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It has been argued that increases in predation over geological time
should result in increases in defensive adaptations in prey taxa. Recent
in situ and laboratory observations indicate that cidaroid sea urchins
feedon livestalkedcrinoids, leavingdistinctbitemarksontheir skeletal
elements. Similar bite marks on fossil crinoids from Poland strongly
suggest that these animals have been subject to echinoid predation
since the Triassic. Following their near-demise during the end-Permian
extinction, crinoids underwent a major evolutionary radiation during
the Middle–Late Triassic that produced distinct morphological and
behavioral novelties, particularly motile taxa that contrasted strongly
with the predominantly sessile Paleozoic crinoid faunas. We suggest
that the appearance and subsequent evolutionary success of motile
crinoids were related to benthic predation by post-Paleozoic echi-
noidswith their strongerandmoreactive feedingapparatusandthat,
in the case of crinoids, the predation-drivenMesozoic marine revolu-
tion started earlier than in other groups, perhaps soon after the end-
Permian extinction.
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Predator–prey interactions may represent a significant driving
force of evolutionary change (1–4), but predation and its con-

sequences are often difficult to assess in Recent communities and
evenmore so in the fossil record. Data on fossil and extant crinoids,
commonly known as sea lilies and feather stars (Echinodermata),
indicate that they suffer from predation by fishes, and numerous
evolutionary trends have been ascribed to such interactions (5–15).
Among these are (i) crawling and swimming abilities in comatulids
(6), (ii) choice of semicryptic habits and nocturnal–diurnal behavior
among comatulids (6), (iii) increasing plate thickness and spinosity
among Paleozoic crinoids (9), (iv) offshore displacement of late
Mesozoic/Cenozoic stalkedcrinoids (11), and (v) originof autotomy
(shedding) planes in the stalk and arms (13). Some of these trends
have served as examples of dramatic change in marine ecosystems,
such as the Mesozoic marine revolution (MMR) (2, 16) and the
middle-Paleozoic marine revolution (9).
Although predation by fish has received the most attention, cri-

noids may be the prey of other organisms, most notably benthic
invertebrates. Until recently, few data hinted at the importance of
benthic predators to crinoids, including a swimming response in a
comatulid when perturbed by the predatory sea star Pycnopodia
helianthoides (17), the presence of crinoid pinnulars in the gut of the
goniasterid Plinthaster dentatus (18), and a crinoid arm observed in
the claw of the crab Oregonia gracilis (17). Recently, submersible
studies of stalked crinoids belonging to the Isocrinidae have re-
vealed that they areprey to cidaroids, orpencil urchins.Evidence for
this interaction includes (i) in situ observations of cidaroids among
large aggregations of motile isocrinid sea lilies (Neocrinus decorus
and Endoxocrinus parrae), (ii) proximity of cidaroids to several up-
ended isocrinids, (iii) a cidaroid perched over the stalk of an up-
ended crinoid and (iv) another on top of disarticulated crinoid
remains, and (v) gut contents of cidaroids consisting of as much as
70% crinoid skeletal material (19).

To further explore the interaction between extant cidaroids and
crinoids, to test for evidence of the interaction in the geologic past,
and to identify its evolutionary consequences, we conducted aquar-
ium experiments, analyzed samples of Triassic fossil crinoids, and
examined the evolutionary history of crinoids and echinoids.

Results
Live individuals of the commercially available cidaroid, Eucidaris sp.,
were placed together in aquaria with live specimens and detached
arms of the shallow-water comatulid crinoid, Lamprometra palmata,
as well as with isocrinid crinoid arm and stalk segments. Although
cidaroids do not specialize on crinoids, every echinoid that was pre-
sented with crinoid material consumed all or part of it, and in one
instance, a liveL. palmatawas eaten entirely (Fig. 1A andMovies S1).
Ingested crinoid body parts consisting of multiple skeletal elements
occasionally passed through the sea urchin gut and were excreted
without disarticulating, remaining as multiple-element units bound
together by soft tissue. Some crinoid elements that passed through the
gutweremarkedby scratches and circular to oval pits with dimensions
matching those of the teeth of the urchin’sAristotle’s lantern chewing
apparatus (Fig. 1 C and D). In one dissected cidaroid, a multiple-
element segment of a crinoid’s armmarked by such scratches and pits
was recovered from the very distal part of the hindgut (Fig. 1B).
The aquaria observations document that crinoids could represent

sea urchin prey and demonstrate that echinoids leave characteristic
scratchesandpits thatmightbepreservable in the sedimentary record.
Indeed, an analysis of sediment samples collected at sites where
crinoid–cidaroid interactionshavebeenobservedvia submersible (19)
reveal a significant proportion of crinoid elements with such pits and
scratches. Furthermore, and as indicated here, an example of such
markings on Jurassic crinoids has been recently described (20).
To determine whether cidaroids interacted with crinoids during

the Triassic, we looked for evidence of such bitemarks onmore than
2,500 fragments of crinoid stalks collected from five middle Triassic
localities in Poland (Fig. S1). More than 500 columnals (approx-
imately 20%)had characteristic scratches andpits: relatively shallow,
clean cuts in the stereom of the ossicle surface, 0.1 to 1.5 mm wide
and as long as 2.5 mm (Fig. 2). Pits are usually oval to circular and
perpendicular to theossicle surface.Thesemarksoccur chieflyon the
exposed lateral ossicle surfaces rather than on the articular faces,
suggesting that they were made while skeletal elements were still
articulated. This is also consistent with numerous examples of such
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marks on well preserved pluricolumnals—isolated stalk segments
consisting of more than one skeletal ossicle. Given the rapid rates
of postmortem disarticulation of crinoids in natural settings (21,
22), these data suggest that the crinoidmaterial was fresh andmost
probably living when the marks were made, and we treat it as ev-
idence of predation rather than scavenging.

Although we cannot identify precisely which predators were re-
sponsible for all of the Triassic bite marks in our samples, many are
similar to those we have retrieved from the guts and feces of extant
cidaroids and from the sediment samples collected where cidaroid–
crinoid interactions have been observed. As cidaroid spines and test
fragments also occur with damaged crinoid elements at some of the
Triassic localities, we conclude that crinoids were preyed upon by
cidaroid echinoids that originated anddiversifiedat this time (23, 24).

Discussion
The Triassic is considered a crucial phase of post-Paleozoic echino-
derm evolution. Following the end-Permian event, which led to their
near extinction, both crinoids and echinoids rebounded rapidly in the
Middle and Late Triassic. This radiation led to a substantial and well
known ecological diversification for both groups (25–32). Among
echinoids, the post-Paleozoic radiation resulted in dramatic changes
in the lantern and the teeth, with the cidaroids evolving a stronger and
more active jaw apparatus (27, 28). Among crinoids, in addition to a
rapidexpansion throughmorphospace (33),majormorphological and
behavioral innovations led to the development of both active and pas-
sive motility (34, 35), a trait not found among Paleozoic crinoids and
one that represents an effective escape strategy from benthic preda-
tors (Fig. 3). Taxawith amotile life habit included theMiddleTriassic
planktonicmicrocrinoids (roveacrinids) (31), pseudoplanktonic stalk-
ed crinoids (traumatocrinids) (34), and benthic isocrinids we now
know were capable of rapid crawling (35). The primitive free-moving
crinoids (paracomatulids) and pseudoplanktonic pentacrinitids also
likely originated in the early Late Triassic (37, 31). Similarly, although
echinoid diversity apparently remained low through the Early Tri-
assic, early cidaroids were widespread in carbonate ramp settings
throughout lowpaleolatitudeareasduring theentireTriassic (32).We
argue that the evolution of increased motility among crinoids was
stimulatedby their interactionswithbenthicpredators, as suggestedby
our data on echinoid–crinoid interactions.

Fig. 1. In-aquaria observations of the cidaroid, Eucidaris sp., consuming and
processing crinoid skeletal elements. (A) Oral side of Eucidaris sp.; arrow
indicates a stalk segment of the isocrinid, N. decorus, held in the Aristotle
lantern. (B) A dissected section of Eucidaris sp., aboral side down; arrow
indicates a multiple-element piece of a comatulid arm at the periproct, in the
distal-most part of the hindgut. (C) Multiple-element comatulid arm segment
that had passed through the gut of Eucidaris sp. (D) Multiple-element
comatulid arm segment that had passed through the gut of Eucidaris sp.
(Scale bars: 1 mm.)
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Fig. 2. Examples of bitemarks (identifiedby arrows) on crinoid skeletal elements. Recent examples of crinoid brachials (A and B) and columnals (C andD) extracted
from the gut of extant cidaroids, Calocidarismicans andHistocidaris nuttingi (19). (E–H) Recent columnals extracted from sediment samples collected by submersible
at the site where crinoids and cidaroids were observed to interact (19). (I–K) Middle Triassic dadocrinid columnals collected in the Holy Cross Mountains, Central
Poland. (Scale bars: 1 mm.)
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TheMMR represented a time of fundamental change in benthic
marine communities (including trends toward diversification of in-
fauna, increased shell strength, and environmental restriction) in-
ferred to have been caused by intensified durophagous and grazing
predation (1, 2). Although considerable debate and uncertainty
surrounds its onset (38, 39), the MMR is generally thought to have
begun in the Jurassic and continued to accelerate in the Cretaceous
(1, 2). Our data suggest that, for crinoids at least, the predation-
driven MMR started in the Triassic. We argue that the major evo-
lutionary changes characterizingmany crinoid groups in theTriassic
were responses to interactions with predators such as cidaroids that
have generally not been considered as major players in the MMR.
Of course, even with the development of motility, crinoids did not
become immune from predation later in the Mesozoic. Crinoid el-
ements from post-Triassic localities also show signs of predation
(20), some characteristic of cidaroids. Durophagous fish diversified
in the later Mesozoic, accompanied by the appearance of new iso-
crinids with arm branching patterns well suited for reducing fish-
predation damage (13, 40).Moreover, thewell documented pattern
of offshore displacement of stalked crinoids (11) indicates that fish

mighthaveexerted thepredationpressureat this time(41).Compared
with the Triassic, however, evolutionary changes in later Mesozoic
crinoids were relatively minor, involving fine-tuning that predomi-
nantly led to changes in dominance (e.g., free-moving comatulids over
sessile crinoids) and environmental displacement (depth restriction of
stalked crinoids).

Materials and Methods
Questions pertaining to the prevalence of crinoid-echinoid interactions and
the taphonomic signatures of ingested and excreted crinoid ossicles were
analyzed experimentally in well established mixed-reef aquaria at Brigham
Young University–Idaho. Synthetic seawater (Instant Ocean) was maintained
at a relatively constant temperature of 26 °C (±0.25 °C), salinity (specific
gravity, 1.025), and pH (8.2). Live comatulid crinoids (L. palmata) and cidaroid
echinoids (Eucidaris sp.) were purchased from Blue Zoo Aquatics and drip-
acclimated to tank conditions for 3 h. The crinoids and echinoids were initially
kept in separate tanks (125 and 65 gallons, respectively). Crinoids were not
initially introduced to the Eucidaris-bearing tank to give the echinoids an
opportunity to establish a crinoid-free diet, which consistedmostly of red and
purple coralline algae that they grazed from mature live rock.

With the purpose of observing potential echinoid–crinoid interactions, two
general experiment typeswereperformedwith these specimens: (i) live crinoids
were transferred to the tank containing Eucidaris, and (ii) one or two Eucidaris
were transferred to a 10-gallon tank and therein confinedwithin a plasticmesh
cage that included (i) a live Lamprometra, (ii) arms and cirri naturally auto-
tomizedormechanically severed from live Lamprometra, or (iii) frozen isocrinid
(Neocrinus decorus) stalk and arm elements collected from Jamaica via sub-
mersible. Echinoids and crinoids (or crinoid parts) were transferred to a glass-
bottomed 10-gallon tank, free of substrate, to (i) increase the likelihood of
echinoid–crinoidencounters, (ii) facilitatephotographyandvideocaptureofthe
interactions, and (iii) recover bitten and excreted crinoid material. Experiments
weremonitoredfirst-hand andwith the aid of a time-lapse video camera (using
3–7-s intervals) from approximately 3 to 14 h. Echinoids that consumed sig-
nificantamountsofcrinoidmaterialwereallowedtopass someof theconsumed
ossicles before being preserved in alcohol. This step permitted the recovery and
study of crinoid ossicles as they passed through various stages of processing by
the echinoids. It also permitted direct observation, via surgical dissection, of
recently consumed crinoid material in the echinoids’ digestive system.

Data on fossils were obtained from field-collected samples and museum
collections (Fig. S1). The collections are housed at the Faculty of Earth Sciences,
University of Silesia, Sosnowiec, Poland [catalog numbers: Geological Institute
of the University of Silesia (GIUS) 7–314, GIUS 7–513, and GIUS 7–43]. Bulk
samples (ca. 50 kg) of poorly lithified marly limestones were washed with hot
tap water and sieved using 0.315-mm-diameter mesh. The residue was then
dried at 180 °C and fossils were handpicked under a binocular microscope.

Data on the evolutionary history of post-Paleozoic echinoids and crinoids
(as schematized in Fig. 3) were derived from the literature (25, 31, 36, 42).
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Fig. 3. Ecological, morphological (33), and generic (19, 42) diversification his-
tory of crinoids and evolutionary history of relevant echinoids during geologic
periods of the post-Paleozoic. Note that ecology and morphology peak in the
Triassic (Tr E, Early Triassic; Tr M, Middle Triassic; Tr L, Late Triassic), whereas
generic diversity peaks in the Jurassic. Crinoid coding: §Sessile as adults;
*Capable of benthic locomotion; #Nektonic, planktonic, or pseudoplanktonic.
Inferred relationships modified after published reports (27, 28, 31, 36).
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