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Abstract
Hydrophobic interactions are some of the most important interactions in nature. They are the primary
driving force in a number of phenomena. This is mostly an entropic effect and can account for a
number of biophysical events such as protein-protein or protein-ligand binding that are of immense
importance in drug design. The earliest studies on this phenomenon can be dated back to the end of
the 19th century when Meyer and Overton independently correlated the hydrophobic nature of gases
to their anesthetic potency. Since then, significant progress has been made in this realm of science.
This review briefly traces the history of hydrophobicity research along with the theoretical estimation
of partition coefficients. Finally, the application of hydrophobicity estimation methods in the field
of drug design and protein folding is discussed.
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INTRODUCTION
Hydrophobicity (or lipophilicity) is a well-known and extensively studied phenomenon. It is
commonly understood to be the tendency of non-polar molecules to form aggregates in order
to reduce their surface of contact with polar molecules such as water [1]. Its manifestations
include simple observable macroscopic phenomena such as the immiscibility of oil and water
or modern techniques such as chromatographic separation. The importance of hydrophobic
interactions on atomic or molecular scale has long been recognized in various facets of science
[1]. While the concepts have changed and the applications have expanded, the fact remains
that hydrophobic interactions are often the driving force in a variety of physical and biological
phenomena. In this review, we introduce the concept of hydrophobic interactions, present a
very short history and discussion of theoretical and experimental studies on the phenomenon.
A key theme of this review is that the same set of forces and interactions that partitions a
molecule between polar and hydrophobic solvent phases, i.e., determines its hydrophobicity,
is pervasive in all biological interactions including small molecule binding and protein folding.
Finally, we present an in-depth perspective on computational studies involving hydrophobic
interactions. These studies include methods for estimation of the hydrophobic nature of small
and large biological molecules and applications of this in drug discovery or design. Another
aim is to suggest future directions in hydrophobicity research, with the hope of stimulating
interest in the field.
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A brief historical overview of hydrophobicity
Even before the turn of the 20th century, the importance of hydrophobic interactions in
biological phenomena, particularly drug activity, was recognized by the work of Meyer and
Overton [2,3,4]. In 1937, Butler showed a linear relationship between heat of hydration and
entropy of hydration [5]. He estimated the energies of interaction of different functional groups
with water and showed that the heats of hydration are additive in nature. He also explained that
the heats of hydration do not determine the free energy of interactions, but that there is a direct
proportionality between them. The origins of this phenomena were unclear at this point, but it
was hypothesized that entropy might be dependent on the size of the “cavity” that contains the
molecule. The importance of H-bonds was also briefly discussed as formation of H-bonds
between polar parts of the molecule causes an increase in entropy, which favors dissolution of
an otherwise non-polar molecule.

Frank and Evans, in the middle of the 20th century, described the formation of “icebergs” of
water around non-polar parts of molecules [6]. Their findings were based on the deviation of
entropy of vaporization for certain substances when dissolved in aqueous and non-aqueous
solutions. The formation of a regularized lattice-like structure of water molecules surrounding
non-polar moieties has been experimentally validated with crystallography [7] and is now more
or less taken for granted. This theory was extended to proteins by Klotz, who explained the
variation in pKa, molecular volume, denaturation and the masking of expected behavior of
protein functional groups in terms of this “iceberg” formation [8]. In fact, the association of
two molecules can become energetically favorable due to the increase in entropy when these
ordered water molecules are scattered or disordered (see Figure 1).

Kauzmann first coined the term “hydrophobic bond” in 1959, which caught the attention of
many scientists at the time; this notion was supported by a number of research investigations
of that era [9]. The work of Némethy, Scheraga and Steinberg also supported the use of this
term [10]. Perhaps it was the tendency of the non-polar substances to form aggregates that
caused scientists to draw parallelisms with the definition of a bond – “the tendency of two
atoms to stay together in space”. Hydrophobic bonds have been described as endothermic, i.e.,
as temperature increases their strength increases until a maximum value is reached at
approximately 60°C [10]. However, the stability of proteins depends on not only these
hydrophobic “bonds,” but also hydrogen bonds. These have an inverse behavior, i.e., they
become weaker with increasing temperature. Thus, as temperature increases, hydrophobic
interactions would decrease in strength and hydrogen bonds would be predominant in
maintaining protein structure. Hence, at higher temperatures proteins would unfold.

In the 1970s, Robert Hermann published a series of three papers on “the theory of hydrophobic
bonding” [11-13] where the large negative entropy of partitioning a hydrophobic molecule into
a non-polar solvent was explained by the loss of order in water molecules in direct contact with
the hydrophobic surface. The ordered arrangement of water molecules on the surface of a
molecule is due to dipole-dipole interactions with the immediate next layer of waters. In effect,
this phenomenon is similar to surface-tension where the first layer arranges itself in order to
reduce contact with the hydrophobic air, while less order exists in the second and succeeding
layers. Order continues to decrease in layers away from the hydrophobic surface and there is
a linear, but inverse, correlation between hydrophobic surface area and its solubility in water
[11]. Hermann also determined that the free energy for hydration of a hydrophobic molecule
is linearly related to the number of water molecules that can be packed around it. This first
study did not take into account cavity curvature and was restricted to small molecules. Later
work [12] described a correlation between a molecule's hydrophobic surface area and its
solubility in water. Hermann also introduced a simple mathematical treatment of hydrophobic
interactions [13] that addresses hydrophobic interactions at a distance taking into account not
only solubility, but also the distances between hydrophobic entities with the Lennard-Jones
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potential as has also been suggested by Reynolds et al [14]. Leo, Hansch and Jow established
a relationship between hydrophobicity and two other factors – the nature of the solute surface
and the molecular (CPK) volume [15]. The major innovation of this study is that they used the
partition coefficient for 1-octanol/water (LogPo/w) as a measure of hydrophobicity rather than
solubility. This parameter has been used almost ubiquitously in studies thereafter. Most
importantly, these observations could not be explained by the simple concept of a “hydrophobic
bond”, but rather as a complex phenomenon involving the interplay of flexible molecules and
solvent under particular conditions.

The argument on semantics over the use of the term “hydrophobic bond” has continued ever
since, but the fact that hydrophobic phenomena can explain a multitude of observations in
science cannot be ignored. In this review, we attempt to explain how naming and characterizing
this effect has changed the realms of computational chemistry and drug design. The preceding
paragraphs provide an outline of the sequence of events and were not intended to serve as a
comprehensive guide to the principles behind hydrophobic phenomena. However, a
comprehensive review of the research on hydrophobicity is available elsewhere [1].

CALCULATIONS OF HYDROPHOBICITY AND THE HYDROPHOBIC EFFECT
Estimation of LogPo/w

Hansch and Leo published their seminal paper on the determination and uses of partition
coefficients in 1971 [16]. This paper was, and perhaps continues to be, the most comprehensive
article on the subject. It explains the fundamentals of partition phenomena and provides detailed
descriptions of the history and theory of the same. It also contains a very comprehensive
tabulation of LogP values for various substances. However, most interesting to theoreticians
is the discussion on additive-constitutive properties wherein the utilization of the Hammett
equation in calculations of partitioning free energy and the effects of various stereoelectronic
effects on the partition coefficient are described. Also, various uses of partition coefficients
for such diverse research topics as countercurrent distribution, measurement of equilibria,
hydrophile-lipophile balance, drug dissolution and “hydrophobic bonding ability” are outlined.
Of note, the partitioning of alcohols between water and red cells was compared to their
partitioning between water and 1-octanol. The energy of partitioning per methylene group was
the same for both cases, i.e., approximately −690 cal mol−1. The repercussions of this
quantification of hydrophobic interaction energies have been key to drug design projects as
well as computational chemistry. The Hansch and Leo method for theoretical estimation of
molecular LogP values, which is the basis of the C-LOGP method (vide infra), is also described
in great detail.

A loose categorization of different methodologies for estimation of LogP is provided in Table
1, complete with a few typical examples of each. Here, the discussion on these methods will
be limited to a general overview highlighting the application of these methods in drug design
and the relevance of accuracy for these prediction methods in that context. Several
comprehensive reviews on the computational estimation of octanol-water partition coefficients
are available [17-21]. These articles are highly recommended for those who intend to learn
about the estimation methods in detail or to understand the nuances of their relative accuracies
for particular applications.

To commence, it is a monumental understatement to say that a lot of good research has been
done in this field. Many diverse empirical methods exist today that predict LogP of various
molecules with different degrees of context-dependent certainty [17,20]. Some of the major
types are discussed below.
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Fragment-based methods—Rekker's fragment based system was the first fragment-based
computational method to estimate LogP [22]. Fragment-based methods implement and
statistically deconvolve empirical data from experimental LogP values of compounds. See
Appendix 1 for a short explanation of this approach. In order to explain the effect of inter-
fragmental interactions, certain additive correction factors are introduced. Several other
algorithms of this type exist including the C-LOGP [23-27] and ACD/LogP [28] methods. The
criticism most often applied to this methodology is that the fragmentation of the target molecule
is “arbitrary”. This is not actually true for C-LOGP as there are a complete and unambiguous
set of rules. However, they can be difficult to visualize, and fragments can be much more
complex than organic functional groups. Thus, fragments observed in new molecules can be
missing from the C-LOGP database library, yielding poor predictions of LogP [17,20].
However, there are also advantages to these methods: significant and complex electronic
interactions are automatically taken into account when they exist within a library fragment
[20]; when the fragments coincide with real organic functional groups their interpretation is
intuitive; the correction factors can be used to understand the relationship between functional
groups or the effect of the observed feature on solubility, e.g., factors representing aliphatic
chain branching explain the increased water solubility of branched hydrocarbons; and since
fragment methods are based on empirical data, their associated algorithms are very fast and
practical to implement in software.

Atom-based methods—These are similar to the fragment-based methods, but assume the
hydrophobicity of a molecule to be the sum of the individual atomic contributions. Appendix
2 provides an overview of the principle behind atom-based additive methodologies. Again,
several methodologies of this type exist, including the well known Ghose-Crippen [29-32] and
XLOGP [33-35] methods. Mostly these algorithms avoid correction factors by taking into
account these sorts of contributions with a large set of atom types according to the individual
environment it exists in within the molecule [20]. In order to somewhat reduce the atom type
set the XLOGP algorithm implements a small number of correction factors. The reduced
dependence on corrections is the major advantage of these methods. As described by Buchwald
and Bodor, the major disadvantage of this method is that often, the molecule is “more than a
sum of its parts” [17]. Furthermore, human interpretability is reduced as the size of the atom
database set grows and the correspondence with organic and medicinal chemistry principles is
lost.

Molecular methods—Over the last two decades quantum mechanical calculations have
been increasingly used in applied research including drug discovery, particularly with respect
to estimations of interactions between solute and solvent molecules. A number of studies have
used quantum chemical principles for estimation of molecular hydrophobicity [17]. Early work
includes that of Rogers and Cammarata [36,37] and also that of Hopfinger and Battershell
[38]. Klopman and Iroff used charge densities to calculate partition coefficients [39]. More
recently, Bravi and Wikel described a method to predict LogP using a technology called
Molecular Surface – Weighted Holistic Invariant Parameters (MS-WHIP) [40]. Unfortunately,
a relatively large standard deviation between predicted and actual LogP was observed [18].
Toulmin et al. described another prediction method for octanol/water partition coefficients
[41] that correlated minimized molecular electrostatic potentials with the H-bonding capability
of molecules. In this method ΔLogP is defined as the difference between LogPoct (logarithm
of the 1-octanol/water partition coefficient) and their predicted LogPhxd (logarithm of the
hexadecane/water partition coefficient). H-bonding capability has a profound effect on
partition coefficients with a strong correlation between ΔLogP and Vmin (minimized molecular
electrostatic potential). A strong correlation was also reported between ΔLogP or LogPhxd and
CNS penetration of compounds, i.e., through the blood-brain barrier. This highlights the
importance of H-bond donors and acceptors in normal partitioning phenomena.
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Livingstone et al. described a method that uses neural networks (NN) to predict LogP values
from a training set of electrotopological descriptors [42] of 900 drug and pesticide-like
compounds [43]. Other studies involving artificial-intelligence utlilize parameters calculated
by various methods in unsupervised-learning processes to develop predictive models [44,45].
Taskinen and Yliruuski provide an in-depth analysis of such models in their review on NN
modeling [46]. They note that while NN methods are accurate in predicting LogP values of
molecules within the size, functional group, etc. confines of the training set, they are less
accurate in predictions for molecules outside the training set. However, this is the case for all
LogP estimation methods.

Hydrophobicity of amino acids and proteins—Understanding the hydrophobic
behavior of amino acids, peptides and proteins has implications far beyond the seemingly
simple task of calculating LogP for twenty or so small molecules (the amino acids). Abraham
and Leo extended the Hansch and Leo fragment-based method of LogP calculation to amino
acid zwitterions and side-chains [47]. Excellent agreement was reported for 19 out of the 20
natural amino acids. Proline, however, was calculated to be more hydrophilic than in reality,
probably due to poor fragment parameterization for its secondary cyclic amine. With this
method, hydrophobicity values for amino acid side chains were best predicted if a field effect
was applied to the alpha-carbon. The field effect is the sum total of polar proximity effects of
both the backbone amidic (peptide) bonds surrounding the alpha-carbon atom of any given
residue. This field effect parameter accounts for the charge distribution on side-chain atoms
and hence directly affects the hydrophobic/hydrophilic nature of the residue. Application of
this effect allowed a higher correlation between predicted and calculated values of
hydrophobicity for side-chains. In additional studies, Buchwald and Bodor reported a
correlation between the van der Waal's volume of peptides with their LogP values [48]. Another
approach was adopted by Steinmetz, where 3-D QSAR Comparative Molecular Field Analysis
(CoMFA) studies were applied in a similar manner [49]. Experimentally determined LogP
values of free and blocked di- and tripeptides were analyzed statistically to produce another
set of parameters [50]. Akamatsu's work on the solvent partitioning of peptides using regression
analysis of the experimental data to abstract the hydrophobic parameters [51-54] is commonly
regarded as the most convincing and accurate [55]. A comparison between software programs
in predicting peptide LogPs was published recently [56]. In general, fragment-based methods
are sensitive to composition but not to peptide sequence, which can be considered to be a major
flaw of these programs. Also, it is important to note that most current programs are inefficient
and ineffective in calculating LogP values for long peptides.

Summary of LogP estimation methods—A lot of effort has gone into devising methods
for high prediction accuracy for LogP. However, most methods are accurate for members or
close relatives of their own training sets but continue to be less accurate outside their training
sets. It should also be pointed out that a considerable portion of the predictive inaccuracy may,
in fact, lie with the data itself. Such data has often been obtained with experimental procedures
whose accuracy varies with the method used [57]. One example brings this into focus: as many
drugs and drug-like molecules contain ionizable functional groups, the conditions of
measurement, particularly pH, are extremely relevant to measured LogP. Thus, if a user
attempts to estimate LogP for a molecule, e.g., by specifying a carboxylic acid-containing
species, what LogP value should be reported? The molecule in its acid form? The molecule in
its ionized (nominally pH 7) form? Or the weighted average representing the equilibrium
between the two forms? (This is what the experiment, as performed on the molecules in the
training set, measured.) As other functional groups on the molecule can shift that equilibrium,
how does this affect the contribution of the carboxylic acid/carboxylate fragment (or
constituent atoms) to the predicted LogP?

Sarkar and Kellogg Page 5

Curr Top Med Chem. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



While whole-molecule approaches are designed to estimate LogP values with great accuracy
without extensive piecemeal (atom- or fragment-wise) empirical parameterization, their
predictive nature in the end must also be compared to experimental data, limiting our ability
to really judge the accuracy of predictions. This begs the question: do we need to emphasize
accuracy of predictions so much? We suggest that when it comes to drug design, it is largely
the ΔLogP changes between analogues that will drive the evolution in design with respect to
physicochemical properties of the molecule. Virtually all methods of estimating LogP can
accurately describe the replacement of a proton by a hydroxyl, the halogenation of an aromatic
ring, substitution of an amine for a methyl, or nearly any of the chemical modifications that
would be performed in fine-tuning a lead compound. The prediction of LogP for random
organic compounds is probably not an important real world exercise. Also, representing such
an important physicochemical property as a simple scalar value underutilizes the information
content of the molecule's 3-D topology and, particularly, its hydropathic structure. The
combination of topology and hydropathy provides us with structural details of immense
importance, which play a direct role in intermolecular interactions, e.g., ligand binding, protein-
protein associations, etc. However, we do recognize the importance of LogP in QSAR studies,
and also in assessing the drug likeness of a compound, both of which will be discussed below.

Can predictive methods for estimating the LogP of a peptide translate into a meaningful number
for protein hydrophobicity? The idea that an additive atom-based or fragment-based algorithm
(or even a whole molecule approach) could describe the dissolution of a protein into water and/
or 1-octanol is probably preposterous. To start, it is likely that a severe conformational change
would occur if macromolecules pass from aqueous to organic solvents, e.g., hydrophobic
residues would rearrange to the surface while the hydrophilic ones attempt to optimize
hydrogen bonding and/or electrostatic interactions at the core. In other words, a protein would
be an entirely different chemical species when interacting with solvents of different polarity –
if it could actually be solubilized. However, the atomic, fragment or residue-level components
of such a total LogP should be useful descriptors for understanding the forces and energetics
of protein secondary, tertiary and quaternary structure, and have been used in various schemes
of describing and predicting protein folding for more than 20 years.

HYDROPHOBICITY SCALES AND PROTEIN FOLDING
There has long been evidence that protein secondary structure is dependent on the hydrophobic
properties of the amino acid residue side chains. There is, in fact, a reproducible pattern of
these properties in well-defined secondary structural elements such as α helices and β sheets.
Thus, considerable effort has been expended in developing hydrophobicity scales that can aid
in predictions of protein folding patterns. Some of these scales are based on water-ethanol
transfer free energies [58,59], while others are based on partitioning between the bulk aqueous
phase and the air-water interface [60], or on water-vapor partition free energies [61]. Kyte and
Doolittle discussed the weaknesses of all three of these in a paper that also introduced their
own hydrophobicity scale [62]. In their view, water-ethanol transfer free energy-based methods
suffer because some amino acids are known to be insoluble in both water and ethanol and the
latter may not be a truly inert solvent. Using partition data from transfer between the aqueous
phase and air-water interfaces was also problematical because the hydrogen bonds that must
be broken and the charges that must be neutralized to remove a residue from the aqueous phase
during the formation of the native structure probably remain unchanged at an air-water
interface. Thus, they would not be a factor in the overall reaction.

The “hydropathy” parameter of Kyte and Doolittle [62] is an amalgam of water-vapor transfer
free energies and the interior-exterior distribution of amino acid side-chains determined by
Chothia [63]. A moving-segment approach that continuously determines the average
hydropathy while it advances through a sequence is used to obtain a plot of hydropathy as a
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function of sequence. On this plot, any parts of the sequence that are above the average
hydropathy for the sequence are termed hydrophobic and correspond well with experimentally
determined “internal” regions of proteins. Conversely, sequence elements with hydropathy
below the average are termed hydrophilic and correspond well with areas of the protein that
are “exterior” and likely to be in contact with the polar solvent. The motivation is that analysis
of these data may indicate the “folding” pattern of the sequence. To further exploit this, Wimley
and White reported a new forcefield derived from partitioning two series of model peptides
into the interface of neutral (zwitterionic) phospholipid membranes [64]. An alternative
approach was introduced in 1986 by Eisenberg and McLachlan [65] for calculating the stability
of protein structures in water based on atomic coordinates. The contribution of each protein
atom to the solvation free energy is estimated as the product of the solvent accessibility of the
atom and an atomic solvation parameter.

Li and Deber [66] used circular dichroism (CD) data to rank order helical propensity of proteins
within membranes. Residues such as Ile, Val and Thr, which usually exist as β-sheets in an
aqueous environment, prefer an α-helical conformation in lipid membranes. Thus, the helical
propensity of amino acid residues correlates with the hydrophobic nature of the side chain.
More recently, Dyson, Wright and Scheraga have explained [67] how strict classification of
side chains as polar or non-polar has obscured certain facts about protein folding. For example,
methylene groups present in large polar or charged amino acid side chains like the four
methylenes in the lysine side chain can be considered non-polar. Interestingly, this fact was
imbedded as one of the factors in the Hansch and Leo system for estimating LogP [68] nearly
30 years earlier! These methylenes can aggregate with other non-polar groups and assist in
hydrophobic collapse of the sequence.

Felitsky et al. introduced the use of a new parameter called “average area buried upon
folding” (AABUF) [69] that explains both local contacts and long-range interactions. AABUF
was used to study folding of apomyoglobin and provided additional insight into hydrophobic
collapse and early folding events. Studies on polyalanine and polyleucine helices in water by
MacCallum et al. [70] confirmed that in folding many unfavorable enthalpic events are
counterbalanced by favorable entropic contributions by the solvent. This indicates a very small
free energy barrier for folding. Thus, folding is mainly a desolvation phenomenon. Similarly,
the Mardia and Nyirongo procedure for generating virtual protein Cα traces simulates the
hydrophobic effect during folding [71] and produces models that are globular and compact.

Another related application of hydrophobicity is in the development of algorithms to simulate
folding of hydrophobic-polar (HP) models in 2 and 3 dimensions [72]. The concept is to
simplify the complex problem of folding by reducing it to representing residues by spheres
with H (hydrophobic) and P (polar) character. The ensuing simulations are based on the
observation that hydrophobic forces are the major forces determining native conformation of
small globular proteins. These model simulations have been used to develop mathematical
strategies for solving the combinatorial explosion problem, rather than actually simulating the
hydrophobic effect [73-74].

As these studies have progressed over the past 20 years or so, the understanding of the
hydrophobic effect and its impact on protein structure has matured. The early emphasis of using
hydrophobicity scales to define folding patterns has shifted to algorithms that define protein
folding in terms of mathematical approaches to reduce the calculational combinatorial
explosion caused by exhaustive sampling of conformational space. However, it must be
repeated that the same forces and energetics that drive solvent partitioning in the shake flask
are at the core of protein folding. The difficulty is to unravel them and define algorithms that
can simulate folding in these terms.
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LogP IN DRUG DESIGN
Small molecule hydrophobicity has long been a consideration in drug discovery and design.
The relationship between anesthetic effect of certain gases and their hydrophobicity has been
extremely well established [4,75,76]. As described by Meyer in 1937 [3], chemically inert
substances accumulate in “lipoids” and at a certain concentration, produce narcosis. The
concentration itself is dependent on the animal, but independent of the narcotic itself. Hansch
et al. also confirmed the Meyer-Overton hypothesis about a direct relation between
hydrophobic nature of a compound and its anesthetic capabilities [75] through statistical
correlations. However, Hansch suggested the additional involvement of a polar factor because
molecules with polar hydrogens showed greater anesthetic action. Hansch et al. also introduced
a similar theory for the hypnotic effect of barbiturates [76]. Other studies also have shown the
important correlation of partition coefficients with binding affinities of drugs to receptors
[77,78]. McFarland used a very simple probabilistic treatment of drug diffusion from the site
of administration to the site of action via a collection of hydrophobic and hydrophilic barriers
[79]. Inclusion of the Hammett equation into this study gave an intuitively satisfying parabolic
relationship between drug potency and hydrophobicity (Appendix 3): higher doses of drugs
with unfavorable partition coefficients (either too high or else too low) are required for them
to reach the site of action. Recently, Kier has proposed a general theory of inhaled anesthetics
[80].

The Lipinski “Rule of 5”
Hydrophobicity, of course, has also been a key factor in Lipinski's “rule of 5” [81,82]. In simple
terms, Lipinski's rule can be stated as such: Poor absorption or permeation is more likely for
a chemical entity when: a) there are more than 5 H-bond donors (sum of OHs and NHs); b) the
molecular weight is over 500; c) the LogP is over 5; or d) there are more than 10 H-bond
acceptors (sum of Ns and Os). The only exceptions to these rules were said to be substrates for
biological transporters and natural products, which have a tendency to be highly complex
molecules with multiple stereogenic centers and rarely contain nitrogen [83,84]. In 2000
Lipinski introduced changes to address terms such as ‘drug-like’ because it was predicted that
ADME (Absorption, Distribution, Metabolism and Excretion) screening of molecules (into
drug-like or non-drug-like) would precede screening for activity at biological receptors [82].
The rule of 5 was further extended [85] to define a number of useful parameters: a) the presence
of greater than 10 rotatable bonds reduces oral bioavailability; b) 0 < LogD < 3 enhances the
probability of good intestinal permeability (LogD is logarithm of the distribution coefficient
D, which is in turn defined as the ratio of the sum of concentrations of all forms of a substance
distributed between two mutually immiscible phases); c) a polar surface area (PSA) of less
than 60-70 describes CNS active compounds; d) an N+O count of less than or equal to 5
enhances the probability of passing the blood-brain barrier; e) if LogP – (N + O) > 0, the
molecule tends to be CNS active; f) orally-active drugs have lower molecular weight and fewer
H-bond donors, acceptors and rotatable bonds; g) pulmonary drugs tend to have a larger PSA;
and h) if the molecular weight < 300, LogP < 3, H-bond donors and acceptors < 3 and rotatable
bonds < 3, the compound can be called “lead-like”.

This revolutionary work, which brilliantly summarized over 100 years of Medicinal Chemistry
trial and error, made possible a number of rational filters and screens that, in principle, would
improve the likelihood that a compound with promising “activity” could produce a “lead” and
eventually yield a “drug”. Muegge described various methods for classification of drug-like
compounds in his 2003 publication [86]. Similar publications addressing the terms ‘drug-like’
and ‘tool-like’ were also made [87,88]. Oprea et al. reported the presence of a “medicinal
chemistry lead-like space” and urged careful use of Lipinski's rules [89]. A very interesting
discussion [82] on how the properties of drug candidates from two pharmaceutical companies
have varied across time pointed out that stress on rational methods of drug design in Merck
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laboratories caused no significant change in MLogP (Moriguchi LogP [90]) values across time.
In contrast, there was a measurable increase in MLogP values for candidates from Pfizer since
almost 50% of their hits were discovered with high-throughput screening (HTS) methods.
Because the easiest method to increase in-vitro potency is to appropriately position a
hydrophobic moiety onto a lead compound, HTS methods almost invariably select more
hydrophobic candidates. Similar trends were observed [91] in that more than half of the
molecules reported to have high-activity towards the end of the last century had a high LogP
(> 4.25), high molecular weight (>425) and log of solubility in its neutral state (estimated from
its molecular weight and LogP values), i.e., LogSw (< −4.25), only about 35% of the true lead
compounds had these properties. It was also noted that as these molecules go through clinical
trials, there is a distinct decrease in LogP values for compounds that make it to the market.
One thing is clear from these studies and an analysis by Proudfoot of drugs currently on the
market [92]: the lipophilicity of molecules that make it all the way to commercialization has
remained in the same range for a number of years. In other words, there is a delicate balance
between the hydrophobic and hydrophilic nature of a molecule that is absolutely essential for
it to be transported to the site of action by diffusion across membranes.

Hydrophobicity in QSAR
Similarity between molecules is often perceived by chemists both qualitatively and
quantitatively. A synthetic chemist would describe two molecules as similar if they have similar
topologies, bond connectivities, functional groups or maybe synthetic strategies. Structure-
Activity Relationships (SARs) are based on such comparisons in the context of physiological
function, but are mostly limited to qualitative or semi-quantitative treatments of biological
phenomena or activities. However, more stringent definitions of similarity have been
formulated and can be used with chemical computing software to perceive (and even predict)
chemical equivalence provided the likeness is scrutinized critically. Thus, a more mathematical
and quantitative approach called the Quantitative Structure-Activity Relationship (QSAR),
wherein affinities of ligands for their binding sites, inhibition constants, rate constants and
other biological activities are correlated to molecular properties such as lipophilicity,
polarizability, electronic and steric properties, was developed. Comprehensive reviews have
been published on the subject in the past [93,94], which should be referred to by those wishing
to learn about the QSAR concept in depth. Here, we will focus on the key role of hydrophobicity
in these studies.

There are many different approaches used in classical QSAR studies, including establishment
of relationships between activity and physicochemical properties such as steric properties
(Hansch analysis, extrathermodynamic approach), structural features (Free Wilson analysis)
[94], or topological descriptors (Kier-Hall indices) [42]. 3D QSAR methods, especially those
such as CoMFA, consider three-dimensional ligand structures and use those to propose the
binding modes of those ligands at a common protein active site [94]. Data is often analyzed
by statistical methods such as Multiple Linear Regression (MLR), Partial Least Squares (PLS)
or by use of artificial intelligence (AI) methods such as Neural Networks (NN) or Support
Vector Machines (SVM) [95] in order to detect correlations between a target activity and
various descriptors (like LogP).

Hansch and Fujita first introduced their method, and coined the term QSAR, for correlation of
biological activity to chemical structure in the 1960s [78,96-98]. The method correlated, with
the use of regression analysis, ligand structural variations to the biological activities of those
ligands. In time, these studies would become a distinct scientific field and a mainstay of drug
discovery and design research. Many applications have been reported across the past five
decades. A review by Kubinyi has described, in great detail, the various subtleties of the science
[99]. Indeed, in the absence of a detailed target or receptor structure, this ligand-based drug
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design method gives invaluable quantitative information to drug designers. It is important to
note that the first publication on QSAR in 1962 [78] showed the importance of hydrophobicity
through LogP. Appendix 4 explains the general concept behind the Hansch Analysis technique
where the free energy-based substituent constant π is based on the Hammett function σ. π is
dependent on the substituent's chemical nature and, since molecules must repeatedly partition
between lipid membranes to be effective drugs, the constituting fragments of π should be such
that their additive effect would allow easy partitioning into either membranous or aqueous
phases.

It must be noted, however, that hydrophobicity is not always the principal parameter
determining activity [100]. For example, when DNA is the drug target, e.g., in binding to the
major or minor groove, QSAR analyses often shows negligible hydrophobic terms because the
negatively charged phosphate groups of DNA are hydrophilic. On the other hand, DNA
intercalation would likely be a hydrophobic effect. Radical reactions also typically lack
hydrophobic terms in QSAR analyses, although these studies are mostly on small datasets and
more thorough studies would be desirable. Finally, it has been suggested from QSAR studies
on Multiple Drug Resistance that this process might be accomplished without hydrophobic
assistance, although this conflicts with the fact that efficiency of efflux pumps is often
correlated with the hydrophobicity of their substrates [101].

3D QSAR methods like Comparative Molecular Field Analysis (CoMFA) [102] generate 3D
field maps around aligned molecules to display zones of steric, electronic and lipophilic
tolerance or intolerance. This gives a visual understanding of biological activity that contrasts
well with the often messy collection of molecular descriptors in classical QSAR studies,
thereby allowing easier interpretation of results. This, in turn, may lead to a better basis for
designing novel scaffolds and/or chemical substituents to the existing scaffold. The basic idea
behind this method is explained in Figure 2. Kellogg et al. introduced a method for hydrophobic
field calculation for CoMFA [103] using an empirical force field (Hydropathic INTeractions
or HINT, discussed in detail below). This was one of the first attempts in 3D QSAR to modify
the purely enthalpic treatment of ligand-receptor binding by inclusion of an implicit entropic
term. References to the use of HINT-CoMFA in drug design are available [103-106]. Another
attempt to include hydrophobicity into CoMFA was made by Gaillard, Testa and coworkers
in their papers [107,108] describing the use Molecular Lipophilicity Potential (MLP) in 3D
QSAR along with its applications. This alternative method of using hydrophobicity in CoMFA
studies has found a number of applications in molecular modeling and drug design work
[109-111].

QUANTIFICATION OF HYDROPHOBIC INTERACTIONS
Equations calculating energy from structure, a.k.a. force fields, have been in use for many years
in computational chemistry and molecular modeling [112]. Generally, force fields have been
restricted to enthalpic terms that are simple to correlate with bond formation or bond breaking
and simple Newtonian physical phenomena like bond stretches and bends, electrostatics and
dispersion. The hydrophobic effect is, in some measure, an entropic phenomenon, and is not
easily derivable from these first principles. Nevertheless, a few examples of quantifying
lipophilicity and its effect on biomolecular energetics have been reported [12,113-119].
Hermann and Chothia [12,113], among others, proposed that hydrophobicity can be quantified
by the calculation of hydrophobic surface area. Oobatake and Ooi present an excellent review
of this approach [114]. Cramer and Truhlar introduced a solvation model [115] that included
charge distributions on solute molecules, the energetic effects of cavity formation and
restructuring of water around such cavities, and even subtle variations in charge distribution
due to interactions between solute particles and surrounding solvent molecules. Sharp and
coworkers introduced a new solvation model illustrating the dependence of the hydrophobic
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effect on curvature of the site [116]. This was an attempt to explain the difference between the
calculated energy for hydration of hydrocarbons (about 25 cal mol−1 Å−2) and the surface
tension at the water-hydrocarbon interface (about 75 cal mol−1 Å−2). This altered surface area
measurement suggested that the “macroscopic” hydration energy is 47 cal mol−1 Å−2. Indeed,
the assumption that the energy of hydrophobic interactions is dependent on the area of the
hydrophobic-water interface is the mainstay of much research in the area. However, alternative
approaches have had some success. Cesari et al. presented a model describing the hydrophobic
interactions within globular proteins based on analysis of X-ray data [117] where fold
definitions were clearly shown to be a function of hydrophobicity. Hummer described the
development of a hydrophobic force field as an alternative to surface-area models [118]. The
best developed model for quantitating hydrophobic interactions has been the HINT
(Hydropathic INTeractions) system that is discussed below.

The HINT paradigm
A notably different approach was taken by Kellogg and Abraham [119,120] in designing the
“natural” force field HINT (see Appendix 5). This non-covalent interaction force field is
derived from partition coefficients based on the Hansch and Leo LogP estimation method. It
is very empirical in nature and approximates all components of biomolecular interactions,
including hydrogen bonding, Coulombic interactions along with entropy and solvation/
desolvation effects in addition to hydrophobic interactions because all of these effects are
inherent in the experiments that measure LogP [68]. Interestingly, the Hansch and Leo method
encodes many interaction effects within the “correction” factors. For example, intramolecular
hydrogen bonding within a small molecule, which would make the molecule less polar (and
seemingly more hydrophobic) because the involved polar hydrogen and its partner acceptor
are less able to interact with water solvent, is encoded with a factor that gives an internally
calibrated indication of the energetics of hydrogen bonding (0.6 – 1.0 LogP units, i.e., 0.8 –
1.4 kcal mol−1).

A key principle behind HINT is that significant understanding of biological phenomena,
particularly interactions, can be revealed by representing hydrophobicity as a 3D “field”
property rather than as a simple scalar (number) [121]. For example, consider the Tyrosine
molecule shown in figure 3. Hydropathic properties of the molecule are mapped in three
dimensions around the structure of Tyrosine, creating a HINT map. The use of these maps
creates a visual representation of properties that are often mentioned casually, such as
hydrophobic or polar nature of functional groups. Not only does this methodology allow a
chemist to form a qualitative understanding of the molecular topology, but also forms the basis
for quantitative estimation of physicochemical properties by using the HINT force field. This
may further be used in the depiction of molecular interactions, which has a direct repercussion
in drug design.

Intermolecular Interaction Analysis—Perhaps the most important application of HINT
is in the assessment of intermolecular interactions. HINT calculations derive an interaction
score that in numerous studies [122-125] has been shown to correlate with free energy of
interaction. Although it is data set dependent, i.e., for specific protein-ligand or polynucleotide-
ligand systems, it is estimated that, on average, 515 HINT score units correspond to 1 kcal
mol−1 free energy of binding [119]. A recent report indicated the value of the HINT score in
ligand docking studies by a comparison to the scoring functions within FlexX, AutoDock and
GOLD [123]. The most important advantage of the HINT methodology is that it inherently
estimates enthalpic as well as entropic contributions to binding (Appendix 5). It has been shown
[122,126] that errors in prediction for very diverse sets of protein-ligand complexes are
approximately ± 2.6 kcal mol−1, although within a family of ligands binding to the same protein
this error can approach ± 1 kcal mol−1. There often is an order of magnitude difference between
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values of Ki measured by different laboratories on the same protein-ligand complex, which
corresponds to a possible 1.0-1.5 kcal mol−1 experimental uncertainty. Thus, the error value
reported above between experimental results and HINT scores indicates that HINT is a robust
method for binding affinity predictions. Further sources of error include uncertainties in
positions of atoms in models, incorrectly assigned atom types, or (often) missing solvent
molecules in the source crystallographic structure data. The HINT method has been used
successfully in quite a number of projects [122,126-129]. In a recent example, Tripathi et al.
generated a model capable of predicting antiproliferative activity of pyrrole derivatives against
cancer cell lines. In this study, experimentally determined IC50s of a number of compounds
were correlated with HINT scores from docking these ligands to αβ-tubulin to generate
molecular models that could be scored, and yielded a significant correlation. This correlation
could distinguish active molecules from inactive ones by the HINT score value and, thus,
provides a basis for design of novel molecules with anticancer activity. In another interesting
application the sequence specificity of anthracycline groove-binding intercalators was
evaluated and predicted by HINT score [130]. This work illustrated that the HINT score could
be parsed into relevant free energy subsets that can be ranked and compared for particular
intercalator functional groups and/or nucleotide bases in DNA double helix strands.

Computational Titration—An extension of the HINT force field known as Computational
Titration [124] is used to evaluate the ionization states of functional groups on ligands or
residues at the binding site. It is well known that these variations can have a strong influence
on binding affinities. The method models, in parallel, multiple ionization states for both ligand
and protein creating a collection of ionization state ensembles. Each distinct protonation state
ensemble is optimized for hydrogen bonding, including water positions, and analyzed by HINT
score. The best scoring complex indicates the optimum state for binding and suggests the
corresponding pH for that optimum binding. However, the pH at which crystals are grown and
analyzed can be different from this optimum pH. The resulting model can help reconcile the
differences between in silico models and data. However, at room temperature, where binding
data is measured, there are likely to be many protonation models of similar, accessible energy.
Computational Titration analysis helps develop an understanding of the relationship between
these states. There is now a computational titration server for public use at
http://hinttools.isbdd.vcu.edu/CT [131].

Analysis of Bridging Waters—Another factor relating to the stability of biomolecular
complexes is the contribution of water molecules within the binding site and bridging between
the ligand and biomolecule [125,132]. The presence of these bridging water molecules can be
a very important factor in binding of molecules, but water molecules can play a variety of roles
as they facilitate biomolecular interactions and stabilize structure. Often, due to a variety of
experimental reasons, positions of water molecules in crystal structures are not well defined,
even after x-ray crystallographic analysis. This mischaracterization and non-detection of water
positions can be correlated with x-ray crystallographic resolution, with better resolution both
locating a larger number of water molecules and placing their positions more accurately. Thus,
to thoroughly evaluate structure, it is often necessary to verify water molecules systematically
with tools such as the GRID program of Goodford [133]. Concomitantly, it is desirable to know
which of these waters are subject to displacement by ligands and which are conserved. Using
HINT score combined with a metric based on geometry, Amadasi et al. developed a robust
method to calculate the relevance of binding site waters; those with particularly high relevance
score would be expected to yield extra entropy if a ligand was designed to displace it, i.e.,
similar to the cyclic HIV-1 protease inhibitors [134]. In another study, the contribution of
bridging water molecules to overall free energy of binding has been derived and quantitated
[132].
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3D QSAR with HINT—A very early application of the HINT force field was the introduction
of field hydrophobicity parameters into 3D QSAR technology, to complement the original
steric and electronic fields in CoMFA [103]. The steroid data set originally reported by Cramer
et al. [102] was reexamined with the addition of a HINT-derived field. While this study
provided little advantage in terms of statistical improvement due to a variety of reasons
described previously [119], it provided a distinct advantage in chemical interpretability for
chemists aiming to design new molecules based on such a QSAR study. Quite a few reports
of studies based on the HINT-CoMFA methodology have been reported since then [104-106,
135-140] and some, particularly where the ligands or active sites are particularly non-polar,
do show significant statistical improvement when hydrophobic fields are included. Fields in
3D QSAR are another class of descriptor that often needs to be optimized for the data set
[141] in that each data set has forces and structures that may be best represented
hydrophobically, sterically, electrostatically, or with other types of fields.

CONCLUSIONS AND FUTURE DIRECTIONS
Hydrophobicity impacts every aspect of drug design and even delivery, as has been repeatedly
pointed out over the past century. Studies of this phenomenon have resulted in multiple
theories, algorithms and tools for applying the concept. A large amount of effort has been put
forth into studying the partition coefficient both experimentally, especially in terms of its
prediction because of its importance in “druggability” of compounds. Many theoretical
methods are robust in estimating LogP for molecules similar to their training set, but large
errors are fairly common for compounds with large chemical and structural differences from
that set.

Since Hansch and Fujita introduced the QSAR method, drug design projects have repeatedly
found use for hydrophobic parameters. This dependence of drug design on lipophilicity is
intuitive arising from drugs and proteins coming together, or proteins folding, in order to reduce
the surface area in contact with polar water molecules. Quantification of this phenomenon has
taken many forms, such as calculating of hydrophobic surface contact area to represent
hydrophobic interactions, supplementing 3D QSAR with hydrophobic fields (HINT and MLP)
[103,107-109], and with direct quantification of intermolecular interactions with HINT [123,
126-129]. While there are numerous force fields available, most are Newtonian in origin and
concentrate on H-bonding, Coulombic interactions, van der Waal's interactions and London
forces for estimating the strength of molecular interactions, all of which are mostly if not
entirely enthalpic. HINT is different in that it accounts for both hydrophobic and hydrophilic
interactions, and is derived from a free energy experiment. The availability of the HINT toolkit
[142,143] makes it possible to develop application programs for computer-aided drug
discovery and design.

The complex phenomena of hydrophobicity and hydrophobic interactions are still only poorly
understood and remain quite difficult to simulate. Considerable resources and effort will
continue towards development of accurate experimental and theoretical methods to determine/
predict the partition coefficient. However, understanding and exploiting the hydrophobic effect
in drug design, e.g., docking, target structure prediction, etc., will undoubtedly be increasingly
important in the future. It is generally accepted that proteins fold in such a way that hydrophobic
groups are largely shielded from water by hydrophilic groups. While evaluating the factors
that affect prediction of protein folds, Park et al. noted that hydrophobicity of residues is the
largest force defining protein structure, but that other factors were involved as well [144].
Accurate hydrophobicity measurements and estimation of hydrophobic interactions could have
a tremendous impact on the modeling of protein folding and side chain orientation. Better
modeling and representation of hydrophobic interactions will also contribute to the
understanding of biological processes implicating hydrophobicity such as drug resistance
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caused by efflux. There is no doubt in our mind as to the applications of this phenomenon in
computational life sciences and computer-aided drug design. Hydrophobicity may not be the
“Holy Grail” of biomolecular phenomena, but it is definitely the one of the “Commandments”.
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Appendix
Appendix 1

Fragmental methods for determination of LogP values

Rekker's method is highlighted with an example adapted from Mannhold and van de
Waterbeemd [18].
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Appendix
Appendix 2

Atom contribution methods

the calculation of LogP for quinidine by atom contributions is shown (adapted from Mannhold
and van de Waterbeemd [18]).
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Appendix
Appendix 3

A parabolic relationship exists between drug potency and
hydrophobicity

An equation relating probability and partition coefficient was derived by McFarland [79].
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Appendix
Appendix 4

Hansch Analysis

a method to relate physicochemical parameters to drug potency. For details, refer to Hansch
and Fujita [95].
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Appendix
Appendix 5

The HINT Paradigm

A “natural” free energy force field based on LogP. It is available as a toolkit, allowing flexibility
in development of applications. Refer to Kellogg and Abraham [118] for details.
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Figure 1. The Hydrophobic Effect
Hydrophobic molecules are surrounded by an ordered cage of water molecules. When two such
molecules come together, they aggregate in order to reduce their surface area in contact with
the polar water molecules. This causes a number of water molecules to be removed from their
ordered formation, thus increasing disorder (increased entropy) and potentially making the
process energetically favorable.
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Figure 2. 3D QSAR
3-Dimensional Quantitative Structure Activity Relationships (3D QSAR) are models generated
by taking into account the 3-dimensional positions of various physicochemical characteristics
of a set of overlapped molecules and the effect they have on drug potency [94,99]. A) Molecules
are overlapped and placed in a superimposed grid with extents of several Angstroms in all
directions. Each grid point is treated as a probe; neutral carbon atoms probe for Van der Waal's
interactions, while charged atoms probe Coulombic interactions. Fragments can also be used
as probes for elucidating H-bond donors or acceptors. Simple physics equations calculate the
energy (data value) at each grid point. These data are examined for trends using PLS, MLR or
AI algorithms fit to the biological properties of the molecules. B) The resultant map indicates
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regions where certain physicochemical parameters, e.g., charge or steric bulk, are tolerated (or
not tolerated), which serves as an aid to chemists designing analogs with improved properties.
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Figure 3. HINT map for the molecule of Tyrosine
This map shows a hydrophobic area on the molecule represented as a cage around the benzene
ring. The polar areas on the map are further depicted: acidic (light grey lobes) and basic (dark
grey lobe).
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Table 1

Various types of methods for LogP calculations This table shows a rough classification of methods used for
theoretical prediction of LogP for compounds. Examples of all the different types are included.

Approach Methodology Example(s)

Substructure approaches Fragment-based methods Rekker's method [22], Leo's C-LOGP method [23-27], ACD/LogP
method [28]

Atom-based methods XLOGP method [33-35], Ghose-Crippen method [29-32]

Whole molecule approaches Molecular Lipophilicity Potential and
related approaches

MLP [107-108]

Topology descriptions MS-WHIP [40]

Molecular Property descriptions Toulmin's ΔLogP method [41]
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