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Deoxycytidine kinase (dCK) is a rate-limiting enzyme in deoxy-
ribonucleoside salvage, a metabolic pathway that recycles prod-
ucts of DNA degradation. dCK phosphorylates and therefore
activates nucleoside analog prodrugs frequently used in cancer,
autoimmunity, and viral infections. In contrast to its well estab-
lished therapeutic relevance, the biological function of dCK
remains enigmatic. Highest levels of dCK expression are found in
thymus and bone marrow, indicating a possible role in lympho-
poiesis. To test this hypothesis we generated and analyzed dCK
knockout (KO) mice. dCK inactivation selectively and profoundly
affected T and B cell development. A 90-fold decrease in thymic
cellularity was observed in the dCK KO mice relative to wild-type
littermates. Lymphocyte numbers in the dCK KO mice were 5- to
13-fold below normal values. The severe impact of dCK inactiva-
tion on lymphopoiesis was unexpected given that nucleoside
salvage has been thought to play a limited, "fine-tuning" role in
regulating deoxyribonucleotide triphosphate pools produced by
the de novo pathway. The dCK KO phenotype challenges this view
and indicates that, in contrast to the great majority of other
somatic cells, normal lymphocyte development critically requires
the deoxyribonucleoside salvage pathway.
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Genetic deficiencies in purine and pyrimidine metabolism are
responsible for at least 14 different disorders with a broad

spectrum of clinical manifestations (reviewed in ref. 1). Many of
these disorders affect the immune system. Mutations in the
adenosine deaminase and purine nucleoside phosphorylase genes
lead to human immunodeficiency syndromes first described in the
classic work of Giblett and colleagues (2, 3). Increased suscepti-
bility to infections also accompanies disorders of pyrimidine
metabolism such as orotic aciduria and the pyrimidine nucleotide
depletion syndrome (1). Therefore, lymphocytes appear to be
very sensitive to defects in deoxyribonucleoside metabolism.
Lymphocytes and other cells can produce deoxyribonucleotide

triphosphates (dNTPs) for DNA replication and repair using two
pathways: de novo synthesis and deoxyribonucleoside salvage.
These pathways converge at the level of deoxyribonucleotide
diphosphates (dNDP) (Fig. 1) and are further connected by
complex feedback mechanisms (reviewed in ref. 4). Ribonu-
cleotide reductase (RNR), the most important enzyme in the de
novo pathway, produces all four dNDP precursors for DNA
synthesis. Models explaining the production and maintenance of
dNTP pools by the de novo pathway alone, without input from
the deoxyribonucleoside salvage pathway, have been proposed
(5). However, in tissues with active nucleoside salvage, recycling
of extracellular dNs via the salvage pathway may also contribute
to cellular dNTP pools (6).
The deoxyribonucleoside flux through the salvage pathway is

controlled by specialized kinases (4).Mammalian genomes encode
two cytosolic deoxyribonucleoside kinases with nonoverlapping

substrate specificities: thymidine kinase 1 (TK1) and deoxycytidine
kinase (dCK) (Fig. S1) (7). TK1 phosphorylates thymidine (dT)
and deoxyuridine (dU) whereas dCK phosphorylates deoxy-
cytidine (dC), deoxyadenosine (dA), and deoxyguanosine (dG);
dCK can also contribute dTTP to the dNTP pool because the
product dCMP can be converted to dTMP by dCMP deaminase
and thymidylate synthase (8). Although dCK resembles RNR in
terms of its ability to produce all four dNTPs, the biological
function of this kinase is not yet defined. Several hypotheses have
been formulated, including potential roles for dCK inDNA repair,
in synthesis of liponucleotide precursors of membrane phospho-
lipids, and in programmed cell death (reviewed in ref. 9). The
evidence in favor or against these hypotheses is circumstantial.
According to a model proposed by Reichard and colleagues (10–
13), dCK may be responsible for “fine-tuning” dNTP pools in
dividing cells through its involvement in a substrate (futile) cycle
(Fig. 1). The cycle consists of a phosphorylation reaction catalyzed
by dCK and a dephosphorylation reaction catalyzed by 5′ nucle-
otidase (5′NT). The rates of these opposing reactions are influ-
enced by the rates of dNTP synthesis through the de novo pathway
and by other factors. For example, in rapidly dividing cells, a
decrease in the dCTP pool due to incorporation into DNA poises
the substrate cycle toward anabolism by attenuating a dCTP-
dependent negative feedback mechanism. dCKmay be involved in
a similar substrate cycle for deoxyadenosine (14).
Although the existence of salvage substrate cycles has been

confirmed by biochemical studies in cultured cancer cells (10–13),
their in vivo significance has yet to be tested experimentally. dCK
and nucleotidase activities vary widely in different cell types (15).
Lymphocytes express high levels of dCK (reviewed in ref. 9), and
their nucleoside substrate cycles are geared toward anabolism
(16). Furthermore, the importance of the deoxyribonucleoside
substrate cyclesmay increase during developmental and functional
events associated with proliferative stress, such as rapid clonal
expansion of T and B cell precursors in thymus and bone marrow.
To elucidate the function of the deoxyribonucleoside salvage

pathway, a genetic animal model of dCK deficiency would be of
considerable interest. In the present study, we generated and
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analyzed dCK knockout (KO) mice. The analysis of this new
genetic model demonstrated that loss of dCK function has a
selective developmental impact. Although embryogenesis and the
development of most organs and systems were not affected, dCK
inactivation significantly impaired T and B lymphopoiesis.
Beyond establishing the immunological relevance of an ancillary
dNTP biosynthetic mechanism, the genetic model of dCK defi-
ciency described herein may improve our understanding of the
differential “wiring” of dNTP metabolic pathways in various cell
types. In turn, this may lead to the identification of new ther-
apeutic targets for immune disorders and lymphoid malignancies.

Results
Generation of the dCK KO Mice.Given the lack of evidence in favor
or against dCK being critically required during embryogenesis,
organogenesis, or other essential developmental processes, we
decided to use a conditional gene targeting strategy to avoid a
lethal phenotype. A recombineering-based approach (for details,
seeMaterials and Methods) was used to generate a dCK targeting
construct in which exon 3 was flanked by loxP sites. Exon 3
deletion by Cre recombinase eliminates the dCK catalytic
domain and also causes a frameshift mutation and early termi-
nation of dCK protein synthesis. Fig. 2 shows the design of the
targeting vector, the strategy for homologous recombination in
the dCK locus, and genotyping data confirming successful dele-
tion of exon 3. The frequency of the ΔE3 allele among the
progeny from heterozygote crosses followed the expected Men-
delian ratio (23:44:26), indicating that the gene targeting strategy
did not result in embryonic/perinatal lethality. Moreover, the
developmental growth rates of mice carrying two copies of the
ΔE3 allele were comparable to those of the wild-type (WT) lit-
termates (Fig. S2).

Deletion of Exon 3 Inactivates dCK Function. We employed two
biochemical assays to validate our gene targeting strategy. These
assays used radiolabeled 1-(2′-deoxy-2′-fluoroarabinofuranosyl)
cytosine (FAC), a high-affinity substrate for dCK that closely
resembles the endogenous dCK substrate deoxycytidine (17, 18).
We first performed an in vitro dCK kinase assay on bone marrow
and spleen cell lysates. The dCK KO lysates showed only back-
ground phosphorylation of [3H]FAC compared to lysates from
the WT littermates (Fig. 3A).
As a corollary to the in vitro kinase assay, we imaged the dCK

KO mice by positron emission tomography (PET) and computed
tomography (CT) using 18F-labeled FAC {[18F]FAC (17)}. [18F]
FAC PET/CT imaging allows noninvasive measurements of dCK
activity throughout the body. There was a striking contrast
between the [18F]FAC biodistribution in the WT mice compared
to the dCK-deficient animals (Fig. 3B and Fig. S3). In the WT
mice, [18F]FAC accumulated in hematopoietic and lymphoid
tissues such as bone marrow, thymus, and spleen, reflecting dCK-
dependent [18F]FAC trapping. None of these signals was visible
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Fig. 1. Model for dCK function in the context of cytosolic deoxycytidine
metabolism. The two biochemical pathways (salvage and de novo) involved in
deoxycytidine metabolism converge at the level of dCDP. The flux through
the salvage pathway is bidirectional because of a substrate cycle in which
deoxycytidine (dC) is continuously converted to (by dCK) and from (by NT) its
corresponding monophosphate (dCMP). The rates of the phosphorylation and
dephosphorylation reactions are regulated by feedback mechanisms and by
substrate availability. Upstream of dCK, cellular and extracellular dC pools are
in equilibrium via the nucleoside transporters (ENTs). Downstream of dCK, the
dCMP pool is in equilibrium with the dCDP pool. The de novo pathway con-
tributes to the dCDP pool by RNR-mediated reduction of CDP. ENT, equili-
brative nucleoside transporters; NT, 5′ nucleotidase; dCDP, deoxycytidine
diphosphate; CDP, cytidine diphosphate; RNR, ribonucleotide reductase.
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Fig. 3. Loss of deoxycytidine phosphorylation in the dCK KO mice. (A) In
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in the dCK KO mice. The [18F]FAC uptake in the GI tract
observed in the WT mice was absent in dCK KO mice, indicating
that probe accumulation in this tissue is also dCK-specific.

Inactivation of dCK Induces a Partial Block in B Cell Development. To
determine whether dCK is required for normal lymphopoiesis,
we first examined B cell development in the bone marrow (BM).
Progress through B cell development is defined by the status of
Ig gene rearrangements and by cell surface markers character-
istic of various stages of lymphopoiesis. These markers are
measured by flow cytometry (FACS) and are used to define
subpopulations of B cell precursors according to the classi-
fication proposed by Hardy and colleagues (ref. 19, reviewed in
ref. 20). Analysis of Hardy fractions E-F (B220+IgM+) and A-D
cells (B220+IgM−) showed that dCK KO mice have a 2- to 3-fold
deficit in both B cell precursor populations (Fig. 4A). Further

subfractionation of the B220+IgM− population using the CD43
marker revealed a decrease in the percentage of pre-B late cells
(Fraction D, CD43−), accompanied by an increase in the per-
centages of fraction A-C cells (CD43+), containing the pro-B
populations (Fig. 4B).

Inactivation of dCK Induces a Partial Block in Thymic T Cell Development.
The most striking phenotype observed in the dCK KO mice
concerns the size and morphology of the thymus. dCK KO mice
analyzed at 6–8 weeks of age were severely microthymic. Thymi
from the dCK KO mice averaged 90-fold fewer cells than those
from the WT littermates (Fig. 5 A and B). Histologically, the dCK
KO thymi lacked the normal corticomedullary organization and
appeared less basophilic than WT thymi (Fig. 5C).
Similar to B cell development, T cell lymphopoiesis can also

be subdivided by using cell surface markers such as CD4, CD8,
CD44, and CD25. Proliferation of immature T cells in the thy-
mus takes place at the CD4−/CD8− (double-negative or DN)
stage (reviewed in ref. 21). The DN stage can be further sub-
divided based on the expression of CD44 and CD25 into four
stages: DN1 (44+/25−), DN2 (44+/25+), DN3 (44lo/25+), and
DN4 (44−/25−). Once the T cell receptor (TCR) β chain is
produced, it combines with the pre-TCR α chain to form the pre-
TCR. Signals from the pre-TCR trigger rapid clonal expansion
followed by differentiation into CD4+/CD8+ double positive
(DP) thymocytes. FACS analysis of dCK KO thymocytes showed
a large reduction in the percentages of DP thymocytes (Fig. 5 D
and E). On average, DP thymocytes constituted 85% of the live
cell population in WT thymi whereas dCK KO thymi averaged
only 37% DP thymocytes. The impaired production of dCK KO
DP thymocytes appears even more dramatic when the 90-fold
decrease in the total number of thymocytes is taken into account.
The decrease in the percentages of DP cells was accompanied
by a >10-fold increase in the DN fraction (Fig. 5 D and E).
Further subfractionation of the DN thymocytes into the DN1-4
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subpopulations showed a significant accumulation of dCK KO
thymocytes at the DN3 stage (44lo/25+) and a reduction of the
DN4 (44−/25−) population (Fig. 5 F and G).

Significant T and B Cell Lymphopenia and Abnormal Structure of
Secondary Lymphoid Organs in the dCK KO Mice. dCK KO mice
have marked splenomegaly (Fig. 6A); their spleens weigh ≈3
times more than those from WT littermates (Fig. 6B). Histo-
logically, the normal red and white pulp architecture is absent
from the dCK KO spleens, typified by a distinct lack of white
pulp (Fig. 6C). The increase in the spleen mass in the dCK KO
mice may be due to extramedullary hematopoiesis, as indicated
by an elevated percentage of reticulocytes (Fig. S4). Whether the
mechanism by which dCK inactivation induces extramedullary
hematopoiesis and splenic reticulocytosis is cell autonomous or
not remains to be defined. The structure of peripheral lymph
nodes from the dCK KO mice was also abnormal (Fig. S5).
Overall, the absolute numbers of splenic and lymph node T and
B cells were significantly lower in the dCK KO mice compared
with the WT littermates (Table 1).

Discussion
Deoxycytidine Kinase Plays a Selective Role in Development. The de
novo and salvage pathways have been studied extensively. Recent in
vivo studies of purine dNTP metabolism in various organs and cell
types (22–24) and older studies in cell culture (reviewed in ref. 4)
support a model in which the de novo pathway plays the dominant
role in dNTPsynthesis (4).Although the general applicability of this
model awaits experimental confirmation, it is possible that dNTP
metabolism in lymphocytes follows a distinct set of rules (6). To
unequivocally determine the biological significance of the deoxy-
ribonucleoside salvage pathway we generated and analyzed mice
deficient for dCK, the salvage enzyme that phosphorylates pyr-
imidine and purine deoxyribonucleosides. dCK KO mice develop
normally and are born at the expected Mendelian ratio. In mice,
dCK is therefore dispensable for dNTP metabolism and DNA
synthesis during embryogenesis, organogenesis, and other essential
developmental processes. Because no other deoxyribonucleoside
salvage enzyme can compensate for the loss of dCK function, it is
likely that de novo dNTP production is sufficient to support rapid
cell division duringmost developmental processes. The exception is
lymphocyte development, which is affected by dCK inactivation.

The severity of the defect inT cell developmentwas surprising given
the functional redundancy of dNTP biosynthetic pathways and the
"fine-tuning" role in dNTP metabolism assigned to the deoxy-
ribonucleoside salvagepathway by previous studies (reviewed in ref.
4). Our data suggest that, unlike other developmental programs,
normal lymphopoiesis requires deoxyribonucleoside salvage and
that defects in this pathway cannot be compensated by endoge-
nously increased output of de novo synthesis.

Is dCK Required Postdevelopmentally for Normal Immune Function?
dCKKOmice have significant defects in the central production of
T and B cells in the thymus and bone marrow. These mice also
show reduced lymphocyte numbers in secondary lymphoid organs
that appear structurally abnormal. However, none of the dCKKO
mice generated so far have yet succumbed to opportunistic
infections, despite being housed in conventional facilities from
birth until ≈6 months of age. Pathogen challenge and allo-
transplantation studies will be necessary to precisely determine
the degree of immunodeficiency in the dCK KO mice.

Why Do Developing Lymphocytes Depend on the Deoxyribonucleoside
Salvage Pathway? Thymocytes from the dCK KO mice display a
partial block at the transition from the double negative (DN) to
the double positive (DP) stage of development. A partial block is
also present in B cell development at the pro-B to pre-B tran-
sition in the bone marrow. These T and B cell developmental
stages follow critical checkpoints in lymphopoiesis where VDJ
recombination occurs to generate productively rearranged TCR β
and Ig heavy chains that become part of pre-T and B cell receptor
complexes (21, 25). Signaling through these receptors halts fur-
ther VDJ recombination, induces differentiation, and directs
intense waves of clonal expansion. The rapid rate of cell division
may be a proliferative stress that overwhelms the de novo dNTP
biosynthetic machinery; it is estimated that immature T cell
clones may expand 200- to 500-fold at this step (26). Analysis of
thymocytes from dCK KO mice using the Ki67 marker suggests a
defect in proliferation at the DN3 to DN4 transition (Fig. S6). It
is possible that the absence of dCK may create a “bottleneck” in
dNTP production that impairs the proliferation of DN thymo-
cytes and their differentiation into DP cells. An analogous
mechanism may explain the defects in the B cell lineage. This
hypothesis merits further study by quantitative measurements of
dNTP pools in dCK KO lymphocyte precursors.
The requirement for deoxyribonucleoside salvage in lympho-

poiesis may be explained by microenvironmental and bioenergetic
factors. The lymphopoietic niches in thymus and bone marrow
contain lymphocyte precursors characterized by high rates of pro-
liferation and death. The vast majority of normally developing
thymocytes fail positive and negative selection checkpoints and
undergo apoptosis (reviewed in ref. 27). DNA degradation and
subsequent release of dNTPs from apoptotic thymocytes likely
leads to increased extracellular concentrations of deoxy-
ribonucleosides. By recycling these deoxyribonucleosides via the
fast salvage pathway and reconverting them into dNTPs at a low
ATP cost, rapidly dividing lymphocyte precursors may decrease
their dependency on the slower and significantly more ATP
demanding (4-fold) de novo synthesis. The analysis of the dCKKO
mice shows that a similar requirement for active deoxyribonucleo-
side salvage does not seem to apply during embryogenesis, orga-
nogenesis, and tissue remodeling, processes that also involve high
rates of proliferation and death (28). It remains to be determined
whether dCK is required for the formation of germline cells.
The combined immunodeficiency syndromes noted in the dCK

KO mice and in the adenosine deaminase and purine nucleoside
phosphorylase genetic deficiencies in humans (2, 3) are not unique
to genes involved in nucleotide metabolism. Deficiencies in vari-
ous genes involved in VDJ recombination (e.g., RAG1 and 2,
DNA-PKs, Ku70, Ku80, XRCC4, and ligase 4) quantitatively and
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Fig. 6. Splenomegaly and abnormal splenic histology in the dCK KO mice.
(A and B) Spleen size and weight [*, P < 0.004; n = 5 (WT) and 6 (KO)]. (C)
Spleen histology.

Table 1. Absolute T and B cell numbers in peripheral lymphoid
organs

Genotype/lymphoid organ CD3 (106) CD19 (106)

WT spleen (n = 3) 34.3 ± 1.9 64.7 ± 8.0
KO spleen (n = 3) 6.6 ± 1.1* 18.1 ± 6.1*
WT lymph nodes (n = 3) 9.7 ± 2.1 12.8 ± 2.5
KO lymph nodes (n = 3) 0.7 ± 0.1* 0.7 ± 0.4*

*, P < 0.02.
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qualitatively affect B and T cell development (reviewed in ref. 29).
Some of these deficiencies highlight the well established fact that
normal VDJ recombination requires the integrity of the DNA
repair machinery. The combined immunodeficiency phenotype of
the dCKKOmice togetherwithprevious studies showing that dCK
activity is induced byDNAdamage (reviewed in ref. 9) suggest that
dCK-dependent dNTP production may also be required for DNA
repair during VDJ recombination. On further analysis, the
abnormal lymphocyte development observed in the dCKKOmice
does not appear to be due to a severe impairment of VDJ
recombination, as evidenced by positive CD3ε staining in DN4
thymocytes (Fig. S7) and by IgMexpression onHardy fraction E-F
B cell progenitors (Fig. 4). Another speculated role of dCK in G1
thymocytes has been to provide pyrimidine nucleotides for ter-
minal deoxynucleotidyl transferase (TdT)-mediated junctional
diversity (6); however, in contrast to the dCK KO mice, TdT KO
mice exhibit normal numbers of B and T cell precursors (29).
Nonetheless, neither of these scenarios rules out the possibility
that dCK deficiency may impair antigen receptor diversity by
limiting substrate availability for TdT and DNA repair during
VDJ recombination.

Other Genetic Deficiencies that Affect Lymphocyte Development by
Altering dNTP Metabolism and Cell Proliferation. Loss of adenosine
deaminase leads to the accumulation of high intracellular levels
of dATP that, by being toxic to developing lymphocytes, cause
severe combined immunodeficiency in humans (2). Because
dATP accumulation requires the enzymatic activity of dCK and
adenosine kinase, small-molecule inhibitors of these kinases
have been recently suggested as a new therapeutic approach for
ADA-deficient patients (30). However, our findings suggest that
complete inhibition of dCK activity may not be desirable, given
the requirement for this kinase in normal lymphopoiesis.
From a biochemical function point of view, the enzyme that

most closely resembles dCK is thymidine kinase 1 (TK1) (Fig.
S1). A genetic model for TK1 deficiency has been reported (31).
TK1 KO mice have a shortened life span due to sclerosis of the
kidney glomeruli. Interestingly, the TK1 KO mice also display
alterations in the lymphoid structure of the spleen and show
lymph node atrophy. Direct comparisons of the immunological
defects in the dCK and TK1 KO models and generation of mice
lacking both cytosolic deoxyribonucleoside salvage kinases may
shed additional light on the importance of deoxyribonucleoside
recycling for normal lymphocyte development and function.
Defects in lymphopoiesis in dCK KO mice closely resemble

the phenotype of mice deficient for cyclin D3, a key regulator of
cell proliferation and the recipient of multiple oncogenic signals
(32, 33). Given these similarities and the strict requirement for
cyclin D3 in various murine and human T cell leukemias, future
studies using dCK KO mice will help determine whether dCK is

a downstream effector of cyclin D3 and whether active deoxy-
ribonucleoside salvage is required for lymphoid oncogenesis.

Materials and Methods
Generation of the dCK Targeting Vector. A recombineering-based approach
(34) was used that employed the temperature sensitive λ prophage Red
Recombinase and Arabinose inducible Cre recombinase in E. coli. This
approach used two types of recombination sites: loxP sites (recognized by the
bacteriophage P1-derived Cre recombinase) and FRT sites (recognized by the
flippase recombinase - FLP). All reagents for recombineering were obtained
from NCI-Frederick (http://recombineering.ncifcrf.gov). A genomic DNA
sequence containing dCK retrieved from a BAC clone was transferred by
homologous recombination into the pL253 vector to generate the pL253/dCK
plasmid. A minitargeting vector containing a loxP flanked Neo cassette sur-
rounded by regions homologous to an intronic site upstream of DCK exon 3
was electroporated into pL253/dCK-containing EL350 cells induced for λ
prophage Red Recombinase. The Neo cassette was excised as described in ref.
34, resulting in a single loxP site upstream of exon 3. A second targeting step
was then performed using a vector containing a FRT flanked Neo gene with
an upstream loxP site. This final step yielded a genomic targeting construct
containing dCK exon 3 flanked by loxP sites.

Generation of the global dCK KO mice is described in the SI Methods.

In Vitro and in Vivo Assays to Measure the Enzymatic Activity of dCK. Sple-
nocytes and bone marrow cells were lysed and dCK kinase activity was
determined using selective binding of phosphorylated products of [3H]FAC
(Moravek Biochemicals) to DE81 Whatman filter paper as previously descri-
bed in ref. 18. [18F]FAC was synthesized and used for microPET/CT imaging
studies as described in ref. 17. See SI Methods for a description of microPET/
CT imaging studies.

Statistical Analyses. Data are presented as means ± SEM. Group comparisons
were performed by using the one-sample t test function in column statistics
in Prism 5 software (GraphPad Software), using the observed mean value of
WT samples as the theoretical mean of comparison. All P values are two-
tailed, and P < 0.05 was considered to be statistically significant. Graphs
were generated by using the Prism 5 software.
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