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iPS Cells Reprogrammed From Human Mesenchymal-Like 
Stem/Progenitor Cells of Dental Tissue Origin

Xing Yan,1,* Haiyan Qin,2,* Cunye Qu,3 Rocky S. Tuan,4,# Songtao Shi,2 and George T.-J. Huang1,4,5

Generation of induced pluripotent stem (iPS) cells holds a great promise for regenerative medicine and other 
aspects of clinical applications. Many types of cells have been successfully reprogrammed into iPS cells in the 
mouse system; however, reprogramming human cells have been more diffi cult. To date, human dermal fi bro-
blasts are the most accessible and feasible cell source for iPS generation. Dental tissues derived from ectomesen-
chyme harbor mesenchymal-like stem/progenitor cells and some of the tissues have been treated as biomedical 
wastes, for example, exfoliated primary teeth and extracted third molars. We asked whether stem/progenitor 
cells from discarded dental tissues can be reprogrammed into iPS cells. The 4 factors Lin28/Nanog/Oct4/Sox2 or 
c-Myc/Klf4/Oct4/Sox2 carried by viral vectors were used to reprogram 3 different dental stem/progenitor cells: 
stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), and dental pulp stem 
cells (DPSCs). We showed that all 3 can be reprogrammed into iPS cells and appeared to be at a higher rate than 
fi broblasts. They exhibited a morphology indistinguishable from human embryonic stem (hES) cells in cultures 
and expressed hES cell markers SSEA-4, TRA-1-60, TRA-1-80, TRA-2-49, Nanog, Oct4, and Sox2. They formed 
embryoid bodies in vitro and teratomas in vivo containing tissues of all 3 germ layers. We conclude that cells of 
ectomesenchymal origin serve as an excellent alternative source for generating iPS cells.

Introduction

The foundation of cell-based therapy lies in the 
technologies of procuring cells, especially stem cells. 

Pluripotent embryonic stem (ES) cells are the most promising 
cell source for cell-based therapy in regenerative medicine 
as they give rise to cells of all germ layers and their supply 
is potentially unlimited. Recent development of generating 
induced pluripotent stem (iPS) cells by introducing 4 factors: 
c-Myc, Klf4, Oct4, and Sox2 [1–2] or Lin28, Nanog, Oct 4, and 
Sox2 [3] into somatic cells has shed light on the possibility of 
obtaining autologous pluripotent embryonic-like stem cells 
circumventing the need of dealing with nuclear transfer 
and embryos [1–3]. The initial establishment of human iPS 
cells was based on the reprogramming of dermal fi broblasts 

(DFs) with the understanding that dermal tissue is easy to 
access. Other types of cells in the mouse system such as sub-
population of neural stem cells have been found to be eas-
ily reprogrammed with <4 factors [4–6]. However, from the 
perspective of clinical applications, neural stem cells are not 
easily accessible if autologous human iPS cells are to be gen-
erated. Because the introduction of these factors has been via 
viral vectors, signifi cant efforts have been put into removing 
the vectors from cells after they are being reprogrammed 
into iPS cells [7–11]. Nonetheless, any approach that involves 
the use of vector systems, even after they are removed, poses 
some uncertainty on their safety.

To completely circumvent the use of vectors, delivery of 
recombinant protein-based 4 factors to generate iPS cells in the 
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in 5% CO2 at 37°C. Colony formation units of fi broblastic 
cells (CFU-F) were normally observed within 1–2 weeks 
after cell seeding and were passaged at 1:3 ratio when they 
reached ~70%–80% confl uence. Heterogeneous populations 
of SHED, SCAP, and DPSCs were frozen and stored in liquid 
nitrogen at passages 0–2. Cells were thawed and expanded 
for experimentation. These heterogeneous populations of 
adherent, clonogenic dental stem/progenitor cells were rou-
tinely tested for their cell surface marker expression with 
fl ow cytometry and they were positive for STRO-1, CD146, 
CD73, CD90, and CD105, and negative for CD14, CD34, and 
CD45, typical of mesenchymal cell type [32].

Tooth sample collection to obtain dental stem/pro-
genitor cells conformed to approved protocols by the 
Medical Institutional Review Boards at the University of 
Maryland (H-29892) and University of Southern California 
(HS-06-00458). Primary human gingival fi broblasts (hGFs) 
were isolated from freshly collected gingival tissues and 
maintained in the same medium for dental stem/progen-
itor cells. Primary human foreskin fi broblasts (hFFs) from 
American Type Culture Collection (ATCC, Manassas, VA) 
were maintained in DMEM supplemented with 10% FBS. 
Cells at passage 3 or below were used for experimentation. 
Human embryonic stem cells H1 (WA01) were obtained from 
WiCell Research Institute (Madison, WI) and maintained 
in conditions following an NIH standard protocol (http://
stemcells.nih.gov/research/NIHresearch/scunit/culture.
asp). Feeder cells were mouse embryonic fi broblasts (MEFs) 
obtained from ATCC or GlobalStem Inc. (Rockville, MD).

Transduction and reprogramming of 
SHED/SCAP/DPSCs

Heterogeneous primary human dental stem/progenitor 
cells at passages 2 and 3 were used for reprogramming. Our 
fi rst attempt to reprogram cells was by using the 4 factor 
genes (c-Myc, Klf4, Oct4, and Sox2) each subcloned into the 
pLenti6.2/C-Lumio/V5-DEST vector system containing a 
CMV promoter (Invitrogen, www.invitrogen.com/site/us/
en/home.html). Approximately 30%–50% of transduced 
cells underwent cell death in the fi rst few days. The sur-
vived cells proliferated faster than before the transduction 
and began morphological changes (fi broblastic to epithelial 
cell-like). The cells were seeded onto feeder cells within 
7 days following transduction to allow reprogramming. 
Within 2 weeks, a few cell colonies similar to ES cell colonies 
emerged. These colonies were passaged to new feeder cells 
but later all underwent cell death. Several attempts were 
made and the same results occurred. Subsequently, lenti-
viral vectors pSin-EF2-gene-Pur carrying 1 of the 4 factors 
Lin28, Nanog, Oct4, and Sox2 were obtained from Addgene 
(www.addgene.org) and virus was produced [3]. Cells were 
seeded into wells (1 × 105/well) of 12-well plates and grown 
to ~70% confl uent. Virus carrying each factor was added at 
equal amounts (0.5–1 × 107 transduction unit/well) to the 
cell cultures with the presence of polybrene (4 μg/mL). Two 
to three days after the transduction, 1 × 104 dental stem cells 
were passaged onto the feeder MEFs plated in a 10-cm dish 
in the presence of human embryonic stem (hES) cell medium 
containing 4–10 ng/mL of bFGF. The medium was refreshed 
every 2 days until ES cell-like colonies emerged (on average 
before 3 weeks). We also subcloned human c-Myc, Klf4, Oct4, 

mouse and human system has been reported [12–13]. Another 
alternative is not to use these genes and their products at all 
but to use by chemical stimulation. Small molecule screening 
by a established mouse cell line carrying a reporter gene (eg, 
Oct4-GFP) was able to fi lter out a list of chemicals that are able 
to induce pluripotency by substituting some of the 4 genes 
[5–6,14]. Although the evidence showing a total replacement 
of the 4 factors by chemicals has not been reported, it is antici-
pated that this will emerge in the very near future.

Once the vector system is no longer an issue, the next 
questions will be the search of an alternative or better source 
of cells for iPS cell generation. Most studies used a mouse 
system in which iPS cells are much easier to derive. Several 
types of mouse cells have been used to generate iPS cells suc-
cessfully including DFs, β-cells, liver cells, gut epithelial cells, 
neural stem cells, mouse adult bone marrow mononuclear 
cells, and B cells [1,4,15–20]. In human system, DFs, amniotic 
fl uid-derived cells, skin keratinocytes, ES cell-derived fi bro-
blasts (ES-Fs), CD34 blood cells, mesenchymal stem cells 
(MSCs), and so on, have been shown to be reprogrammed 
to iPS cells [2,21–25]. However, it appears that, in general, it 
is easier to reprogram more immature cells than adult cells. 
It would even require the addition of hTERT (telomerase 
reverse transferase) and SV40 large T to turn MSCs into iPS 
cells [22]. Human skin keratinocytes appear to be easy to 
reprogram with a high success rate [24]. One type of human 
stem cells that are feasible and accessible is dental stem cells 
originally derived from ectomesenchyme. There are several 
types of human dental stem cells that can be easily obtained 
from shed primary teeth or extracted permanent teeth 
including stem cells from human exfoliated deciduous teeth 
(SHED), stem cells from apical papilla (SCAP), and dental 
pulp stem cells (DPSCs). SHED are isolated from the pulp 
tissue of the shed primary teeth [26]. SCAP are derived from 
the developing tissue at the apex of a tooth root named apical 
papilla in our previous reports [27,28]. This tissue is consid-
ered the precursor of dental pulp. DPSCs were the fi rst type 
of dental stem cells to be characterized and are obtained 
from dental pulp tissue of permanent teeth [29,30]. In this 
present study, we found that all these dental stem cells can 
be successfully reprogrammed into iPS cells.

Materials and Methods

Cell cultures

Human SHED, SCAP, and DPSCs primary cultures were 
established as previously described [26–29,31]. In brief, pulp 
tissue from shed primary teeth (for SHED) or extracted 
permanent teeth (for DPSCs) and apical papilla (for SCAP) 
from immature permanent teeth were removed from 
teeth, minced, and digested in a solution of 3 mg/mL col-
lagenase type I and 4 mg/mL dispase (Sigma-Aldrich, St. 
Louis, MO) for 30–60 min at 37°C. The digested mixtures 
were passed through a 70-mm cell strainer (Falcon, BD 
Labware, Franklin Lakes, NJ) to obtain single cell suspen-
sions. Cells were seeded into 6-well plates and cultured with 
α-minimum essential medium (α-MEM; GIBCO/Invitrogen, 
Carlsbad, CA) supplemented with 15% fetal bovine serum 
(FBS; Gemini Bio-Products, Inc., Woodland, CA), 2 mM 
l-glutamine, 100 μM l-ascorbic acid-2-phosphate, 100 U/
mL penicillin-G, 100 mg/mL streptomycin, and 0.25 mg/
mL fungizone (Gemini Bio-Products, Inc.) and maintained 
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kit (Invitrogen, Carlsbad, CA) followed by PCR using Taq 
DNA polymerase (Invitrogen) to detect the gene expression.

For detection of transgene and endogenous 4 factor gene 
expression, the following genes were examined with spe-
cifi c primers [3]: Nanog (NM_024865), fi rst set that detects 
both transgene (exogenous) and endogenous gene expres-
sion, forward, 5′-CAGAAGGCCTCAGCACCTAC-3′; reverse, 
5′-ATTGTTCCAGGTCTGGTTGC-3′ (111 bp); second set 
that detects only endogenous gene expression, forward, 
5′-TTGGAAGCTGCTGGGGAAG-3′, reverse, 5′-GATGGGA
GGAGGGGAGAGGA-3′ (193 bp); Oct4 (NM_002701), fi rst 
set (exogenous + endogenous), forward, 5′-CAGTGC 
CCGAAACCCACAC-3′, reverse, 5′-GGAGACCCAGCAGC 
CTCAAA-3′ (161 bp); second set (endogenous), forward, 
5′-AGTTTGTGCCAGGGTTTTTG-3′, reverse, 5′-ACTTCA
CCTTCCCTCCAACC-3′ (113 bp); and GAPDH, forward, 
5′-CAA GGC TGA GAA CGG GAA GC-3′; reverse, 5′-AGG 
GGG CAG AGA TGA TGA CC-3′ (194 bp). The primers that 
only detect exogenous are the same as in provirus integra-
tion experiment.

For detection of gene expression in embryoid bodies 
(EBs), the following genes were examined with specifi c 
primers [21]: ectoderm-specifi c genes, Nestin (NM_006617), 
forward, 5′-GCGTTGGAACAGAGGTTGGA-3′, reverse, 
5′-TGGGAGCAAAGATCCAAGAC-3′ (target size 327 bp); 
NCAM (NM_000615), forward, 5′-ATGGAAACTCTATTAA 
AGTGAACCTG-3′, reverse, 5′-TAGACCTCATACTCA 
GCATTCCAGT-3′ (178 bp); mesoderm-specifi c, Brachyury 
(NM_003181), forward, 5′-ACCCAGTTCATAGCG 
GTGAC-3′, reverse, 5′-CAATTGTCATGGGATTGCAG-3′ 
(392 bp); RUNX1 (NM_001001890), forward, 5′-CCCTAGGG 
GATGTTCCAGAT-3′ reverse, 5′-TGAAGCTTTTCCCTCTT 
CCA-3′ (162 bp); endoderm-specifi c genes, α-fetoprotein (AFP, 
NM_001134), forward, 5′-AGCTTGGTGGTGGATGA  AAC-3′, 
reverse, 5′-CCCTCTTCAGCAAAGCAGAC-3′ (248 bp); GATA4 
(NM_002052), forward, 5′-CTAGACCGTG GGTTTTGCAT-3′, 
reverse, 5′-TGGGTTAAGTGCCCCT GTAG-3′ (275 bp).

Promoter DNA methylation profi les

Bisulfi te genomic sequencing analyses were performed. 
Conversion of unmethylated cytosines to uracil of purifi ed 
genomic DNA was carried out as described in EZ DNA 
Methylation-Gold Kit (ZYMO, Orange, CA). Five hundred 
micrograms of genomic DNA was treated in each reaction, 
and the elution was used for PCRs. The promoter regions 
of Oct4 and Nanog were amplifi ed by PCR (Taq Polymerase, 
Invitrogen) using Oct4 primer set 7 and Nanog primer set 2 
[33] with the following parameters: denaturing, 94°C for 2 
min; 38 cycles of 94°C for 20 s, 54°C for 20 s, and 68°C for 1 
min, and followed by 68°C for 10 min. Bisulfi te sequencing 
primers are in the following: Oct4–7: forward: 5′-TAGTTGG
GATGTGTAGAGTTTGAGA-3′; reverse: 5′-TAAACCAAAAC
AATCCTTCTACTCC-3′. Nanog-2: forward: 5′-GAGTTAAAG
AGTTTTGTTTTTAAAAATTAT-3′; reverse: 5′-TCCCAAATC
TAATAATTTATCATATCTTTC-3′. The PCR products were 
confi rmed with electrophoresis and cloned into pCR-Blunt 
II-TOPO vector (Invitrogen) and sequenced with Sp6 primer.

Telomerase activity assay

Telomerase activity was examined using Telo TAGGG 
Telomerase PCR ELISA kit (Roche Applied Science, 

and Sox2 into the vector pMXs and produced retrovirus to 
transducer cells with the same approaches as the above.

Subcloning of emerged ES cell-like colonies

Emerged ES cell-like colonies were considered at passage 
0. Each colony was manually subcloned into wells of 12-well 
plates seeded with MEFs and maintained separately from other 
subcloned colonies. The expanded passage 1 colonies were 
then passaged into wells of 6-well plates for further expansion 
until suffi cient number of colonies was reached for experimen-
tal analyses. From passage 1, cell colonies were maintained in 
hES cell medium containing 100 ng/mL of bFGF.

Provirus integration

Genomic DNA of ES cell-like colonies was isolated using 
FlexiGene DNA kit (Qiagen, Valencia, CA). Primers specifi c 
for each transgene were used to amplify the 4 proviral trans-
genes using a standard PCR method [3]. A specifi c forward 
primer for each gene and a common reverse primer SP3 located 
in the backbone of the pSin-EF2-gene-Pur were used: forward 
primers, LIN28: 5′-AAGCGCAGATCAAAAGGAGA-3′ (tar-
get size 518 bp); Nanog: 5′-CAGAAGGCCTCAGCACCTAC-3′ 
(732 bp); Oct4: 5′-CAGTGCCCGAAACCCACAC-3′ (656 bp); 
Sox2: 5′-TACCTCTTCCTCCCACTCCA-3′ (467 bp); reverse 
primer (SP3), 5′-AGAGGAACTGCTTCCTTCACGACA-3′. 
PCR products were size fractionated on 2% agarose gels 
stained with ethidium bromide.

Karyotyping

Standard G-banding chromosome analysis was carried 
out in the Cytogenetics Lab at Columbia University Med 
Center (CUMC). Selected iPS cell clones were analyzed.

Immunocytofl uorescence

iPS cell colonies grown on MEFs in 12-well plates were 
fi xed in 100% ice cold methanol, incubated in blocking buffer 
[32.5 mM NaCl, 3.3 mM Na2HPO4, 0.76 mM KH2PO4, 1.9 mM 
NaN3, 0.1% (w/v) bovine serum albumin (BSA), 0.2% (v/v) 
Triton X-100, 0.05% (v/v) Tween 20, and 5% goat serum] for 30 
min followed by addition of the following antibodies for 1 h 
at room temperature: mouse anti-human SSEA-4, TRA-1-60, 
TRA-1-80, TRA-2-49 (these 4 antibodies were from Chemicon 
Int Inc., www.chemicon.com), and Oct4; goat anti-human 
Nanog; and rabbit anti-human Sox2 (these 3 antibodies were 
from Santa Cruz Biotech., Inc., http://www.scbt.com). After 
washing, cultures were incubated with anti-mouse, -goat, or 
-rabbit antibodies Alexa Fluor 488 or 594 (Invitrogen for 1 h 
at room temperature and the cell nuclei stained with DAPI 
(Invitrogen). Images were analyzed under a fl uorescence 
microscope.

Reverse transcription polymerase chain 
reaction (RT-PCR)

Specifi c primers to amplify endogenous 4 factor genes 
and exogenous 4 factor genes were used to conduct RT-PCR 
and their levels compared [3]. Cells were harvested for 
RNA isolation using RNeasy Mini Kit (Qiagen, Valenicia, 
CA). cDNA was synthesized with SuperScript RT-PCR 
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transferred to wells of 6-well plates containing ES cell media 
without bFGF. The media were changed every day until EBs 
processed for analysis.

Neurogenic differentiation in vitro

EB-mediated neurogenic differentiation of iPS cells was 
performed. iPS cell colonies grown on Matrigel were treated 
with dispase (1 mg/mL) for 7 min to detach the cell colo-
nies, resuspended in DMEM/F12 (supplemented with 20% 
FBS and 2 mM glutamine), and plated into Petri dishes. 
After 4 days in cultures, EBs were collected and plated into 
Matrigel-coated wells of 4-well plates. After cell attachment, 
the medium was changed to DMEM supplemented with 
B27 and 20 ng/mL bFGF. Cells were incubated in the dif-
ferentiation medium for 8 days and subsequently stained for 
neuronal marker Tuj1 (Sigma-Aldrich, St. Louis, MO). Cells 
were fi xed in 4% paraformaldehyde for 15 min and washed 
with PBS 3 times. Triton X-100 (0.1%) was applied to per-
meabilize the cells for 15 min followed by PBS washing for 
3 times. Fixed cells were blocked with 5% goat serum for 
1 h. Primary mouse monoclonal antibody to human Tuj1 at 
1:1,000 was applied and incubated at 4°C overnight. After 
3 times of PBS washing, secondary goat anti-mouse Alexa 

Indianapolis, IN) according to the manufacture’s proto-
col. In brief, 0.2 × 106 cells were lysed and added to a pre-
mix solution containing biotin-labeled synthetic P1-TS 
primer and P2 primer. The resultant extended products are 
subsequently amplifi ed by PCR. The generated PCR prod-
ucts were hybridized with a digoxigenin-(DIG)-labeled, 
telomeric repeat-specifi c detection probe and immobi-
lized to a streptavidin-coated microplate. The immobi-
lized PCR products were then detected with an antibody 
against digoxigenin (anti-DIG-POD) that were conjugated to 
peroxidase. Subsequently, the probe was visualized by 
virtue of peroxidase metabolizing TMB to form a colored 
reaction product. As positive control, 293T cells were used 
and the cell extracts heated at 85°C for 10 min were served 
as negative control.

Embryoid body (EB) formation

iPS or hES cell colonies on feeders were grown to a size 
1 day passed the splitting time. Colonies were treated with 
0.2–0.5 mg/mL dispase for 20–30 min until the colonies com-
pletely detached from the plate and transferred to a 15-mL 
conical tube to allow precipitation. Cells were washed once 
with hES cell media. The precipitated colonies were then 

Table 1. Summary of the Reprogramming Experiments

Experiment Cells Infection condition
No. of transduced cells 

seeded onto MEFs
No. of ES cell-
like colonies

% (No. of ES cell-
like/no. of seeded)

1 Single infection 5 × 104 (10-cm dish)
SHED 0 0
DPSCs 1   0.002
GFs 0 0

2 Single infectiona 1 × 104 (10-cm dish)
SHED 2  0.02
DPSCs 2  0.02
GFs 0 0

3 Double infectionb 4 × 103 (1 well of 
6-well plate)

SHED 13 (4 wells)  0.08
DPSCs 19 (4 wells) 0.1
GFs 0 (4 wells) 0

4 Single infection 3 × 103 (1 well of 
6-well plate)

SCAP 4 (2 wells)  0.07
DPSCs 2 (2 wells)  0.03
hGFs 0 (2 wells) 0
hFFs 0 (2 wells) 0

5 Double infectionc 2 × 104 (10-cm dish)
DPSCs 23 0.1

6 Double infectionc 2 × 104 (10-cm dish)
DPSCs   18 0.1

Experiments 1–4, pSin-EF2-gene-Pur vector set (carrying Lin28, Nanog, Oct4, or Sox2) was used; experiments 5 and 

6, pMXs vector set (carrying c-Myc, Klf4, Oct4, or Sox2) was used.
aRemaining transduced cells from experiment 1 were frozen, thawed, and seeded onto mouse embryonic 

fi broblasts (MEFs) for reprogramming.
bRemaining transduced cells from experiment 1 were frozen, thawed, infected again with the same viral vector 

set, and seeded onto MEFs for reprogramming.
cCells were infected with virus once followed by a second infection 24 h later.

Abbreviations: SHED, stem cells from exfoliated deciduous teeth; SCAP, stem cells from apical papilla; DPSC, 

dental pulp stem cell; hGF, human gingival fi broblast; hFF, human foreskin fi broblast.
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FIG. 1. Emerging of embryonic stem (ES) cell-like colonies and expansion. Stem cells from exfoliated deciduous teeth 
(SHED) (A–G), stem cells from apical papilla (SCAP) (H–N), and dental pulp stem cells (DPSCs) (O–U) were transduced with 
the 4 factors (Lin28, Nanog, Oct4, and Sox2) and seeded onto mouse embryonic fi broblasts (MEFs) until ES cell-like colonies 
emerged (representative clones). Top panels, from pre-transduction (A, H, and O) to emerging of ES cell-like colonies on 
MEFs at passage 0 (B–D, I–K, and P–R). Lower panels, ES cell-like colonies at passage 0 were hand-picked and passaged to 
new MEFs for expansion. (B) Clone 1 to (E) at passage 3; (C) clone bix2 to (F) at passage 4; (D) clone 2 to (G) at passage 2; (I) 
clone 1 to (L) at passage 4; (J) clone d1–1 to (M) at passage 13; (K) clone d2–2 to (N) at passage 9; (P) clone 1 to (S) at passage 
35; (Q) clone 2 to (T) at passage 4; (R) clone bix1 to (U) at passage 10. Scale bars = 500 μm [the bar in (A) represents all the 
images except (P)].

Fluor 488 (1:1,000) antibodies and Hoechst 33342 (1:1,000) 
(Sigma-Aldrich) were added and incubated at room tem-
perature for 1 h. Staining was examined under a fl uorescent 
microscope.

Teratoma formation

ES cell-like colonies ~70% confl uent in 2–6 wells of 6-well 
plates were harvested by collagenase IV or 0.05% Trypsin–
EDTA treatment, collected into tubes, centrifuged, and the 
pellets suspended in DMEM/F12 and Matrigel (3:1). The 
resuspended cells were injected intramuscularly into the 
right and/or left hind leg of a SCID mouse (SCID, NOD.CB17-
Prkdc-scid/J; Jackson Laboratory, Bar Harbor, ME). Nine to 
eleven weeks after injection, tumors were dissected and 
fi xed with PBS containing 4% paraformaldehyde. Paraffi n-
embedded tissue was sectioned and stained with hema-
toxylin and eosin (H&E). All animal procedures followed a 
protocol approved by the Institutional Animal Care and Use 
Committee (IACUC) at the Columbia University (protocol# 
AC-AAAB1141).

Results

Formation of ES cell-like colonies and expansion

Heterogeneous population of dental tissue-derived 
stem/progenitor cells were transduced with the 4 factors 
bearing viral vectors. ES cell-like colonies began emerging 
on the feeder layer ~2–3 weeks after gene transduction. In 6 
independent experiments of various approaches, 15 SHED-, 
4 SCAP-, and 65 DPSC-ES cell-like clones were obtained 
(Table 1). Double infection increased the success rate. The 
rate of formation of ES cell-like colonies from double-trans-
duced DPSCs or SHED during reprogramming is ~1/1,000, 
which increased by up to 5-fold compared to single trans-
duction. This rate is 4–10 times greater than the reported 
using DFs (0.01%–0.02%) [1,3]. In experiment 1, only one 
colony was formed after 5 × 104 cells were seeded into a 
10-cm dish for reprogramming. Overcrowded non-ES cell-
like colonies may have obscured the ES cell-like colony for-
mation. Reducing the number of seeded cells onto MEFs for 
reprogramming improved the success of ES cell-like colony 
formation. Representative clones at passage 0 are shown 

05-SCD-2009_0314.indd   473 3/24/2010   1:51:11 PM



YAN ET AL.474

mRNA expression and promoter 
methylation status

Endogenous gene and transgene expression of Nanog and 
Oct4 in iPS cells and their non-transduced control counter 
parts was analyzed by RT-PCR. Exogenous Nanog expres-
sion in iPS cells was higher than the endogenous, whereas 
endogenous Oct4 expression is as high as the exogenous 
(Fig. 4A). Endogenous gene expression in non-transduced 
control was detectable but in low levels. The exogenous 
genes were not silenced after reprogramming in our system, 
which may be due to the use of vector type—lentiviral vec-
tor [3] versus retroviral vector [1–2].

The methylation status of cytosine guanine dinucle-
otides (CpG) in the promoter regions of Nanog and Oct4 was 
examined using bisulfi te DNA sequencing method. Selected 
DPSCs- and SHED-iPS cell clones were examined and the 
results showed that Nanog promoter had similar or slightly 
higher number of methylated sites in SHED- and DPSC-iPS 
cells than their non-transduced counterparts (Fig. 4B). The 
Oct4 promoter had less methylated sites in SHED-/DPSC-iPS 

in Figure 1 top panels. Several clones were selected for 
expansion and further analysis (Fig. 1 bottom panels). Both 
hGFs and hFFs yielded no ES cell-like colonies from these 
experiments.

Protein expression of ES cell gene markers

Immunocytofl uorescent analysis indicate that DPSC-, 
SHED-, SCAP-iPS cells expressed hES cell markers SSEA-4, 
TRA-1-60, TRA-1-80, TRA-2-49, Nanog, Oct4, and Sox2 as 
indicated in the representative data in Figure 2. These mark-
ers in untransduced cells were not detected by the same 
staining procedures (data not shown).

Provirus integration

To examine the presence of transgenes in the genome of 
those iPS cell clones, genomic DNA was isolated and primers 
specifi c for each transgene were used to amplify 4 proviral 
transgenes. The 4 factors were all integrated into the genome 
of the transduced SHED/SCAP/DPSC-iPS cells (Fig. 3).

A BGene DAPI Bright BrightGene DAPI

C

FIG. 2. Embryonic stem (ES) cell-associated gene expression by the putative induced pluripotent stem (iPS) cell clones. (A) 
Dental pulp stem cells (DPSCs)-iPS cell clone 1 at passage 7 were fi xed and stained with antibodies against human embry-
onic stem (hES) cell-associated genes and examined under fl uorescence microscopy. (B) Stem cells from exfoliated decidu-
ous teeth (SHED)-iPS cell clone 2 bix at passage 6. (C) Stem cells from apical papilla (SCAP)-iPS cell d2-clone 1 at passage 6. 
Expressed genes stained either in red or green fl uorescence; DAPI, nuclear stain. Scale bars = 100 μm.
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control cells and their iPS cells, suggesting other mechanism 
is controlling the endogenous expression, or other sites of the 
promoter regions are more responsible for this regulation.

Normal karyotypes of dental stem cell-derived 
iPS cells

Cytogenetic analysis of selected iPS cells showed a 
normal karyotype of a male (SHED-iPS cells) or two female 
(SCAP- and DPSC-iPS cells) karyotype (Fig. 5). The fi ndings 
are in agreement with those reported to date that repro-
gramming using a vector system to introduce the factors 
does not alter the cell karyotype.

Increased telomerase activities in iPS cells

Pluripotent stem cells usually have high telomerase ac-
tivity to maintain the integrity of chromosome structure. 
After reprogramming, the telomerase activities of SHED-, 
SCAP-, and DPSC-iPS cells increased dramatically in com-
parison to their non-transduced counterparts, and were as 
high as those of hES cells (Fig. 6).

In vitro neural differentiation

DPSC-iPS cells were tested for their neurogenic potentials 
with an EB-mediated approach. Under the stimulation of a 
neurogenic medium, cells from the EBs developed into neu-
ral rosette-like morphology. At a higher magnifi cation, indi-
vidual cells with elongated cellular processes were observed 
(Fig. 7A and 7B). To determine whether these cells that mor-
phologically resembling neuronal cells express neuronal 
genes, cells were stained with a neuronal precursor marker 

cells than the non-transduced cells, which corresponds to the 
fi ndings of Oct4 mRNA expression in cells. The methylation 
status of Nanog promoter did not correspond to the expres-
sion levels of endogenous mRNA of Nanog in non-transduce 
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FIG. 3. Proviral integration and gene expression analysis 
by PCR. Stem cells from exfoliated deciduous teeth (SHED), 
stem cells from apical papilla (SCAP)-induced pluripotent 
stem (iPS) cells, and dental pulp stem cells (DPSCs)-iPS cells 
were harvestedfor DNA isolation and subjected to PCR for 
the detection of Lin28, Nanog, Oct4, and Sox2 transgenes in 
the genome. Passage numbers at cell harvesting: SHED-iPS 
cells, p10; SCAP-iPS cells, p8; DPSC-iPS cells, p12.
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The closed circles indicate methylated sites of the analyzed regions.
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Tuj1. As demonstrated in Figure 7D, the elongated cytoplas-
mic processes are positive for Tuj1 staining, indicating the 
neurogenic potential of these iPS cells.

In vitro embryoid body (EB) analysis

EB formation allows iPS cells to differentiate into vari-
ous cell types. We fi rst tested the expression of genes in 
cells representing all 3 germ layers. On day 8 during EB for-
mation, EBs from SHED-, SCAP-, and DPSC-iPS cells were 
harvested and total RNA isolated for RT-PCR analysis. The 
results in Figure 8 show that these genes were expressed in 
the EBs. At 3–4 weeks, EBs formed cystic cavities that could 
be observed under the inverted microscope (Fig. 8Ba and 
8Be). At 6th week, some iPS cell-derived EBs were processed 
for histological analysis. Presence of cavities or cystic space 
in the EBs was verifi ed. Cells in the EBs differentiated into 
different cell types, some of which formed tissue-like struc-
tures resembling those of ectodermal, mesodermal, or endo-
dermal origin. Neuroepithelial-like structures and neural 
rosettes were observed (Fig. 8Bc and 8Bd). Inner cystic bod-
ies may be encircled by a layer of epithelial-like cells resem-
bling primitive endodermal epithelium (Fig. 8Bg and 8Bh). 
The cavity may also be walled by an outer layer epithelial-
like cells and the space was structured by loose connective 
tissue (Fig. 8Bb). Areas of cartilagenius matrix may appear in 
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(SHED)-iPS clone B2 at passage 11. Original SHED from a 
~10-year-old male. (B) stem cells from apical papilla (SCAP)-
iPS d2-clone 1 at passage 18. Original SCAP from a 16-year-
old female. (C) dental pulp stem cells (DPSCs)-iPS clone 1 at 
passage 12. Original DPSCs from a 19-year-old female.
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FIG. 6. Telomerase activity analysis. Telomerase activity is 
presented in the form of relative absorbance. human embry-
onic stem (hES) cell or induced pluripotent stem (iPS) cells 
were grown in Matrigel-coated feeder-free wells and har-
vested for analysis. The iPS cell clones (stem cells from exfo-
liated deciduous teeth (SHED) at passage 33; stem cells from 
apical papilla (SCAP) at 27; dental pulp stem cells (DPSCs) at 
41) used for this assay were the same as those for karyotyp-
ing. Their non-transduced counterparts were all at passage 
3. 293T cells were used as positive control; heated 293T cell 
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FIG. 8. Embryoid body (EB) formation. (A) RT-PCR analysis of gene expression in EBs from stem cells from exfoliated 
deciduous teeth (SHED)-, stem cells from apical papilla (SCAP), and dental pulp stem cells (DPSCs)-induced pluripotent 
stem (iPS) cells clones on day 8. Genes representing different germ layers were examined. Ectoderm: Nestin and NCAM; 
mesoderm: Brachyury and Runx1; endoderm: AFP and GATA. (B) Morphological and histological analysis of EBs. (a–d) 
DPSC-iPS cell-derived EBs. (e–h) SCAP-iPS cell-derived EBs. (i–l) human embryonic stem (hES) cell-derived EBs. (a, e, i) EBs 
grown in cultures 3–4 weeks. (b–d, f–h, i–l) H&E stain of fi xed EBs after 6 wks (DPSC-iPS and SCAP-iPS cells) or 4 wks (hES 
cells) of EB formation in cultures. (d, h, l) Magnifi ed views of the respective boxed areas in (c, g, k). (f) Arrowhead indicates 
cartilaginous matrix; arrow indicates area of granular materials. Passage numbers of iPS cells when EB formation initi-
ated: SHED-iPS, p18; SCAP-iPS, p15; DPSC-iPS, p25. Scale bars = 500 μm (a); (b, e–g, i, j) 200 μm; (k) 100 μm; (d, h, l) 50 μm. 
Abbreviations: EB, embryoid body; hES, human embryonic stem cell.
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A

C D E

B

FIG. 7. Neural differentiation of induced pluripotent stem (iPS) cells derived from dental pulp stem cells (DPSCs). After 
4 days, Embryoid body (EB) were plated into Matrigel-coated wells of 4-well plates. Neurogenic medium described in 
Materials and Methods was added to cultures after cell attachment. Differentiated iPS cells developed into a morphology 
resembling neural rosettes on day 6 after neurogenic stimulus (A) and subsequently extended elongated cell cytoplasmic 
processes resembling neurons on day 12 after stimulation (B). (C–E) These cells and their processes showed positive staining 
for the neuronal precursor marker Tuj1 (C, phase; D, Tuj1 staining in green; E, Hoechst 33342 nuclear stain in blue).
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that may be potentially easier to reprogram have been tested 
[24–25]. Although human MSCs were considered to be easier 
to reprogram, the evidence indicates the opposite [22]. Our 
results revealed that unlike other developmentally mature 
somatic cells such as neonatal foreskin fi broblasts, adult 
MSCs, and adult DFs that needed the introduction of hTERT 
and SV40 large T to succeed the reprogramming [22], dental 
tissue-derived mesenchymal-like stem cells SHED, SCAP, 
and DPSCS can easily be reprogrammed into iPS cells at 
relatively higher rates. We also simultaneously transduced 
hFFs from ATCC and hGFs in parallel with dental stem cells 
under the same experimental setting and infection proto-
cols, no ES cell-like colonies have emerged from these fi bro-
blasts, suggesting that dental stem cells are more readily to 
be reprogrammed into iPS cells.

Dental stem cells are mesenchymal-like stem cells and 
are different from MSCs in many aspects [32]. The frequency 
of colony-forming cells derived from dental pulp tissue 
(22–70 colonies/104 cells plated) is higher than that of MSCs 
from bone marrow (2.4–3.1 colonies/104 cells plated) [29]. 
They proliferate rapidly in culture with an average popula-
tion doubling (PD) time of ~20 h [34] and can reach a PD of 
up to 100 or more before senescence [26]. In addition, from 
our unpublished work along with the reported, DPSCs and 
SHED already express a number of ES cell-associated genes 
such as c-Myc, Oct4, Nanog, SSEA-3, SSEA-4, TRA-1-60, 
and TRA-1-81 at low levels [35,36], which may facilitate the 
reprogramming.

Although many types of adult stem cells are multipotent 
including dental stem cells used in this study, their sources 
and life spans are limited. They are insuffi cient in number 

the EBs (Fig. 8Bf). Amorphous eosinophilic granular materi-
als were seen in areas of the EB mass suggesting apoptotic 
activities as a process of cell differentiation and tissue mod-
eling. EB formation from hES cell was also performed in par-
allel as a comparison (Fig. 8Bi to 8Bi).

Teratoma formation

Ultimately, fully reprogrammed cells must be able to form 
teratomas in vivo containing tissue cell types of all 3 germ lay-
ers in order to be considered truly ES cell-like iPS cells. As 
demonstrated in Figure 9, all 3 types of dental iPS cells (SHED, 
SCAP, and DPSCs) formed teratomas in SCID mice. The terato-
mas are highly cystic containing multilobular structures fi lled 
with tissue fl uid or blood. Histological analysis showed that 
SHED/SCAP/DPSC-iPS cells developed into primitive tissues 
representing all germ layers including neural tissues (ecto-
derm), cartilage (mesoderm), and glandular or respiratory 
epithelial layers (endoderm). There were numerous ectoder-
mal neuroepithelial-like tissues including pigmented retinal 
epithelium-like tissues as well as glandular structures. Some 
glandular tissues exhibited branching from the wall of the cyst 
into the lumen (Fig. 9L). The mesodermal-derived tissues were 
fi lling in the space between ectoderm- and endoderm-derived 
tissues including cartilage and fi brous connective tissues. A 
few small bone spicules were observed in some samples.

Discussion

Human dermal fi broblasts were the fi rst type of cells 
being reprogrammed into iPS cells. Other human cell types 
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*

FIG. 9. Histological analysis of teratomas containing multi-differentiated tissues derived from induced pluripotent stem 
(iPS) cells. (A–D) stem cells from exfoliated deciduous teeth (SHED)-iPS cell (passage 4)-derived teratoma; (E–H) stem cells 
from apical papilla (SCAP)-iPS cell (passages 7–9)-derived; (I–L) dental pulp stem cells (DPSCs)-iPS cell (passages 20–29)-
derived. (A, D, E, I, H) Mainly primitive neural tissues, neural rosettes, and retinal epithelium (ectoderm); (B, F, J) mainly 
cartilage (mesoderm); (C, G, K, L) mainly glandular tissue or respiratory epithelium (endoderm). Scale bars: (A, D–H, K, L) 
200 μm; (B, C, I, J) 50 μm. Asterisk in (H, L) indicates external space outside of the teratomas; asterisk in (K) indicates the 
space of a cavity inside the teratoma. Non-transduced cells did not form teratomas (data not shown).
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