazanavir in a concentration-dependent manner in all of the cells tested.

Conclusions: There are complex and variable drug-specific rather than class-specific effects of the HPIs on their
own accumulation.
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Introduction
Highly active antiretroviral therapy (HAART) has markedly
decreased the morbidity and mortality of HIV-infected individ-
uals. However, despite the improvements associated with
HAART, the virus continues to evolve in cellular reservoirs and
anatomical sanctuary sites during therapy even when below
detectable levels of HIV are achieved in plasma. The causes of
persistent HIV infection despite undetectable plasma levels
remain incompletely understood but probably include multiple
factors such as persistence of virus in cellular reservoirs (e.g.
CD4+ T cells and cells of the macrophage lineage) and

anatomical sanctuary sites (brain and possibly testis),1 – 7

pharmacological and poor compliance. Collectively these sites
represent a major impediment to the eradication of HIV. Viral
sanctuary sites may result from the overexpression, in sites of
HIV replication, of membrane-bound drug efflux transporters,
e.g. P-glycoprotein (P-gp; ABCB1), multidrug resistance-
associated proteins (MRPs; ABCCs) and breast cancer resistance
protein (BCRP; ABCG2).

Some studies have provided evidence that HIV protease
inhibitors (HPIs), e.g. saquinavir, ritonavir, lopinavir, atazanavir
and darunavir, may be reduced by these drug efflux transpor-
ters,8 – 15 which may potentially promote the emergence of
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mutant viruses. Recent studies by others and us have also shown
that organic anion transporting polypeptides (OATPs) may also
influence the intracellular accumulation of some HPIs.16,17

HPIs exhibit complex interactions with drug transporters, drug
metabolizing enzymes (CYPs) and serum proteins. These
complex interactions lend support for the discrepancy between
the intracellular concentrations of the HPIs measured in vivo
and in vitro/ex vivo.18 Although data on association between
genetic polymorphisms in drug metabolizing enzymes and trans-
porter proteins are equivocal, they may explain, in part, the vari-
able and complex plasma and cellular concentrations and
treatment outcomes of HIV-infected patients. For example,
despite some of the HPIs, e.g. lopinavir, being a substrate for
ABCB1 and ABCC,12,19 an earlier retrospective study of
HIV-infected patients under antiretroviral therapy found no influ-
ence of the ABCB1 C3435T polymorphism on the plasma and
peripheral blood mononuclear cell (PBMC) levels of lopinavir (or
the non-nucleoside reverse transcriptase inhibitor, efavirenz)20,21

even though polymorphisms at the ABCB1 C3435T and G2677T/
A, MRP1 (ABCC1) C218T and G2168A and MRP2 (ABCC2) G1249A
have been associated with alterations in ABCB1, ABCC1 and
ABCC2 activity.22 – 26 However, some studies found no association
between the concentrations of saquinavir (alone or when
boosted with ritonavir), atazanavir or lopinavir and polymorph-
isms in ABCB1 C3435T and G2677T/A.27,28 Furthermore, recent
studies on three common exonic ABCB1 polymorphisms,
C1236T, G2677T/A and C3435T, showed that these are poor pre-
dictors of the concentrations of lopinavir and ritonavir in saliva,
semen and plasma.29 However, there is evidence of some associ-
ation between G4544A polymorphism in ABCC2 and higher
accumulation of lopinavir in PBMCs of HIV-treated patients.21

Similar studies on 74 HIV-infected patients showed significantly
higher plasma levels of atazanavir in patients with genotype
CC than those with CT or TT for polymorphism at the ABCB1
C3435T.30 Studies in cultured cells showed that the permeability
of amprenavir, indinavir, lopinavir and ritonavir was greater in
ABCB1 (G1199A) cells than in ABCB1 wt cells, suggesting that
ABCB1 G1199A polymorphism may impact on the systemic bio-
availability of HPIs.12 Clearly if inter-individual differences in the
bioavailability of HPIs is caused by genetic variants of ABCB1,
ABCC1 and ABCC2, this may have a profound effect on the phar-
macokinetics and pharmacodynamics of substrate drugs.

Inhibition of first-pass metabolism of the HPIs by cytochrome
P450 (CYP) enzymes markedly increases the bioavailability of
most HPIs and hence their therapeutic efficacy. Thus, ritonavir-
boosted HPIs have become part of the standard of care for
HIV-infected patients.31–38 Data on the interaction of HPIs are
equivocal: we recently showed that amprenavir and atazanavir
increased the intracellular accumulation of lopinavir in both cul-
tured and primary human cells, suggesting a potential role of
inhibiting ABCC and ABCB1 in boosting the intracellular concen-
tration of some HPIs.19 Furthermore, combinations of HPIs with
more potent efflux inhibitors have been shown to increase the
brain penetration of HPIs.39–42 However, some combinations of
HPIs may not efficiently increase their organ (e.g., brain) per-
meability.43–45 These complex interactions are accentuated as
some HPIs are also known to up-regulate ABCB1, ABCC and CYP
expression and function.46–51 Thus, optimum HIV treatment
requires careful consideration of these parameters to avoid
therapy-limiting drug–drug, drug–transporter and drug–enzyme

interactions, and some important data necessary to fully under-
stand the intracellular pharmacology of HPIs are still missing.

Inadequate plasma or intracellular concentrations of anti-
retrovirals may lead to treatment failure. In order to adequately
manage this, dose modification, guided by therapeutic drug
monitoring of plasma concentration, is sometimes used as a
strategy to address this problem. As HAART involves the conco-
mitant use of multiple drugs, it appears important to evaluate
the concentration-dependent effects of these drugs on intra-
cellular accumulation and this was the aim of the present study.

Materials and methods

Reagents
[14C]lopinavir, [3H]saquinavir, [3H]ritonavir and [3H]atazanavir (specific
activities of 1.0 Ci/mmol, 1.0 Ci/mmol, 1.1 Ci/mmol and 3.1 Ci/mmol,
respectively) were purchased from Moravek Biochemicals (Brea, CA,
USA). Lopinavir and ritonavir were donated by Abbott Laboratories
(North Chicago, IL, USA). Saquinavir was donated by Roche (Welwyn
Garden City, UK) and atazanavir was a gift from Bristol Myers Squibb
(Hounslow, UK). Tariquidar was a gift from Xenova Group Plc, (Slough,
UK) and MK571 from Alexis Biochemicals (San Diego, CA, USA). CEM,
CEMVBL and CEME1000 cell lines were from Dr R. Davey (Bill Walsh Cancer
Research Laboratories, Royal North Shore Hospital, Sydney, Australia).
PBMCs were from blood buffy coats obtained from the regional blood
transfusion centre (Liverpool, UK). All other chemicals were supplied by
Sigma Chemical Co. (Poole, UK).

Cell culture
The parental cell line was CEM (a CD4 T cell line). CEMVBL (VBL, P-gp over-
expressing) cells were selected using vinblastine. CEME1000 (E1000, MRP1
overexpressing) cells were selected with epirubicin. Cell volume (range
0.8–1 pL) and cell density were measured using a CASY Cell Counter
(Sedna Scientific Ltd, Dronfield, Derbyshire, UK). We have previously vali-
dated the expression of the transporters in our laboratory.10 The cells
were maintained at 378C and 5% CO2 in RPMI 1640 medium sup-
plemented with 10% fetal calf serum (FCS).

Isolation of PBMCs
PBMCs were isolated from blood buffy coats using Lymphoprep, following
the manufacturer’s instructions. Cell volume (0.3–0.4 pL) and cell density
were measured using a CASY Cell Counter.

Ethics
No ethical approval was required in the collection and use of the blood
products from the blood transfusion services.

Effects of various concentrations of unlabelled HPIs
on the accumulation of radiolabelled equivalents
CEM and its variant cells (2.5×106 cells/mL) and isolated PBMCs
(5×106 cells/mL) were pre-incubated with various concentrations
(0–30 mM) of unlabelled lopinavir, ritonavir, saquinavir and atazanavir
for 5 min before the addition of 0.5 mM [14C]lopinavir or 0.1 mM [3H]rito-
navir or [3H]saquinavir or [3H]atazanavir in RPMI medium supplemented
with 10% FCS. Given that HPIs are inhibitors of drug efflux transpor-
ters,9,46,47,52,53 we introduced the pre-incubation step to allow the in-
hibition of transporter activity by the unlabelled HPIs before the addition
of their labelled equivalents. At the end of the initial pre-incubation
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step, the samples were incubated in 1.5 mL Eppendorf stubs for a further
15–20 min before the assay was terminated, samples processed and
analysed as described previously.13 Briefly, after incubating the cells for
10–15 min at 378C in a water bath, the samples were then centrifuged
at 15000 g for 1 min at 48C. Then a 100 mL aliquot of the medium was
taken from each sample for scintillation counting and the pellets were
washed three times in ice-cold phosphate-buffered saline (PBS) before
solubilization of the pellets in 100 mL of distilled water for radioactivity
counting. Data from the radioactivity counts were expressed as cellular
accumulation ratio (CAR), being the ratio of the amount of labelled HPI
associated with the cell pellets to the amount in a similar volume of
medium after incubation. The cell volumes for CEM and its variant cells
and PBMCs ranged from 0.3 to 0.4 pL and 0.8 to 1 pL, respectively.

In order to investigate the mechanism of self-stimulation we also
evaluated the effects of adding the radiolabelled HPIs before the
unlabelled HPIs (termed co-incubation). Here we pre-incubated the
cells with 0.5 mM [14C]lopinavir in RPMI medium supplemented with
10% FCS for 5 min, followed by a further incubation with various concen-
trations (0–30 mM) of unlabelled lopinavir for 5 min, before the samples
were finally incubated for 15 min and later processed as described above.
To further characterize the effects of lopinavir on transporter activity, we
evaluated the accumulation of [3H]saquinavir and [3H]ritonavir (known
substrates of P-gp and MRP) in CEM, CEMVBL and CEME1000 cells in the
presence or absence of lopinavir. The cells (2.5×106 cells/mL) were incu-
bated with various concentrations (0–30 mM) of unlabelled lopinavir in
RPMI medium containing 0.1 mM [3H]saquinavir or 0.1 mM [3H]ritonavir
before the samples were further incubated for �10–15 min and pro-
cessed as described.

Effects of tariquidar, MK571 and frusemide (alone
and in combination with unlabelled lopinavir)
on the accumulation of [14C]lopinavir
As inhibitors of drug efflux transporters such as tariquidar (inhibits
ABCB1/ABCG254 – 56), MK571 (inhibits ABCC10,17,57 – 59) and frusemide
(inhibits ABCC1/213) increased the intracellular accumulation of
HPIs,13,19 these agents were employed in the current studies, at the indi-
cated concentrations, to characterize HPI-mediated activity against the
cells. Here, CEM and its variant cells were initially pre-treated for 5 min

with 1 mM tariquidar (CEM and CEMVBL cells) or 50 mM MK571 (CEM and
CEME1000 cells) to inhibit ABCB1 and ABCC, respectively. Thereafter, the
cells were incubated without or with 10 mM unlabelled lopinavir. In sep-
arate experiments, PBMCs were pre-treated for 5 min without or with
1 mM tariquidar or 50 mM frusemide (previously shown to increase the
accumulation of lopinavir in PBMCs19), followed by a further incubation
treatment of the cells in the absence or presence of 10 and 30 mM lopi-
navir for 5 min. Thereafter, 0.5 mM [14C]lopinavir in RPMI medium sup-
plemented with 10% FCS was added and the samples incubated for
15 min before the assay samples were processed as described above.

Data and statistical analyses
Results are expressed as CAR, being the ratio of the amount of labelled
HPI associated with the cell pellets to the amount in a similar volume
of medium after incubation. Data from all of the experiments were
expressed as mean+SD. The Shapiro–Wilk test was used to assess the
distribution of the data, followed by the Kruskal–Wallis test to allow mul-
tiple comparisons of drug-treated samples with respective controls. Ana-
lyses were performed using Statsdirect statistical software version 2.3.1,
2003 (StatsDirect Ltd, Altrincham, Cheshire, UK). In each case, signifi-
cance between control and drug-treated means was assumed if P,0.05.

Results

Unlabelled lopinavir increased the accumulation
of [14C]lopinavir in both cultured cells and PBMCs

[14C]lopinavir accumulated differentially in CEM and its variant
cells, with the following rank order: CEM≥CEME1000≫CEMVBL

(Figure 1a and b and see Figure 3a). Pre-incubation of the cul-
tured cells with unlabelled lopinavir (1–30 mM) followed by
the addition of 0.5 mM [14C]lopinavir significantly (P,0.001)
increased the CAR of [14C]lopinavir in CEM cells, with a
concentration-dependent increase observed in CEMVBL cells
(Figure 1a). This self-stimulation could be due to inhibition of
efflux transporters by unlabelled compound or alternatively
could be a true trans-acceleration phenomenon, in which the
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Figure 1. Effects of (a) pre-incubating CEM, CEME1000 (E1000) and CEMVBL (VBL) cells with various concentrations (0–30 mM) of unlabelled lopinavir
(LPV) followed by the addition of [14C]LPV and (b) co-incubating the cells with [14C]LPV followed by the addition of various concentrations
(0–30 mM) of unlabelled LPV on the accumulation of [14C]LPV. Bars indicate mean+SD (n¼4, with four independent observations from cultured
CEM and its variant cells). Results are expressed as the CAR, being the ratio of the amount of [14C]LPV associated with the cell pellets to the
amount in a similar volume of medium after incubation. P values of *P,0.05, **P,0.01 and ***P,0.001 indicate statistically significant
differences in the CAR of [14C]LPV between control and drug-treated samples.
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cycling of an exchange transporter is accelerated by outgoing
pre-loaded unlabelled substrate, thus boosting the uptake of
radiolabelled compound added later. To investigate the mechan-
ism of self-stimulation we examined the effect of adding the
radiolabel before the unlabelled compound. Pre-incubation of
cells with [14C]lopinavir followed by various concentrations of
unlabelled lopinavir also significantly (P,0.001) increased the
CAR of [14C]lopinavir in a concentration-dependent manner,
suggesting that the mechanism is an inhibition of efflux trans-
porters rather than true trans-acceleration (Figure 1b). We also
observed that in PBMCs there was a significant increase
(P,0.001) in the CAR of [14C]lopinavir) in a concentration-
dependent fashion (Figure 2).

Tariquidar, MK571 and frusemide (alone and in
combination with unlabelled lopinavir) increased
the accumulation of [14C]lopinavir

Given that 10 mM unlabelled lopinavir maximally increased the
CAR of [14C]lopinavir in the CEM cells (Figure 1), we compared
the inhibitory profile of 10 mM unlabelled lopinavir or in combi-
nation with known inhibitors of the two drug efflux transporters
(tariquidar and MK571, inhibitors of ABCB1/ABCG2 and ABCC,
respectively) expressed by the CEM cells. Tariquidar (at 1 mM) sig-
nificantly (P,0.001) increased the CAR of [14C]lopinavir in the
ABCB1 overexpressing CEMVBL cells, but not in the parental CEM
cells, indicating a lack of effect of tariquidar on or low levels of
ABCB1 in these cells. In contrast, MK571 significantly
(P,0.001) increased the CAR of [14C]lopinavir in both CEM and
CEME1000 cells. Although the CAR of [14C]lopinavir was signifi-
cantly increased in cells treated with 1 mM tariquidar
(P,0.001) or 50 mM MK571 (P,0.01) in combination with
10 mM unlabelled lopinavir, the observed increase was identical
to that measured in samples treated with 10 mM unlabelled lopi-
navir alone (Figure 3a). Overall, co-incubation of MK571 or

tariquidar with unlabelled lopinavir (at 10 mM) did not enhance
the accumulation of [14C]lopinavir over that observed with
unlabelled lopinavir alone.

In the PBMCs, the effects of fixed concentrations (10 and
30 mM) of lopinavir were investigated alone and in combination
with 1 mM tariquidar or 50 mM frusemide (Figure 3b). Tariquidar
and frusemide also significantly (P,0.001) increased the CAR
of [14C]lopinavir, but not as much as that observed with
unlabelled lopinavir alone. Tariquidar (at 1 mM) or 50 mM fruse-
mide in combination with unlabelled lopinavir (at 10 and
30 mM) significantly (P,0.001) increased the accumulation of
[14C]lopinavir over and above the increases measured for tariqui-
dar and frusemide alone. However, the levels were identical to
those observed in samples treated with unlabelled lopinavir
alone (Figure 3b).

To further understand lopinavir-mediated increase in its own
accumulation, we investigated its effects on other known sub-
strates of ABCB1 and ABCC. To this end we evaluated the
effects of various concentrations (0–30 mM) of unlabelled lopina-
vir on the accumulation of [3H]saquinavir and [3H]ritonavir in
CEM, CEME1000 (ABCC1 overexpressing) and CEMVBL (ABCB1 over-
expressing) cells. Data obtained from these manipulations
showed that unlabelled lopinavir significantly (P≤0.01) increased
the accumulation of [3H]saquinavir and [3H]ritonavir in all of the
cells in a concentration-dependent manner (Figure 3c and d).

Ritonavir increased the accumulation of [3H]ritonavir
in cultured cells

[3H]ritonavir accumulated differentially in CEM cells with the fol-
lowing rank order: CEM.CEME1000≫CEMVBL (Figure 4a and b),
indicating that ritonavir is a substrate for ABCB1 and ABCC1.
Pre-treatment of the cultured cells with unlabelled ritonavir fol-
lowed by the addition of [3H]ritonavir significantly (P,0.001)
increased the accumulation of [3H]ritonavir in CEME1000 cells in
a concentration-dependent manner. In contrast, unlabelled rito-
navir (at 10 and 30 mM) significantly (P≤0.01) increased the CAR
of [3H]ritonavir in parental CEM cells at 10 and 30 mM unlabelled
ritonavir, whilst only ritonavir (at 30 mM) produced a significant
(P,0.001) increase in the accumulation of [3H]ritonavir in
CEMVBL cells (Figure 4a). The differences between CEM cells and
CEME1000 cells are significant at concentrations of ritonavir
.3 mM (P≤0.01).

Tariquidar, MK571 and frusemide (alone and in
combination with unlabelled ritonavir) demonstrated
variable effects on the accumulation of [3H]ritonavir

Unlabelled ritonavir (at 30 mM) significantly (P,0.001) increased
the CAR of [3H]ritonavir in CEM, CEMVBL and CEME1000 cells com-
pared with their respective controls (Figure 4b). Tariquidar (at
1 mM) significantly (P,0.001) increased the accumulation of
[3H]ritonavir in CEMVBL, but not in parental CEM cells. In contrast,
50 mM MK571 significantly (P,0.001) increased the accumu-
lation of [3H]ritonavir in both CEM and CEME1000 cells. Pre-
treatment of the cells with 1 mM tariquidar followed by
unlabelled ritonavir (at 30 mM) significantly (P,0.001) increased
the CAR of [3H]ritonavir compared with that observed for
tariquidar-treated samples alone. However, the levels were
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Figure 2. Effects of pre-incubating PBMCs with various concentrations
(0–30 mM) of unlabelled lopinavir (LPV) followed by the addition of
[14C]LPV and co-incubating the cells with [14C]LPV followed by various
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differences in the CAR of [14C]LPV between control and LPV-treated
samples.
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identical to those measured for samples treated with unlabelled
ritonavir (at 30 mM) alone. Compared with MK571-treated cells,
pre-treatment of CEM and CEME1000 cells with 50 mM MK571 in
the presence of 30 mM unlabelled ritonavir significantly
(P,0.001) increased the CAR of [3H]ritonavir in CEME1000 cells,
but not in the parental CEM line—identical levels of accumulation
of [3H]ritonavir were measured in MK571-treated CEM cells com-
pared with samples treated with MK571 in the presence of 30 mM
unlabelled ritonavir (Figure 4b).

Unexpectedly, unlabelled ritonavir (at 10 and 30 mM) signifi-
cantly (P,0.001) decreased the accumulation of [3H]ritonavir
in the PBMCs tested (Figure 4c). Tariquidar did not alter the CAR

of [3H]ritonavir, but frusemide significantly (P,0.001) increased
accumulation. Compared with cells treated with 10 or 30 mM
unlabelled ritonavir alone, pre-treatment of the cells with 1 mM
tariquidar in combination with 10 mM or 30 mM unlabelled ritona-
vir significantly decreased the CAR of [3H]ritonavir (P,0.001 for
1 mM tariquidar+10 mM ritonavir and P,0.05 for 1 mM
tariquidar+30 mM ritonavir). Pre-treatment of the cells with fru-
semide in combination with unlabelled ritonavir significantly
reduced the CAR of [3H]ritonavir; at both 10 (P,0.01) and
30 mM (P,0.001) of unlabelled ritonavir (Figure 4c). Both
reductions were identical to that observed with unlabelled
ritonavir alone.
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Figure 3. Effects of (a) pre-incubating CEM, CEME1000 (E1000) and CEMVBL (VBL) cells with fixed concentrations (30 mM) of unlabelled lopinavir (LPV)
(alone and in combination with 1 mM tariquidar or 50 mM MK571), (b) co-incubating the PBMCs with 10 and 30 mM unlabelled LPV (alone and in
combination with 1 mM tariquidar or 50 mM frusemide) on the accumulation of [14C]LPV, (c) pre-incubating CEM, E1000 and VBL cells with various
concentrations (0–30 mM) of unlabelled LPV followed by the addition of [3H]saquinavir (SQV) and (d) pre-incubating CEM, VBL and E1000 cells
with various concentrations (0–30 mM) of unlabelled LPV on the accumulation of [3H] ritonavir (RTV). Bars indicate mean+SD (n¼4, with four
independent observations from cultured CEM and its variant cells and n¼4 with four independent observations from each buffy coat PBMC
sample). P values of *P,0.05, **P,0.01 and ***P,0.001 indicate statistically significant differences in the CAR of [14C]LPV or [3H]SQV between
controls and drug-treated samples. Note that tariquidar/LPV combinations were compared with samples treated with tariquidar alone.
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Unlabelled saquinavir increased the accumulation
of [3H]saquinavir in both cultured cells and PBMCs

As can be seen in Figure 5(a), saquinavir accumulated differentially
in the CEM and its variant cells with the following rank order: CEM≫
CEME1000≫CEMVBL. Baseline levels of [3H]saquinavir were also vari-
able in the PBMC samples tested (Figure 5b). Unlabelled saquinavir
significantly (P,0.001) increased the CAR of [3H]saquinavir in CEM,
CEME1000 cells (Figure 5a) and in PBMCs (Figure 5b) in a
concentration-dependent manner. However, the accumulation

of [3H]saquinavir was only significantly (P,0.001) increased in
CEMVBL cells by 30 mM unlabelled saquinavir (Figure 5b).

Atazanavir decreased the accumulation of [3H]atazanavir
in both cultured cells and PBMCs

[3H]atazanavir accumulated differentially in CEM cells with
the following rank order: CEM.CEME1000≥CEMVBL (Figure 6a).
Unlabelled atazanavir significantly (P≤0.05) decreased the
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accumulation of [3H]atazanavir in a concentration-dependent
manner in these cells, with the decreases being more marked
in the parental CEM line than in its variants. Similarly, unlabelled
atazanavir significantly (P,0.05) decreased the CAR of [3H]ata-
zanavir in PBMCs in a concentration-dependent manner.

Discussion
Given the wide variability in plasma concentrations of HPIs
achieved with standard dosing, it is important to understand
how the variable plasma concentration impacts on intracellular
drug accumulation. This is because being efficient inhibitors, sub-
strates and inducers of some drug efflux proteins and drug meta-
bolizing enzymes,9,46,47,51–53,60–65 there is a complex interaction
between HPIs and drug efflux/influx transporters and enzymes,
especially if the patients are on other medications.66–69 Indeed

alterations in ABCB1 and ABCC2 activity have been associated
with single nucleotide polymorphisms in ABCB1 (C3435T and
G2677T/A), ABCC1 and ABCC2 (G1249A).22–26

While some studies showed no association between the
exposure of HPIs and polymorphisms in ABCB1 C3435T,
C1236T and G2677T/A,27 – 29 some in vitro and in vivo studies
found some association between G4544A and G1199A poly-
morphisms in ABCC2 and ABCB1, respectively and higher
accumulation of some HPIs,12,21,30 suggesting that these poly-
morphisms may impact on the systemic bioavailability of
various HPIs that are substrates of ABCB1 and ABCC2.

Clearly, the effect of modifying extracellular drug concentrations
on intracellular accumulation requires careful consideration. Here
we demonstrate that unlabelled lopinavir pharmaco-enhances
its own accumulation in both cultured and primary human cells.
The ‘self-enhancement’ measured in CEM, CEME1000 (ABCC1
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overexpressing) and CEMVBL (ABCB1 overexpressing) (Figure 1)
suggests that lopinavir inhibits various efflux proteins, possibly
including ABCB1 and ABCC1. However, since the effects are quite
similar in CEM and CEME1000 it is possible that MRP1 is only mini-
mally affected and that other efflux transporters might be involved.
Given that PBMCs express ABCB1, ABCG2, ABCC1 and ABCC2,13,19

‘the self-enhancement’ of the accumulation of [14C]lopinavir by
unlabelled lopinavir in these cells (Figure 2) also suggests inhibition
of one or more of these efflux proteins. However, there is also
evidence that HPIs inhibit ABCG2, but are not substrates of
this protein.52

If lopinavir is an inhibitor of ABCB1 and ABCC1 activity, how
does its inhibitory profile compare with relatively specific inhibitors
of these proteins (e.g. tariquidar and MK571)? To address this
question, we compared (i) the inhibitory profiles of unlabelled lopi-
navir alone with those of tariquidar and MK571 and (ii) the inhibi-
tory effects of unlabelled lopinavir (alone and in combination with
tariquidar or MK571). As shown previously,19 we observed that tar-
iquidar and MK571 significantly increased the CAR of [14C]lopinavir
in cell lines and primary cells. However, the increase in the CAR of
[14C]lopinavir by unlabelled lopinavir alone was markedly higher
than that measured for tariquidar- or MK571-treated samples
alone (Figure 3a). This is consistent with unlabelled lopinavir
having a greater effect at increasing its own accumulation in
cells overexpressing ABCB1 and ABCC than tariquidar and
MK571, respectively, although this needs to be tested over a
wider range of inhibitor concentrations.

Inhibition of efflux proteins leads to an increase in the intra-
cellular accumulation of lopinavir.17,19,70 Here the CAR of
[14C]lopinavir increased in cells pre-treated with tariquidar or
MK571 in the presence of unlabelled lopinavir and the observed
increases were identical to that measured in cells treated with
unlabelled lopinavir alone (Figure 3a), suggesting no additional
‘boosting’ of the accumulation of [14C]lopinavir by tariquidar or
MK571. In the PBMCs, pre-treatment of the cells with tariquidar
or frusemide increased the accumulation of [14C]lopinavir.
However, a similar profile of inhibition to that observed in CEM
and its variant cells was measured when PBMCs were pre-treated
with tariquidar or frusemide in the presence of unlabelled lopina-
vir (Figure 3a versus b). The observed effects of lopinavir on its
own accumulation are consistent with inhibition of ABCB1 and
ABCC activity, and supports previous observations that HPIs
inhibit drug transporters.19,53 Indeed, the observation that
unlabelled lopinavir increased the CAR of [3H]saquinavir and
[3H]ritonavir in CEM, CEME1000 (ABCC1 overexpressing) and
CEMVBL (ABCB1 overexpressing) cells (Figure 3c and d) provides
additional evidence that the observed effects are mediated via
ABCB1 and ABCC inhibition.

To extend these observations, we evaluated the effects of
unlabelled ritonavir, saquinavir and atazanavir on the accumu-
lation of [3H]ritonavir, [3H]saquinavir and [3H]atazanavir in CEM,
its variant cells and PBMCs. The data presented in Figure 4 con-
firms that ritonavir is a substrate of both ABCB1 and
ABCC1:10,71,72 (i) there is differential accumulation of the drug in
the ABCC1 (CEME1000) and ABCB1 overexpressing (CEMVBL) cells
compared with parental CEM cells (Figure 4a and b); and (ii)
both tariquidar and MK571 increased the CAR of [3H]ritonavir in
CEMVBL and CEME1000 cells, respectively (Figure 4b). It is also
clear that ritonavir inhibits ABCB1 and ABCC1, with unlabelled
ritonavir causing an enhancement in the intracellular

accumulation of [3H]ritonavir in the cultured cells (Figure 4a).
Although cells pre-treated with tariquidar, followed by the
addition of unlabelled ritonavir (at 30 mM) to the bathing
medium showed a significantly increased CAR of [3H]ritonavir
compared with those treated with tariquidar alone, the observed
increase was identical to that measured for unlabelled ritonavir
alone, suggesting that pre-treatment with tariquidar did not
cause a further enhancement in the accumulation of [3H]ritonavir.
Similarly, although pre-treatment of the cells with MK571, fol-
lowed by the addition of unlabelled ritonavir, significantly
increased the CAR of [3H]ritonavir (in the CEME1000 cells above
that observed for the MK571-treated cells), the overall effect of
this manipulation, when compared with samples treated with
unlabelled ritonavir alone, was that of an attenuated response
(Figure 4b). Investigations using PBMCs showed that unlabelled
ritonavir (at 10 and 30 mM) significantly decreased the CAR of
[3H]ritonavir (Figure 4c). Overall, tariquidar did not alter the CAR
of [3H]ritonavir in the samples tested, but frusemide significantly
increased the CAR of [3H]ritonavir. However, co-incubation of the
cells pre-treated with tariquidar or frusemide, followed by
unlabelled ritonavir (at 10 and 30 mM) resulted in a decrease in
the CAR of [3H]ritonavir. However, combination of unlabelled rito-
navir (at 10 mM) with frusemide abrogated the increase in CAR of
[3H]ritonavir previously measured with frusemide alone. This is
possibly due to saturation of intracellular binding sites by high
concentrations of unlabelled ritonavir such that inhibition of
ABCC is unable to increase the intracellular concentration of radio-
labelled ritonavir high enough to displace the unlabelled com-
pound. We provide evidence for differential accumulation of
atazanavir in the cultured cells and in PBMCs (Figure 6), supporting
previous studies that atazanavir is a substrate of ABCB148,73 and
ABCC. Although there is evidence that atazanavir inhibits ABCB1
activity,74 unlabelled atazanavir did not enhance the accumu-
lation of [3H]atazanavir in cells overexpressing ABCB1 (CEMVBL

and PBMCs) and ABCC1 (CEME1000 and PBMCs), but caused a
concentration-dependent decrease in accumulation. Possible
explanations are saturation of accumulation, inhibition/compe-
tition for intracellular influx, or activation of efflux. Differences
between the HPIs indicate that influx/efflux mechanisms are
drug specific rather than class specific.

In summary, we have demonstrated that unlabelled lopinavir
and saquinavir enhanced the intracellular accumulation of
[14C]lopinavir and [3H]saquinavir, respectively, in cultured cells
and in PBMCs, but unlabelled atazanavir decreased the accumu-
lation of [3H]atazanavir in both cell types. Unlabelled ritonavir
increased the accumulation of [3H]ritonavir in cultured cells,
but decreased accumulation in PBMCs. These observations
clearly demonstrate a complex relationship between the extra-
cellular and intracellular concentrations of the HPIs, which are
drug specific rather than class specific. A better understanding
of the relationship between plasma concentration and intracellu-
lar concentration in vivo is important when focusing on factors
impacting on efficacy or toxicity of HPIs.
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