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A hypothesis is nested within a more general hypothesis when it is
a special case of the more general hypothesis. Composite hypoth-
eses consist of more than one component, and in many cases
different composite hypotheses can share some but not all of these
components and hence are overlapping. In statistics, coherent
measures of fit of nested and overlapping composite hypotheses
are technically those measures that are consistent with the con-
straints of formal logic. For example, the probability of the nested
special case must be less than or equal to the probability of the
general model within which the special case is nested. Any statistic
that assigns greater probability to the special case is said to be
incoherent. An example of incoherence is shown in human evolu-
tion, for which the approximate Bayesian computation (ABC)
method assigned a probability to a model of human evolution that
was a thousand-fold larger than a more general model within
which the first model was fully nested. Possible causes of this in-
coherence are identified, and corrections and restrictions are
suggested to make ABC and similar methods coherent. Another
coalescent-based method, nested clade phylogeographic analysis,
is coherent and also allows the testing of individual components of
composite hypotheses, another attribute lacking in ABC and other
coalescent-simulation approaches. Incoherence is a highly undesir-
able property because itmeans that the inference ismathematically
incorrect and formally illogical, and the published incoherent
inferences on human evolution that favor the out-of-Africa replace-
ment hypothesis have no statistical or logical validity.

approximate Bayesian computation | coalescence | logic | nested clade
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Coherence is an important statistical property when comparing
nested or composite models (1, 2). Coherence means that the

statistics or probabilities used tomeasure the goodness of fit of the
models obey the constraints imposed by formal logic. For exam-
ple, consider comparing two models, A and B, such that model A
is fully nested within model B, as shown by the Venn diagram in
Fig. 1. From elementary probability theory and Boolean logic, the
probabilities of A and B must satisfy the constraint that Proba-
bility(A) ≤ Probability(B) because all observations that support
model A also support model B, A being is a special case of model
B; however, some observations can support model B but not
model A. Any goodness-of-fit statistic or posterior probabilities
on models A and B that are consistent with this logical constraint
are coherent, and any statistics or posterior probabilities that can
violate this logical constraint are incoherent. Another example
involves partially overlapping models. Let {M1,. . .,Mn} be a set of
models such that at least one pair, say Mj and Mk, is overlapping;
that is, Probability(Mj and Mk) > 0. Then, the probability of at
least one of the Mis being true is less than the sum of the prob-
abilities of each Mi. This situation arises because the probabilities
of the intersections of the overlapping hypotheses must be sub-
tracted from the sum to yield the true probability of at least one
hypothesis being true. Any goodness-of-fit statistics or posterior
probabilities on the set {M1,. . .,Mn} that are consistent with this
logical constraint are coherent, and any statistics or posterior
probabilities that can violate this logical constraint are incoherent.

Incoherent inference is formally illogical inference and represents
a mathematical error.
Intraspecific phylogeography is the investigation of the evolu-

tionary history of populations within a species over space and time.
This field entered its modern era with the pioneering work of
Avise and coworkers (3, 4), whomade qualitative inference from a
visual overlay of an evolutionary tree of the haplotypes observed
in a genomic region upon a geographical map of the sampling
locations. As the field matured, there was a general recognition
that the inferences being made were subject to various sources of
error, so the next phase in the development of intraspecific phy-
logeography was to integrate statistics into the inference structure.
One of the first statistical phylogeographic methods was nested
clade phylogeographic analysis (NCPA) (5), which has been
extended to analyze multilocus data (6–8). NCPA uses realized
coalescent processes as estimated through haplotype trees as the
basis of statistical inference. Alternative statistical approaches to
phylogeography have been developed through coalescent simu-
lations of specific phylogeographic models for both hypothesis
testing and parameter estimation (9, 10). NCPA and simulation
approaches are not mutually exclusive, because both can be used
in a synergistic fashion to produce deeper phylogeographic insight
than possible with either approach alone (11). I show in this paper
that some coalescent-simulation methods are incoherent and
therefore have only limited utility in hypothesis testing but still
can be used in a synergistic fashion with NCPA. Potential causes
of this incoherence are discussed, and some corrections are pro-
posed. Coherent inference is possible through NCPA, and a con-
trast of coherent and incoherent inference pertaining to human
evolution is presented.

An Example of Incoherent Inference
Recent reviews and defenses of the coalescent-simulation approach
(10, 12) cite the analysis of Fagundes et al. (13) as an exemplar of
statistical phylogeographic inference. That paper uses the popular
coalescent-simulation technique of approximate Bayesian compu-
tation (ABC) (14) that is presented as allowing statistical com-
parisons among complex phylogeographic models. In particular,
ABC assigns posterior probabilities, given the data, to a finite set of
simulated a priori models. These posterior probabilities are sup-
posed to measure the probability of a model being true given that
one of the simulated models is true. Fig. 2 is a simplified version of
figure 1 in Fagundes et al. (13) that shows the three models of
human evolution to which those authors assigned posterior prob-
abilities, along with those probabilities.
Of particular interest are models A (Fig. 2A) and B (Fig. 2B).

Model A is the out-of-Africa replacement model, which posits
that an expanding African population completely replaced Eur-
asian populations with no admixture. Model B is the assimilation
model that allows potential admixture between the expanding
African population and the Eurasian populations. The degree of
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admixture is measured by a parameter M that can vary from zero
(no genetic input from archaic Eurasians) to 1 (no genetic input
from the expanding African population into Eurasians). M
measures the strength of the arrow shown in Fig. 2B. As
Fagundes et al. (13) note, the replacement model is a special
case of the assimilation model with M = 0. Fagundes et al. (13)
assigned a posterior probability of 0.781 to model A, the special
case with M = 0, and a posterior probability of 0.001 to model B,
the general case that includes model A. It is mathematically and
logically impossible for model A to have a greater probability
than model B (Fig. 1). As this example clearly demonstrates,
ABC is incoherent.
Note that in this case the incoherence is not some minor

numerical deviation that could be attributable to an approxima-
tion or rounding error. Model A is three orders of magnitude
more likely than the general case model B (Fig. 2). Moreover, as
is shown in the next section, the central equation of ABC is
inherently incoherent for three separate reasons, two of which
are applicable in every case that deals with logically overlapping
hypotheses. Hence, the incoherence in this example is not a case-
specific computational error but rather arises from a mathe-
matical error in the ABC algorithm.

Causes of Incoherent Inference with ABC
There are many mathematical flaws in the ABC procedure (15),
and some of them can lead to incoherent inference. The general
form of the ABC equation used to estimate the posterior prob-
ability, P, for hypothesis i (Hi) given the vector of observed
summary statistics, S*, and given that one of the n simulated a

priori hypotheses (set H) is true, is (see equation 9 in ref. 14 or
the equation in the supplementary text of ref. 13)

PðHi jH; S∗Þ ¼ GiðkSi − S∗kÞΠi

∑
n

j¼1 GjðkSi − S∗kÞΠj

[1]

where Πi is the prior probability of hypothesis i, and Gi is a
goodness-of-fit measure based on a normalized difference of the
vector of expected (simulated) summary statistics Si under model
i minus the vector of observed statistics S*, but using only those
points that also satisfy kSi − S∗k< δ where δ is a prespecified
tolerance parameter. The goodness-of-fit measure is designed to
achieve its maximum value when Si = S*.
One flaw in Eq. 1 is that the goodness-of-fit measures often

are not adjusted for the dimensionality of the data or the
models. For continuous data, the dimensionality of the data is
the number of effectively independent observations. For cate-
gorical data, the dimensionality is the number of mathematically
unconstrained categories. The dimensionality of the model is the
effective number of mathematically unconstrained parameters. It
has long been known that raw goodness-of-fit statistics must be
adjusted for dimensionality to avoid false and incoherent infer-
ence (16–18). For example, suppose in a plant population 50%
of the plants had white flowers and 50% had red flowers. Let
hypothesis 1 be that this color polymorphism is the result of a
single autosomal locus with two alleles, w and r, such that white is
recessive, and that the population is randomly mating. The
estimated frequency of the w allele under this random-mating
model is 1/√2, and the expected phenotype frequencies are 50%
white, 50% red—a perfect fit to the data. Now consider
hypothesis 2 that assumes that red is the recessive phenotype in a
random-mating population. Now, the estimated frequency of the
r allele is 1/√2, and the expected phenotype frequencies are 50%
white, 50% red—another perfect fit. Now consider a third
hypothesis that the population is self-mating with all individuals
being homozygous. The estimate of the w or r allele frequencies
are 1/2 under this model, and the expected phenotype frequen-
cies under this model are 50% white, 50% red—yet another
perfect fit. Three contradictory models all have perfect fits.
Obviously, goodness of fit alone is insufficient for valid statistical
inference. The problem here is one of dimensionality; the data
have a dimensionality of one (a single independent phenotypic
class), and all three models have a dimensionality of one (a single
independent allele frequency parameter), so the difference

Fig. 1. Venn diagram of two hypotheses, A and B, such that hypothesis A is
fully nested (a proper logical subset) within hypothesis B.

Fig. 2. (A–C) Three models of human
evolution and their posterior probabilities
as calculated by the ABC method (13). For
all models, dark gray represents modern
human populations, and lighter gray rep-
resents archaic populations. Differences in
width of the gray areas indicate differ-
ences in population size over time. The
single arrow in B indicates the possibility of
a genetic contribution by archaic Eurasian
populations to modern populations via
admixture with the population expanding
out of Africa. The double-headed arrows
in C indicate gene flow between African
and Eurasian populations.
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between the dimensionality of the data and the dimensionality of
the model (degrees of freedom) is zero. The zero degrees of
freedom indicate that the perfect fits of these three contradictory
models are without any biological or statistical significance
whatsoever.
Now consider a case of two models, A and B, that differ in

dimensionality. Suppose the χ2 statistic for model A is 10 and for
B is 5. Given that the χ2 statistic decreases in value with
increasing goodness of fit, then the raw χ2 statistics indicate that
model B fits the data better than model A. However, suppose
that the degrees of freedom of A are five and the degrees of
freedom of B are one. When the χ2 statistics are adjusted for the
degrees of freedom, the probability assigned to model B is 0.025
and that for model A is 0.075. Hence, using the standard 5%
level of significance, model A is accepted, and model B is
rejected, the opposite inference from the unadjusted goodness-
of-fit statistics. The ABC method in Fagundes et al. (13) uses
goodness-of-fit measures that are not adjusted for the dimen-
sionalities of the data or the models, and this condition alone can
cause incoherence. Part of the problem in adjusting for dimen-
sionality in simulations is that the dimensionality in complex
simulations often is not clear. For example, from table S7 in ref.
13, the assimilation model has four additional parameters rela-
tive to the replacement model. However, if only one of these
parameters (M) takes on the value of zero, then the assimilation
model collapses into the replacement model. The other three
parameters are meaningful only when conditioned on M > 0.
The difference in dimensionality between these two models is
somewhere between one and four, but the exact value is difficult
to calculate because of the conditional dependencies among the
parameters. Nonetheless, difficulty in calculating dimensionality
does not justify ignoring it.
A second flaw in Eq. 1 is the denominator. Simulation techni-

ques assess the relative fit of a finite number of prespecified, but
rarely exhaustive, phylogeographic models. To obtain the relative
fit of a specific model, it is mathematically required to condition
on the event that one of the simulated models is true. The de-
nominator in Eq. 1 is supposed to be proportional to the proba-
bility that one of the models in H, the set of all simulated models,
is true; logically, this denominator should be proportional to the
probability of the union of all n models. Note that the denomi-
nator in Eq. 1 is a simple sum over all nmodels. From elementary
probability theory, the probability of the union of several events is
the sum of the probabilities of the individual events if and only if
all the events are nonoverlapping and mutually exclusive. An
example of mutually exclusive models is illustrated in a Venn
diagram for a three-model case in Fig. 3A. Fig. 3B shows the
logical relationships of the three models simulated by Fagundes
et al. (13). As noted above, the replacement model A is a proper
subset of the assimilation model B. The third model C is a com-

posite model that shares many components with models A and B,
as shown by the extensive sharing of parameters and prior dis-
tributions given in table S7 from ref. 13. Hence, model C overlaps
with models A and B, as shown in Fig. 3B. Using elementary
probability theory, the probability of the union of these three
models is

PðA∪B∪CÞ ¼ PðBÞ þ PðCÞ−PðB∩CÞ [2]

Thus, the denominator in Eq. 1 is mathematically and logically
incorrect when applied to the models simulated by Fagundes
et al. (13). ABC uses Eq. 1for all cases, regardless of the logical
relationship of the hypotheses being simulated. Because the
models that are simulated vary from case to case on an ad hoc
basis, there can be no universal denominator for Eq. 1. The
denominator in Eq. 1 is mathematically wrong and incoherent
because a simple sum always violates the constraints of logic
when logically overlapping models are tested.
The third flaw in Eq. 1 concerns the prior distribution defined

by the Πis. Fagundes et al. (13) assigned a prior probability of
one third to each of these three models. Given that the
replacement model is fully nested within the assimilation model,
Π(replacement) equals Π(assimilation) equals one third if and
only if the prior assigns the probability of one third to the subset
of the assimilation model with M = 0 and assigns a prior prob-
ability of zero to the subset of the assimilation model with M > 0.
Hence, the possibility of favoring M > 0 is eliminated by
assumption in their analysis. Worse, they treat the Πis as mutu-
ally exclusive and exhaustive events such that they sum to one.
However, from Eq. 2, the sum of these three probabilities must
be less than two thirds; otherwise the constraints of logic are
violated. Thus, the prior probabilities used in the very first step of
their Bayesian analysis are incoherent.
ABC is used for parameter estimation in addition to hypoth-

esis testing, and another source of incoherence is suggested
from the internal discrepancy between the posterior probabilities
generated by ABC and the parameter estimates obtained by
ABC found in ref. 13. Consider again models A and B in Fig. 2.
The posterior probabilities given in Fig. 2 are incoherent, but for
the sake of argument, let us suppose they are true. In that case,
the optimal estimate of M under model B should be M = 0. If
ABC had estimated M as zero, the goodness of fit of model B
would be identical to that of model A, and the inference would
have been coherent. Instead, ABC converged to an “optimal”
estimate ofM that was small but significantly different from zero.
There are three explanations for this internal inconsistency.

The first is that the posterior probabilities are correct, but the
estimation algorithm is flawed. This explanation is formally
illogical. The posterior probabilities given by Eq. 1 explicitly
depend upon the “optimal” parameter estimates, therefore, if the
estimation procedure is flawed, so are the posterior probabilities.
The second explanation is that the posterior probabilities of

the models are incorrect (as already shown), but the estimation
procedure of ABC is correct. This possibility may be possible
because the estimation algorithm does not depend upon the
incoherent denominator or priors used in Eq. 1. If the estimation
algorithm is correct, the estimate of M is truly greater than zero,
despite other assumptions in their simulation that strongly bias
the estimate of M downward (15). The estimation algorithm of
ABC also generates posterior probabilities for the parameters
under a specific model, and the posterior distribution of M under
the assimilation model provides another method of evaluating
the replacement model. Fagundes et al. (13) report that the 95%
highest posterior density for their estimate ofM does not overlap
zero despite their strong biases toward smaller values of M.
Because only the lower tail of the posterior distribution of M
would include M = 0, the posterior probability of replacement
(M = 0) is ≤0.025, whereas the posterior probability of admix-

Fig. 3. The logical union of three models. A shows the set that contains the
union of three nonoverlapping, mutually exclusive hypotheses. B shows the
union of the three models of human evolution given in Fig. 2.
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ture (M > 0) is ≥0.975, so the posterior probabilities of M reject
the replacement model in favor of the admixture model. Hence,
the posterior probabilities generated by ABC from Eq. 1 directly
contradict the posterior probabilities generated by the ABC
estimation algorithm.
The third possibility is that both the posterior probabilities and

the estimation algorithm of ABC are incorrect. Although the
estimation algorithm does not suffer from all the errors con-
tained in Eq. 1, it also has serious problems (15). In addition,
Fagundes et al. (13) argue that the discrepancy arises because
the estimation algorithm is sensitive to the prior. The prior used
on M was a uniform prior over the interval [0,1] (13), which
defines the entire range of possible values forM. Such a flat prior
typically is invoked in Bayesian inference to reflect ignorance of
the value of the parameter to be estimated. In a well-constructed
Bayesian procedure, such flat priors should be quickly over-
whelmed by the data in generating the posterior distributions
(see the statistical appendix in ref. 19). However, Fagundes et al.
(13) argue that a flat prior of ignorance so overwhelmed the data
that the Bayesian procedure could come close to but could not
find a solution (M = 0) that they claimed was 1,000-fold better
than their final estimator (M > 0). An optimal Bayesian proce-
dure should not show extreme sensitivity to a prior of ignorance
(2, 20). Thus, if one accepts the explanation of Fagundes et al.
(13), ABC is a deeply flawed Bayesian procedure in which
ignorance overwhelms data to create massive incoherence.

Incoherent Inference in Coalescent-Simulation Approaches
to Phylogeography and Its Possible Corrections
The ABC method is not the only incoherent method used with
coalescent simulations for phylogeographic inference. For ex-
ample, Bayes factors frequently are combined with coalescent
simulations for phylogeographic inference (21–23), but Bayes
factors are known to be incoherent (2) and highly sensitive to
priors (24). Recent reviews (9, 10) of how coalescent simulations
are used for statistical phylogeographic inference reveal that the
problem of calculating the dimensionalities of the data and the
simulated hypotheses often is ignored. Also, these reviews show
that simulated hypotheses are often treated as mutually exclusive
alternatives regardless of their actual logical relationships. Any
coalescent-simulation procedure that does not adjust for dimen-
sionality and ignores the logical relationships among the simu-
lated hypotheses is capable of producing incoherent inference.
The coalescent-simulation approaches are applicable in some

situations. For example, Bayes factors are appropriate when
testing a model versus its logical complement (e.g., population
subdivision versus panmixia). ABC could be extended to nested
and composite hypotheses if the denominator in Eq. 1 and the
priors were defined in a manner consistent with their logical
relationships. To meet this requirement, the denominator in Eq. 1
would have to be redefined for every set of models to be com-
pared. Composite hypotheses could be tested only if their inter-
sections in probability space were calculated, and this calculation
will be extremely difficult for complex models with multiple
parameters. The goodness-of-fit measures used in ABC also
would have to be corrected for dimensionality. Calculation of the
dimensionality of complex models with multiple interacting
parameters is not simple but could be done in a manner similar to
that proposed by Cheverud (25), which would involve preliminary
simulations followed by an eigenvalue analysis.
Some of the previously identified (15) problems in the parameter

estimation portion of ABC are easily avoided by limiting the
summary statistics to Euclidian measures, orthogonalizing the
summary statistics before searching for the optimal fit, investigating
robustness to the tolerance parameter instead of using a single set
of heuristic guidelines for all sample sizes and geographical cov-
erages, incorporating the sampling error of the observed statistics
S*, and calculating dimensionalities of all models tested to avoid

irrelevant and overdetermined models (recall the flower color
example given above). The additional problem of sensitivity to
priors of ignorance (13) needs to be investigated thoroughly.

Coherent Inference
One well-established method for the coherent testing of nested
hypotheses is the likelihood ratio test (16, 26). Log-likelihood
ratio tests are always greater than or equal to zero because the
likelihood of the more general hypothesis is greater than or
equal to the likelihood of the nested (null) hypothesis, as
demanded by coherence. If the null hypothesis is true, then the
likelihood of the nested hypothesis should be close to that of the
more general hypothesis (but never greater, because that con-
dition would be incoherent), resulting in a small-valued test
statistic. Hence, the coherent log-likelihood ratio statistic tests
whether the likelihood of the more general model is significantly
greater than the likelihood of the nested null hypothesis under
the assumption that the null hypothesis is true. If the general
hypothesis has a likelihood that is significantly greater than that
of the nested null hypothesis, then the null hypothesis is rejected.
NCPA is a coalescent-based testing approach that uses a

combination of simulated permutation testing of null models and
coherent log-likelihood ratio tests on nested hypotheses. The
likelihood ratio test framework of NCPA is flexible and can also
be used to test explicit a priori hypotheses. For example, the a
priori out-of-Africa replacement hypothesis was tested in NCPA
using log-likelihood ratio tests (27–29). The replacement model
is treated explicitly as a nested hypothesis within the more gen-
eral model that allows admixture and gene flow. All dimen-
sionalities are calculated, so the degrees of freedom are known
to be 17. The resulting log-likelihood ratio test had a value of
118.18, which, when adjusted for the 17 degrees of freedom,
leads to the probability of the null hypothesis of replacement
being true given the data of less than 10−17. This probability
represents an extremely strong falsification of the replacement
hypothesis.
NCPA also is appropriate for coherent inference about compo-

site hypotheses. Unlike coalescent-simulation approaches, NCPA
does not require any prespecified models; rather, the overall model
emerges from falsification of null hypotheses concerning each
component. For example, consider the composite model of human
evolution shown in Fig. 4 that was produced by NCPA (27–29).
Fig. 4 shows three out-of-Africa expansion events because the null
hypotheses of one or two out-of-Africa expansion events are
rejected by likelihood ratio tests. This rejection does not mean that
NCPA proves that there were exactly three expansion events out of
Africa; rather, at least three events occurred, and there currently is
no significant statistical evidence for more than three. The middle
expansion inFig. 4 iswell corroboratedby fossil, archaeological, and
paleoclimatic data (29), so themiddle Acheulean expansion should
not be left out of any model of human evolution.
Fig. 4 also shows that the middle and most recent expansion

events did not break the lines of genetic continuity in Eurasia; that
is, neither of these out-of-Africa expansion events were total
Eurasian-replacement events because the null hypothesis of total
replacement was rejected by likelihood ratio tests (27, 28). Sim-
ilarly, a trellis is shown interconnecting the African and Eurasian
populations between the first and last out-of-Africa expansion
events. This trellis signifies the inference of gene flow constrained
by isolation by distance between Eurasian and African pop-
ulations throughout the Pleistocene. Once again, this component
of the model is supported by the strong rejection of the null
hypothesis of no gene flow between Africans and Eurasians
throughout the Pleistocene [log-likelihood ratio test = 72.39 with
18 degrees of freedom, P < 10−8, for the time range of 0.13–1.9
Mya, the molecular dates of the first and third expansion (30) and
the log-likelihood ratio test = 30.02 with 18 degrees of freedom,
P = 0.0094, for the narrower time range of 0.08–0.64 Mya (15),
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the narrowest time range suggested in ref. 13]. Similarly, every
component of the model of human evolution shown in Fig. 4 has
explicit statistical support based on rejecting null hypotheses with
coherent tests of well-defined dimensionality.

Discussion
A statistical test can have many properties, such as power or false-
positive rates. Such properties refer to the optimality of the test,
but incoherence goes to the very core of the mathematical validity
of the test. An incoherent statistic is a mathematical error and
nothing more. For example, the fundamental equation of ABC,
Eq. 1, is mathematically incorrect in every instance when two or
more of the models being compared have any degree of logical
overlap. Therefore any result derived from Eq. 1 is a mathemat-
ical error when dealing with logically overlapping hypotheses,
even when the resulting posterior probabilities superficially obey
the constraints of logic. For example, suppose A is nested within
B, and that Eq. 1 yields P(A) equal to or less than P(B), a result
which is superficially coherent. Because the denominator of Eq. 1
is mathematically wrong in this case, both P(A) and P(B) are
wrong also. A single example of incoherence demonstrates that
the equations being used are mathematically incorrect, and there
can be no confidence in the validity of any result derived from
these equations when dealing with logically overlapping hypoth-
eses, even if coherence is superficially satisfied. Hence, incoherent
methods, such as ABC, Bayes factors, or any simulation approach
that treats all hypotheses as mutually exclusive should never be
used with logically overlapping hypotheses. Previously published
inferences based on incoherent probabilities, such as favoring the
replacement hypothesis of human evolution (13), have no scien-
tific or logical validity and are merely mathematical errors. Of
course, one always can restrict incoherent methods such as ABC
to simple, mutually exclusive hypotheses. However, such simple
hypotheses (e.g., population subdivision versus no subdivision)

often can be tested with standard statistical tests that do not
require extensive computer simulations. The main rationale for
using extensive computer simulations is to model more complex,
composite hypotheses in which some degree of logical overlap is
the norm, not the exception. For example, all phylogeographic
models of human evolution in the recent literature show logical
overlap (29). Hence, incoherent methods such as ABC cannot be
used in a mathematically valid way to test any of the models of
human evolution but rather must be restricted to the most simple
and trivial phylogeographic hypotheses. Simply put, incoherent
statistics produce formally illogical results, and scientific infer-
ence should, first and foremost, be logical.
There are other issues of fundamental logic relating to phy-

logeographic inference. First, the logical basis of inference in
NCPA is based on falsifying null hypotheses, whereas coalescent-
simulation approaches assign probabilities of truth or goodness-
of-fit statistics to a finite set of nonexhaustive phylogeographic
models under the assumption that one of the models in the set is
true. As a result, the strong falsification of the replacement
model of human evolution by NCPA is not logically incompatible
with replacement having the highest probability of being “true”
in the ABC analysis. Even a coherent inference scheme of rel-
ative fit can give a high probability of “truth” to a false hypothesis
if all the hypotheses in the inference set are false. In this regard,
any model of human evolution that does not have the Acheulean
expansion or gene flow between Pleistocene human populations
has been falsified (29), so all three models in ref. 13 have been
falsified. Hence, the high probability of “truth” for replacement
relative to three falsified hypotheses is logically compatible with
the strong falsification of replacement as a null hypothesis by the
coherent NCPA. Moreover, if the estimation component of ABC
is correct, then the work of Fagundes et al. (13) also falsifies the
replacement hypothesis and is therefore consistent with the
coherent falsification of replacement by NCPA.

Fig. 4. The model of human evolution based on the falsifica-
tion of null hypotheses under NCPA. The thick black arrows
indicate major events in population range expansion. The trellis
indicates gene flow. The dating and 95% confidence intervals
for the three major out-of-Africa expansions are based solely on
the molecular genetic data. Further details are in refs. 27–29.
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Because coalescent-simulation approaches can give high proba-
bilities of truth to false hypotheses, they can generate false positives.
The only way to protect against such false positives is to make sure
that the true model is in the simulated set—an unrealistic demand.
Consequently, the false-positive rate of coalescent-simulation
approaches is logically unknowable and therefore is uncorrectable.
In contrast, the multilocus cross-validation procedure of NCPA is
effective in reducing false positives to belownominal levels as shown
both by test cases of actual data and computer simulation (31).
Another major issue in logic is the treatment of composite

hypotheses. Because coalescent-simulation approaches assign a
single posterior probability or goodness-of-fit statistic to each
composite model as a whole, it is logically impossible to make
inference about any single component. For example, Fagundes
et al. (13) argued against admixture on the basis of a single
(incoherent) probability assigned to the assimilation model as a
whole. Fig. 2 shows that the assimilation model also assumed total
genetic isolation between human populations in Africa and Eur-
asia throughout the Pleistocene. This assumed isolation is irrel-
evant to the goodness of fit of the replacement model because the
Eurasian population makes no genetic contribution to living
humans under replacement, but it does affect the goodness of fit
statistics of the assimilation model when M > 0. Because NCPA
gives explicit statistical support to each component of a composite
model, NCPA makes it clear that the assumption of total Pleis-
tocene isolation is false (P < 10−8), and the null hypothesis that
M= 0 is strongly falsified (P < 10−17), leaving only the alternative
thatM> 0 (15). Thus, the component of the assimilation model in
Fig. 2B that is wrong is the assumed Pleistocene isolation between
Africa and Eurasia and not the presence of admixture. The
inference in ref. 13 that the low probability assigned to the

assimilation model was caused solely by admixture has no logical
basis, even if the probability had been coherent. As this example
shows, NCPA allows logical inference on specific components of a
composite model, but coalescent simulation does not.
NCPA is superior to coalescent simulations for phylogeo-

graphic hypothesis testing because it is coherent, is based on fal-
sification rather than on relative fit, can logically control for false
positives, and can decompose composite hypotheses (the norm in
phylogeography) in a logical fashion. However, NCPA has some
serious limitations. Unlike ABC and other coalescent-simulation
approaches, NCPA does not estimate parameter values other
than times of past phylogeographic events. Moreover, NCPA
requires genomic regions that have had little to no recombination
such that haplotype trees can be reliably estimated (with quanti-
fiable error). Evolutionary history is written most clearly in such
genomic regions, but other types of genetic data certainly do
contain historic information and cannot be used by NCPA. Once
hypotheses have been generated by coherent NCPA, coalescent-
simulation approaches can be used for parameter estimation
and for evaluating the compatibility of data sets other than hap-
lotype trees with the hypotheses generated by NCPA (11). In this
manner, NCPA and coalescent-simulation approaches should
be regarded as complementary and synergistic approaches that
both have a legitimate role in an integrated, phylogeographic in-
ference scheme.
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