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R
ecent laboratory experiments by
Traulsen et al. (1) for the spatial
prisoner’s dilemma suggest that
exploratory behavior of human

subjects prevents cooperation through
neighborhood interactions over ex-
perimentally accessible time spans. This
indicates that new theoretical and ex-
perimental efforts are needed to explore
the mechanisms underlying a number of
famous puzzles in the social sciences.
Cooperation is the essence that keeps

societies together. It is the basis of solid-
arity and social order. When humans stop
cooperating, a war of everybody against
everybody can result. Understanding why
and under what conditions humans coop-
erate is, therefore, one of the grand chal-
lenges of science (2), particularly in social
dilemma situations (where collective co-
operation would be beneficial, but in-
dividual free-riding is the most
profitable strategy).
When humans have social dilemma-type

interactions with randomly changing part-
ners, a “tragedy of the commons” (3), i.e.,
massive free-riding, is expected to occur.
But how are humans then able to create
public goods (such as a shared culture or a
public infrastructure) and build function-
ing social benefit systems despite their self-
interest? Under what conditions will they
be able to fight global warming collec-
tively? To answer related research ques-
tions, scientists have experimentally
studied, among other factors, the influence
of spatial and network interactions on the
level of cooperation in various games, in-
cluding nondilemmatic ones (4–6).
In their laboratory experiments, Traul-

sen et al. (1) have now implemented
Nowak’s and May’s prisoner’s dilemma in
two-dimensional space (7), where the size
of the two-dimensional spatial grid, the
number of interaction partners, and the
payoff parameters are modified for ex-
perimental reasons. The prisoner’s di-
lemma describes interactions between
pairs of individuals, where free-riding is
tempting, and cooperation is risky.
Therefore, if individuals interact with dif-
ferent people each time (as in the case of
well-mixed interactions), everybody is
predicted to end up free-riding. If the
world were really like this, social systems
would not work.
However, in computer simulations of

the spatial prisoner’s dilemma (7), coop-
erative (altruistic) behavior is able to sur-
vive through spatial clustering of similar
strategies. This finding, which can dra-

matically change the outcome of the sys-
tem, is also called network reciprocity (8).
When individuals have neighborhood in-
teractions and imitate better-performing
neighbors unconditionally, this can create
correlations between the behaviors of
neighboring individuals. Such spatio-
temporal pattern formation facilitates a
coevolution of the behaviors and spatial
organization of individuals, generating
configurations that can promote coopera-
tive behavior. In fact, some long-standing
puzzles in the social sciences find a natural
solution when spatial interactions are
taken into account. This includes the
higher-than-expected level of cooperation
in social dilemma situations and the
spreading of costly punishment (9). The
question is whether these theoretical
findings are also supported by
experimental data.
The recent findings by Traulsen et al.

(1) do not indicate a significant effect of
spatial neighborhood interactions on the

level of cooperation, because their
experimental subjects did not show an
unconditional imitation of neighbors with
a higher payoff, as it is assumed in many
game-theoretical models. In fact, it is
known that certain game-theoretical re-
sults are sensitive to details of the model,
such as the number of interaction part-
ners, the inclusion of self-interactions, and
significant levels of randomness (10)
(Fig. 1). Moreover, people have proposed
a considerable number of different strat-
egy update rules that matter as well. Be-
sides unconditional imitation, these
include the best response rule (11),
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Fig. 1. Average payoff of all individuals in the spatial prisoner’s dilemmawith andwithout self-interactions,
displayedover thenumber of iterations. It is clearly visible that the initial payoff drops quickly. In the noiseless
case, theaveragepayoff does not changeanymoreafter a few iterations (seebroken lines) because the spatial
configuration freezes. In contrast, in the case of decaying noise, the average payoff keeps changing (see solid
lines). It is interesting that theaveragepayoff,whenno self-interactionsare taken intoaccount, is higher in the
noisy case than in the noiseless one over the time period of the laboratory experiment by Traulsen et al. (1),
covering25 iterations (seeblue lines). Thebetterperformance in thepresenceof strategymutations couldbea
possible reason for the high level of strategy mutations observed. If self-interactions are considered (see or-
ange lines), theaveragepayoff recovers after about 40 iterations,whichcorrelateswith an increase in the level
of cooperation. To see this effect, experiments should be run over at least 60 iterations, or the payoff pa-
rameters should be changed in such away that the average payoff recovers earlier. It is conceivable, however,
that experimental subjectswould showa lower level of strategymutationsunder conditionswherenoise does
not pay off (in contrast to the experimental setting without self-interactions).
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multistage strategies such as tit for tat
(12), win-stay-lose shift rules (13), and
aspiration-dependent rules (14), as well as
probabilistic rules such as the proportional
imitation rule (15), the Fermi rule (16),
and the unconditional imitation rule with
a superimposed randomness (“noise”). In
addition, there are voter (17) and opinion
dynamics models (18) of various kinds,
which assume social influence. According
to these, individuals would imitate behav-
ioral strategies that are more frequent in
their neighborhood. So, how do in-
dividuals really alter their behavioral
strategies?
Traulsen et al. (1) find that the proba-

bility of cooperation increases with the
number of cooperative neighbors, as ex-
pected from the Asch experiment (19).
Moreover, the probability of strategy
changes increases with the payoff differ-
ence in a way that can be approximated by
the Fermi rule (16). In the case of two
behavioral strategies only, it corresponds
to the well-known multinomial logit model
of decision theory (20). However, there is
a discontinuity in the data, when the pay-
off difference turns from positive to neg-
ative values, which may be an effect of risk
aversion (21). To describe the time-de-
pendent level of cooperation, it is suffi-
cient to assume unconditional imitation
with a certain probability and strategy
mutations otherwise, where the mutation
rate is surprisingly large in the beginning
and exponentially decaying over time.
Understanding the origin of this “noise”

would be important to control it ex-
perimentally and to reveal effects that
would otherwise be hidden in the ran-

domness of the data. Do people make
mistakes or do they choose to behave in a
noisy way? As figure 2 of ref. 1 shows,
rather than quickly destroying coopera-
tion, randomness leads to more coopera-
tion in the experiment of Traulsen et al.
than the unconditional imitation rule
predicts. This goes along with a sig-
nificantly higher average payoff than for
the unconditional imitation rule (Fig. 1).
In other words, the random component of
the strategy update is profitable for the
experimental subjects. This suggests that
randomness in social systems may play a
functional role.

Randomness in social

systems may play a

functional role.

Given that Traulsen et al. (1) do not find
effects of spatial interactions, do we have
to say goodbye to network reciprocity in
social systems, despite the nice ex-
planations it offers? Probably not. The
empirically confirmed spreading of obe-
sity, smoking, happiness, and cooperation
in social networks (22) indicates that ef-
fects of imitating neighbors (also friends or
colleagues) are relevant, but probably over
longer time periods than 25 interactions.
In fact, according to equation 3 of Traul-
sen et al. (1), cooperation could spread
after about 40 iterations, when the muta-
tion rate has decreased to low-enough
values. Such an effect should occur when
self-interactions are taken into account

(Fig. 1). To make it observable ex-
perimentally, however, one would have to
reduce the necessary number of iterations
by varying the experimental conditions.
The particular value of the work by

Traulsen et al. (1) is that it facilitates
realistic computer simulations and, there-
by, also allows one to determine payoff
values and other model parameters,
which are expected to produce interesting
effects after an experimentally accessible
number of iterations.
Because of nonlinear feedback effects,

social interactions can have a variety of
different outcomes that are hard to predict
without extensive computer simulations
scanning the parameter space. Such
parameter dependencies could, in fact,
explain some of the apparent incon-
sistencies between empirical observations
of social behavior in different areas of the
world (23), at least when framing effects
such as the expected level of reciprocity
and their impact on the effective payoffs
(8) are taken into account. The progress in
the social sciences by understanding the
parameter dependence of system behav-
iors would be enormous. Given that the
effort to determine them experimentally is
prohibitive, one could still check compu-
tationally predicted, parameter-dependent
outcomes by targeted experiments. Hence,
the future of social experimenting lies in
the combination of computational and
experimental approaches, where computer
simulations optimize the experimental
setting and experiments are used to verify,
falsify, or improve the underlying model
assumptions.
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