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Abstract
This paper presents robust 3-D algorithms to segment vasculature that is imaged by labeling
laminae, rather than the lumenal volume. The signal is weak, sparse, noisy, nonuniform, low-
contrast, and exhibits gaps and spectral artifacts, so adaptive thresholding and Hessian filtering
based methods are not effective. The structure deviates from a tubular geometry, so tracing
algorithms are not effective. We propose a four step approach. The first step detects candidate
voxels using a robust hypothesis test based on a model that assumes Poisson noise and locally
planar geometry. The second step performs an adaptive region growth to extract weakly labeled
and fine vessels while rejecting spectral artifacts. To enable interactive visualization and
estimation of features such as statistical confidence, local curvature, local thickness, and local
normal, we perform the third step. In the third step, we construct an accurate mesh representation
using marching tetrahedra, volume-preserving smoothing, and adaptive decimation algorithms. To
enable topological analysis and efficient validation, we describe a method to estimate vessel
centerlines using a ray casting and vote accumulation algorithm which forms the final step of our
algorithm. Our algorithm lends itself to parallel processing, and yielded an 8× speedup on a
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graphics processor (GPU). On synthetic data, our meshes had average error per face (EPF) values
of (0.1–1.6) voxels per mesh face for peak signal-to-noise ratios from (110–28 dB). Separately,
the error from decimating the mesh to less than 1% of its original size, the EPF was less than 1
voxel/face. When validated on real datasets, the average recall and precision values were found to
be 94.66% and 94.84%, respectively.

Index Terms
Adaptive algorithms; GP-GPU; membrane segmentation; mesh generation; robust detection;
vessel centerline extraction; vessel surface segmentation

I. Introduction
Accurate and rapid segmentation of microvasculature from 3-D images [1] is important for
diverse studies in neuroscience [2], tumor biology [3], stem-cell niches [4], cancer stem cell
niches [5], and other areas. It is needed for measuring vascular features such as surface
areas, diameters, and tortuosities of vessel segments, branching patterns of the vascular tree
[3], and distributions and orientations of cells relative to the vasculature [2]. When time-
lapse imaging of living vasculature is performed, segmentation results can be used for
analyzing angiogenesis [6]. Finally, quantifying the impact of pharmacological interventions
requires vessel segmentation for change analysis [3], [6]. Vascular imaging methods can be
classified into two categories from a molecular imaging standpoint. One approach is to use a
contrast agent that labels the vessel lumen, by way of the blood flow [3]. Another is to use a
contrast agent that labels the membranous vessel laminae. In the former case, vessels appear
as a set of solid tubes that can be segmented using model-based segmentation algorithms [1].
In the latter case, the vessel structures appear as a set of hollow tubes in a nonisotropic space
(imaging resolution is not the same for all dimensions), for which the prior literature on
confocal image analysis does not contain methods for segmenting the laminae and vessel
center-lines.

Fig. 1 illustrates the challenges. These images were produced by fluorescently tagging
endothelial barrier antigen (EBA), and imaging its distribution using a laser-scanning
confocal microscope. Even in projection images, it is clear that the vessels are far from ideal
hollow tube-like structures. First, the specimen preparation steps deform the tissue. The
inner membranes of vessels are thin, so the molar concentrations of the antigens bound by
the contrast agents are low to begin with. The fluorescent signals are weak (usually quantum
limited), and low-contrast, leading to a low signal-to-noise ratio. The fluorophore
distribution is nonuniform, leading to gaps in the vessel surface, and varying contrast. With
newly formed vessels of most interest, such as the results of tumor angiogenesis [3], and/or
embryonic development [7], the vessel geometry is irregular and complex. In a wide field of
view, one is also faced with vessels of widely varying diameters, and the finer vessels can be
almost filled in terms of appearance. Finally, various types of imaging artifacts are found in
images that must be rejected.

This paper presents robust adaptive algorithms for computing a geometric mesh
representation of the vessel surfaces and traces of their centerlines, together with estimates
of the statistical detection confidence, local curvature, orientation (surface normal, inside/
outside surfaces), thickness, and surface areas. Our method for adaptive vessel extraction
takes advantage of the connectivity of the vessel laminae to intelligently reject imaging
noise. We do not make assumptions regarding the geometry of the vessel laminae (e.g.,
cylindrical structure), so our method is also (in principle) applicable to segmentation of
nonvessel membranes. Finally, our algorithms are amenable to parallel computation—we
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show that they can be implemented on graphics processing units (GPUs) commonly
available on desktop computers.

A. Related Literature and Key Contributions
Four bodies of literature are relevant to this work: vascular segmentation algorithms, robust
detection and estimation theory, mesh generation and 3-D visualization, and stream-oriented
parallel computation. Automated vessel segmentation is a well-studied topic (e.g., see the
review by Kirbas and Quek [1]). Methods for 3-D vessel segmentation have come a long
way from the pioneering work by Verdonk et al. and others [8]–[11]. There is also an
interest in segmenting nonvessel tubular structures such as neurites and cytoskeletal
elements [12]–[15]. Broadly, algorithms can be classified into five major categories: 1)
sequential tracing/vectorization [3], [12], [13], [16]–[18]; 2) matched filtering and
vesselness based segmentation [19]–[21]; 3) skeletonization [14], [15]; 4) level sets and
active contour based methods [22], [23]; and 5) graph-based surface reconstruction [24]–
[27].

Sequential tracing algorithms [3], [16]–[18] work by following vascular segments starting
from some initial seed points. Although some tracing algorithms are based on robust
estimators [3], they produced unsatisfactory results for our images because they assume
filled, rather than hollow tubes. As noted earlier, the literature on segmenting vessel laminae
is sparse. We are aware of work on segmenting pulmonary tubes from lung CT imaging
[28], but no methods for confocal microscopy. Matched filtering based approaches [20]
model the vessel structure as the intensity-ridges of a multiscale vesselness function [20].
These methods are not applicable to hollow tubes. Also, they are susceptible to outliers and
not robust to noise, as noted by Krissan et al. [20]. In principle, a Hessian filtering based
plateness measure [29] could be used, but proved suboptimal in our experiments.
Skeletonization based approaches are designed to seek out the medial axes of the tube-like
structures from binarized/grayscale images [15]. Unfortunately, they do not produce the
medial axes of hollow tubes. Active contour approaches can, in principle, adapt to various
complex vessel intensity profiles, but suffer from the well-known “leakage” problem that is
pronounced in our case. The “leakage” refers to the problem of active contours leaking into
the background region from foreground in places of weak edges. This eventually continues
to grow across a large background region until it meets another strong edge separating
foreground and the background regions. Graph based algorithms seek an optimum cut in a
weighted graph. The edge weights could be based on a similarity metric on the feature nodes
[30] or on the likelihood of an edge at each voxel [26], [27]. Smoothness constraints are
added to obtain a good reconstruction [24], [25]. Combining the 2-D segmentation of
individual slices does not work well because the vessels are not oriented along any particular
axis. The recent 3-D algorithm by Li et al. [25] uses vessel centerline information to unfold
tubular objects. Li et al. do a surface segmentation of multiple coupled surfaces by
computing a minimum closed set in a 4-D geometric graph. Although their results are
impressive, their approach is not feasible in our case since it requires prior segmentation
capable of extracting vessel centerlines. Li et al. use [28] to extract centerlines using a
multiseed fuzzy-connectedness technique. Some graph cuts based approaches also require
training [31].

Some earlier edge detection approaches involve smoothing and local hypothesis testing
[32]–[34]. These approaches tend to be locally optimized and lack robustness. Weighted
local variance (WLV) based edge detection was introduced by Law and Chung [35] for
vessel boundary detection. This technique was shown to be robust enough to detect low
contrast edges. This method does not produce the segmentation by itself but is used to drive
active contour segmentation techniques to segment filled vessels in MRA images. Methods
to apply robust detection and estimation methods to 2-D vessel segmentation have been
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described by Mahadevan et al. [21]. We have used similar α-ranked robust likelihood ratios
to detect the vessel structures, with some differences. The present work is focused on
detecting thin 3-D surfaces instead of local tube-like structures. It also differs in the way we
model the intensity profiles—we model vessel laminae as locally-planar patches with
intensity values exceeding the background level, so our work also extends to nonvessel
laminae. We present an adaptive region growing algorithm that greatly improves
segmentation performance for noisy data. Finally, we present a ray casting and voting based
method to compute synthetic filled-tube representations that can be traced by existing
algorithms. Related voting techniques exist in the literature [36]–[38]. For example, Parvin
[36] use a voting scheme for segmenting cell nuclei.

Visualization of vasculature remains an important related topic [8]–[11]. Puig et al. [9]
described various methods, e.g., maximum-intensity projection (MIP), and slice-to-slice
composition. More recent methods render the triangulated mesh using simulated lighting,
and colors to indicate local features. For visualizing raw image data, volume rendering
algorithms are best [39], [40]. We use a combination of raw image volume rendering with
surface rendering of the segmented output. To enable rapid rendering of large meshes, we
have adopted decimation, and to improve the mesh quality we have used diagonal swapping
methods similar to that of Cebral and Lohner [11]. Yim and Summers [10] discuss
voxelation as an issue in visualization and use surface anti-aliasing to improve visual
quality. Yim et al. [41] used a tubular coordinate system to generate the mesh that is
intuitive for modeling tubular structures, but it starts from a manual/semiautomatic
specification of the vessel axis which makes it infeasible in practice. A more recent paper by
Huang et al. [42] addresses the issue of visualization by combined volume and surface
rendering. Flores and Schmitt [43] use depth map/range map for visualizing segmented
vessels. Depth mapping uses a ray casting approach, so it is slow for large datasets.

Given the data intensive nature of vessel surface segmentation, and the need for timely
computation, it is valuable to consider the amenability of algorithms to parallel processing.
An interesting opportunity is the use of low-cost graphics processors for general purpose
scientific computing (GP-GPU [44], [45]). The recent development of C compilers and
reusable libraries has simplified GP-GPU programming [45]. Our work contributes vessel
surface segmentation algorithms to this emerging body of literature.

II. Proposed Method
A. Overview of the Method

The first step of our algorithm identifies high-confidence foreground voxels using a robust
voxel-based generalized hypothesis test. The second step performs an adaptive region
growing algorithm to identify additional foreground voxels while rejecting noise. This also
yields relative estimates of detection confidence at each voxel. The third step uses the
marching tetrahedra algorithm to link the detected foreground voxels to produce a
triangulated 3-D mesh with watertight [46] isosurfaces. The mesh is smoothed using a
volume-preserving algorithm to eliminate jagged facets, and adaptively decimated using an
edge-collapsing and volume-preserving algorithm to produce the final mesh. Once this is
complete, we estimate the local surface curvature at each triangle. Finally, we extract the
vessel topology by generating a filled-in vessel that could be traced by tube tracing
techniques to produce centerline estimates. The following sections explain the above steps in
detail.
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B. Robust Hypothesis Tests for Initial Detection of 3-D Surface Voxels
The image intensity is denoted s(x) where x = (x, y, z) is a 3-D voxel location. Let Γ(x)
denote a rectangular 3-D neighborhood centered at x [Fig. 2(a)]. Let S(x) denote the vector
of image intensity values in Γ(x). We define two hypotheses at each voxel, based on S(x).
The null hypothesis (H0) is the case when the voxel belongs to the background of local
intensity λb(x). The alternate hypothesis (H1) is the case when it belongs to the vessel
surface with local foreground intensity λ1(x), and background intensity λ0(x). The vessel
lamina is modeled as a planar surface of thickness 2ω within the neighborhood Γ(x)
centered on voxel x. The 3-D angles of this plane are denoted Θ(x). Using the notation
defined above, we define two conditional probability functions P[S(x)|H0, Γ, λb] and P[S(x)|
H1, Γ, Θ, λ0, λ1], for the voxels in Γ(x), conditioned on the null and alternate hypotheses,
respectively. Γ(x) is partitioned into two sets Γ1(x) and Γ0(x) denoting the foreground and
background regions

We assume a Poisson model for P[.] since weak fluorescence data are known to be quantum
limited [47]. Hypothesis H0 is characterized by parameter λb, and H1 is characterized by
parameters λ0 and λ1. Under the approximation that the voxel intensities within the
neighborhood are mutually independent, the generalized likelihood ratio test to identify
surface voxels is given by [48]

(1)

where τ is the threshold (1 in our case). The λ̂s and Θ̂ are the optimum values computed
over all possible (λ, Θ) values.

Several authors have noted [49]–[51] that the ratio test in (1) is not robust to outliers. A
single “bad” intensity value can un-acceptably change the estimated values of λ̂’s and the
overall likelihood ratio. To overcome this problem, we use the robust generalized log-
likelihood ratio of rank-ordered intensity values given by [51]

(2)

where η(x) is either 0 or 1. It is set to 0 whenever the voxel intensity s(x) lies in the highest
or lowest α percentile of intensity values in both the background and foreground regions of
the neighborhood Γ(x). Using this methodology, robust estimates of the parameters can be
formulated as
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(3)

To carry out this optimization, we discretize the 3-D angles Θ(x) to N equally-spaced values,
where N is a function of the neighborhood size—larger neighborhoods can accommodate a
finer discretization, and vice versa. Our algorithm iterates over these discrete values. For
each value of the angle, we define the following three sets of voxels:

(4)

where the parameters (a, b, c) define the plane for a chosen value of Θ. The constraint |ax +
by + cz| < ω represents a thick planar region of width 2ω. Using this notation, the
parameters λ̂1, λ̂2, & λ̂b are estimated from the inliers as follows:

(5)

where |.| denotes the cardinality of a set. Without additional constraints, the alternate
hypothesis will always fit the data better than the null hypothesis because it has one extra
parameter. Since we expect the foreground and background regions to have a contrast
between them, we constrain the minimum contrast expected in these regions. In effect, we
do an optimization of (3) with constraint λ̂1(x) − λ̂0(x) ≥ λ̂T. Voxels with robust log-
likelihood ratio ≥ 0 are considered foreground.

We consider the choice of α next. Note that as α approaches the 50th percentile, the α-
ranked mean approaches the median estimate. The median estimator offers the highest-
possible breakdown value. As an added advantage, it is possible to derive exact analytical
formulae for the theoretical false-alarm rates (Section II-C). Computing these for a general
α value would require numerical computation. Other α values may be justified in certain
applications depending upon the nature of the imaging artifacts. If the noise field has a low
tail, then lower values of α are preferable.

C. Impact of Varying the Contrast Parameter
We analyze the impact of varying the contrast parameter λ̂T for the most common case,
when α = 50%, and the noise model is Poisson [47]. For simplicity, suppose that the
neighborhood Γ(x) contains an odd number of voxels (2n + 1). We assume that the voxel
intensity values are modeled by a probability mass function f and the corresponding
cumulative distribution function is denoted F. The median value of (2n + 1) Poisson-
distributed samples with mean λ is distributed according to the probability mass function
gn,λ(m) given by (see the Appendix for more details and proof)

(6)

where
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(7)

Let Γ1(Θ̂), Γ0(Θ̂) denote the foreground and background regions corresponding to the
optimum value Θ̂. We compute the distribution of the median estimates (u, v) of the
foreground and background regions as PU(u, Θ̂) ~ gΓ1(Θ̂),n1,λ 1 and PV(v, Θ̂) ~ gΓ0(Θ̂),n0,λ 0
as given by (6) and(7). Γ1(Θ̂), Γ0(Θ̂) subscripts are used to distinguish intensities coming
from the foreground and background regions. The probability mass function for the
distribution of w1 = u − v can be identified numerically since we have a modest number of
discrete values (256 for 8-bit image data). The result is given below for the 8-bit case

(8)

The probability of a Type II error (missing a foreground voxel) is given by

(9)

Similarly, let w0 = p − q for the background intensity parameters, where PP ~ gn1,λb and PQ
~ gn01, λb

We find fw0 in a similar way to find the False alarm probability (Type I error) given by

(10)

Although the above estimates are computed numerically, they are exact since the domain is
discrete. Fig. 2(h) shows a plot of the probability of false alarm as a function of the
background intensity value λb, when λT is held constant at 3. From this we see that for any
background intensity less than 50, the probability of false alarm will be less than 1% when
λT = 3. In our real data samples, the background noise’s gray scale intensity varies between
0 and 30, with an average of 7. Therefore, our estimator is highly specific. Higher values of
λT result in even smaller false alarm rates, making the test more specific, but less sensitive.
To quantify the segmentation confidence, we use the robust log-likelihood log LR(S; Θ, λ1,
λ0, λb) in (2). Higher values of log-likelihood indicate greater confidence that a voxel is
indeed a surface voxel. The best corresponding λ̂1(x) − λ̂0(x) value is also a measure of the
local contrast between the foreground and the background, and is another measure of
confidence. We map this onto the segmented results as a color encoding (Fig. 3).

D. Adaptive Region Growth of the Initial Surface Voxel Set
The algorithm described in the previous section is effective at detecting foreground voxels,
but is limited by the fact that the decision at each voxel is based solely on local intensity
information within Γ(x). The sensitivity and specificity of the hypothesis tests conducted at
each voxel are ultimately limited by the choice of the contrast parameter λT. At high
sensitivity, this produces thick surfaces and isolated “noisy” background points in the
segmentation. At low sensitivity, biologically interesting microvascular endings are missed.
In order to achieve a better tradeoff, we present an adaptive region growing algorithm that
takes advantage of the known continuity of the vasculature. In essence, we initially segment
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the prominent (high confidence) vessel regions and adaptively “grow” the segmentation to
add new contiguous points from the lower-contrast regions (representing finer
microvasculature). This has the important advantage of picking up the dimmer vessel points
while intelligently rejecting background noise.

The initial segmentation is conducted with a high value of λT, denoted . The second phase
of the algorithm uses the initial segmentation results as seed points and conducts a breadth-
first search for additional contiguous surface points, driven by the segmentation confidence
values described above. For every point in the 26-connected neighborhood of seed points
that is not already a surface voxel, the algorithm checks if its contrast value (difference in
estimated λ values) is within a difference of k to that of the current voxel and greater than

. The value of k is set empirically (≈ 8). Higher values lead to thicker vessels, while a very
low value leads to broken/undetected segments. Since the number of neighbors to be
searched for each voxel is bounded by 26, the time complexity of the algorithm is
proportional to the number of voxels in the image. This step is thus very fast. Importantly, it
inherently rejects the isolated faint blob-like spectral imaging artifacts representing nuclei
from another imaging channel, since they are not connected to the initial segmentation, even
as it picks up the fainter small-bore vessels that may have a comparable intensity to these
artifacts. This algorithm can be thought of as region growing, but with the addition of
initialization and region growth decision making mechanisms that are appropriate for hollow
vessel segmentation.

Overall, the choice of the lower threshold  is much more important than . The latter is
only used for initial seed generation and subsequent threshold values for the nearby voxels
must be close to the actual threshold obtained from the data and are therefore independent of

the  used. We only have to make sure that the initial seed segmentation picks up at least

one point in each disconnected vessel segment. On the other hand, a good choice of  is
necessary to avoid picking up spurious vessels from the data. A pseudo-code description of
the basic-algorithm is presented in the Appendix and the adaptive region growing algorithm
is presented in the supplement.

E. Automated Mesh Generation and Optimization
Hypothesis testing yields a binary-valued grid of surface points, but not a connected surface.
For this, we generate a mesh representation of the vessel laminae that offers multiple
advantages. At the simplest level, a mesh provides a major data reduction, so interactive
visualization of a mesh is still much faster than ray-casting based volume rendering. We can
leverage efficient geometric algorithms for smoothing, resampling, rescaling, and estimating
features such as normal vectors (required for extracting vessel centerlines), curvature and
vessel thickness from a mesh representation. It is straightforward to display features such as
curvature and confidence values by way of color coding on the mesh representation. Finally,
it is straightforward to overlay surfaces over volume renderings of raw voxel data to enable
validation and editing. The segmentation is converted to a 3-D “watertight” (in the sense
defined by [46]) mesh by generating the isosurface. For this, we use the “marching
tetrahedra” algorithm [52]–[54] that addresses some ambiguities in the classical marching
cubes algorithm [55]. In order to form a connected mesh, we maintain a hashing container
that hashes the 3-D coordinate of a vertex to a pointer corresponding to the vertex element in
the half-edge [56] mesh data structure. This has been done to avoid duplication of vertices
and produce a connected oriented mesh. The resulting isosurface follows the points closely,
but could be jagged-looking. While jaggedness can be removed by smoothing, one has to
make sure that the volume does not shrink in the process. Another opportunity is to reduce
the mesh complexity by decimation to accelerate visualization, and scale-specific estimation
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of features such as surface area. Besides, since we are not seeking subvoxel resolution in our
segmentation, we do not require an unnecessarily dense mesh.

Laplacian mesh smoothing is commonly used since it is fast. However, it shrinks convex
surfaces and expands concave ones, and alters the object volume. While this does not alter
the overall topology, and thus may be useful for modeling coarsely sampled data, it does not
do a good job when distances of a few voxels matter [4], [57]. To overcome this limitation,
we use the volume-preserving smoothing algorithm of Kuprat et al. [58] in which edges are
moved close to the center of the neighboring vertices while preserving the enclosed volume.
This algorithm is slower and takes hundreds of iterations to get a smooth tube. In our work,
we limit the number of iterations to about 10–20 as a tradeoff between speed and
smoothness.

In order to visualize large datasets efficiently, and to estimate scale-specific features like
curvature robustly, we reduce the complexity of the smoothed mesh by smoothing and
iteratively collapsing the mesh edges. The literature has several papers on mesh decimation
and related optimizations [58], [59]. Boundary preservation is not an issue in our work
because we have a watertight mesh. To address the issue of volume preservation, we use the
volume preserving edge collapsing algorithm described by Lindstrom and Turk [59]. Edge
collapsing involves removal of two vertices and the edge between them, and replacing them
with a single vertex. The triangles connected to these vertices must be reconnected
consistently. We also perform edge swapping to improve the mesh’s appearance as we
iteratively decimate, using the method described by Freitag et al. [60]. Edge swapping
involves swapping the diagonals of a plane quadrilateral to make the mesh more symmetric
and less skewed. As in the case of mesh smoothing, the volume preservation requirement
restricts the new vertex to a plane of points. So, we add more constraints to uniquely identify
the new position. We identify the point closest to the midpoint of the two vertices being
removed as the new location for the vertex. We do not use priority queues of edge lengths
for determining the order of edge collapses. Collapsing an edge involves change of edge
lengths of all the connected edges. Therefore, the time complexity for the update of priority
queue is high [61], [62]. We thus use a threshold on the edge lengths instead. The threshold
is iteratively increased when there is no edge left to be collapsed. We also keep a threshold
on the confidence of the triangle to be decimated. This is also iteratively reduced, to
facilitate decimation of high-confidence regions before low-confidence fine structures. This
allows us to adaptively decimate the mesh. Typically we decimate the mesh to 15% of its
original size. The run time of this step is about a minute for a mesh size of 1.5 million
triangles. In Section III, we show that this does not lead to a significant error (< 0.5 voxels
per face).

After generating the mesh, we compute features such as surface normals, local surface
curvature, and vessel wall thickness (where it exists) at each triangle of the mesh. Surface
normals are readily available from the marching tetrahedra algorithm. Estimating local
surface curvature requires a more careful estimation since it is both direction-dependent and
sensitive to noise. For this, we use the algorithm described by Sacchi et al. [63]. We used
this algorithm to estimate the curvature along the direction of maximum curvature, but
averaged it over a line of eight triangles along the direction of maximum curvature to make
it robust to local noise. To estimate the local vessel wall thickness, we cast a ray from each
triangle opposite to its normal direction and compute the distance to the first intersecting
face.

F. Vessel Centerline Extraction by Ray Casting and Vote Accumulation
The segmented mesh described in the previous section is useful in its own right, and also
provides the basis for estimating vessel centerlines. An important issue is the presence of
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gaps in the vessel surfaces. To estimate centerlines in a manner that is robust to gaps, we
propose an approach based on ray casting and vote accumulation. Rays are cast uniformly in
all directions from all points of the image volume (or a subsampled subset) to the segmented
mesh. The projections of these rays cast on the normal of the first triangle encountered are
computed and summed. We refer to this as “votes” accumulated by the point. We limit the
maximum length of the rays to the maximum expected vessel radius. Points perfectly inside
the cylindrical vessel accumulate the highest votes since large numbers of rays align with
the normal vectors. Points outside the vessel accumulate the fewest votes since only a small
portion of the cast rays meet the segmented vessels and even then not all of them are aligned
with the normal vector of the surface triangle (Fig. 4). As we approach the interior boundary
of the vessel, the normal vectors are less aligned with the cast rays and the vote
accumulation decreases. This approach works even when the vessel boundary is incomplete.
As an aside, note that this procedure would work better for spherical geometries than
cylindrical, but the fluorescence imaging yields a pure image with mainly vessels. The vote
accumulation image can be traced using tube tracing algorithms. In our examples, we used
the algorithm of Tyrrell et al. [3]. These centerlines provide topological information, and can
be edited much more efficiently compared to meshes (to correct errors, and for edit-based
validation).

G. Parallel Implementation on Graphics Processors
Our algorithms are suited to parallel computation. Graphics processing units (GPUs) of
desktop computers have emerged as a powerful and accessible form of parallel computing.
The nVIDIA 8800GTX (G80) processor used by us has 128 32-bit processors organized as a
bank of 16 streaming multiprocessors (SM), each containing eight streaming processors and
two super function units (SFU), all organized as a single instruction multiple data (SIMD)
stream processor. A stream is a set of records requiring similar computation. The GPU runs
a single kernel at a time. A kernel is a function that is applied in parallel to multiple records
of the stream. This function has some restrictions—for each element one can only read from
the input, perform operations on it, and write to the output. It is permissible to have multiple
inputs and multiple outputs, but never a section of memory that is both readable and
writable. Each SM has 8 K registers, 16 KB of shared cache memory, and 64 KB of constant
memory that cannot be modified by kernel functions, but can be written from the host
computer. An important advance represented by the G80 is the general-purpose
(nongraphics) programming model named CUDA (Compute Unified Device Architecture)
that is simpler compared to traditional graphics programming. In this model, the GPU is
viewed as co-processor to the host CPU with its own DRAM (device/global memory). The
computation is structured as a set of “blocks” that run in parallel. Each block consists of
multiple “threads.” Data-parallel portions of an application execute on the device as kernels
that run many cooperative threads in parallel. There is no cooperation between blocks.

Notwithstanding its relative simplicity, CUDA is still a relatively unsophisticated parallel
programming model. It presents some challenges when implementing 3-D surface
segmentation compared to traditional parallel multiple instructions multiple data (MIMD)
architectures. For example, memory locking mechanisms to prevent concurrent updates to
the same memory location cannot be taken for granted. Also, multiprocessors in CUDA
work in a SIMD fashion, where best performance is achieved when all core processors
perform the same operation. Divergence among core processors in the same multiprocessor
results in serialization of the different paths taken, and causes a performance penalty. The
GPU’s on-chip cache memory is shared by all threads of a block and not across blocks. The
latency for read/write in shared memory is about 100–150 times lesser than device memory
which makes it desirable for repeatedly used data [64].
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We focused on parallelizing two data-intensive parts of the algorithm. First, we consider the
processing associated with a single voxel (Section II-B), and a single seed point for the
adaptive region growth (Section II-D). Next, we consider the processing of multiple voxels/
seed points simultaneously. The steps are illustrated in Fig. 5(c). A cube of voxels centered
on a voxel being tested is loaded in parallel into low-latency shared memory from high
latency device memory by a block of threads. The number of voxels surrounding the voxel
depends on the window size parameter. The load instructions are uniformly divided between
the threads. The parameters needed for the hypothesis testing are loaded into the shared
memory before processing begins. To calculate the medians of the foreground and
background regions, the neighborhood voxels are sorted. An efficient CPU implementation
of sorting is “quicksort” with complexity O(n log n). Since CUDA does not support
recursive functions, quicksort is not appropriate. Hence, we adopted the parallel bitonic sort
instead [65]. A block of threads perform parallel bitonic sorting to sort the cube of voxels in
the shared memory. Bitonic sorting can be implemented more efficiently if the number of
threads matches the number of data points to be sorted. In our case, this is not always true
because the GPU requires the number of threads to be a power of 2 [64]. To handle this, we
sorted the array in multiple passes. Each time we sort as many elements as the number of
threads available. For example, when we have 256 threads and 343 elements to be sorted,
we first sort the first 256 elements, then the last 256 elements and finally the first 256
elements [Fig. 5(b)]. In order for this method to always sort correctly, there is a constraint on
α and β which turns out to be α < β/3 [α, β defined in Fig. 5(b)]. This constraint holds true
in our case. Also, we sort both the foreground and background in the same array because
loading the foreground and background elements in different arrays would lead to parallel
queue loading problem and has to be serialized. We merely negate all the background
elements and offset by −1 to make sure their range is nonoverlapping with the foreground
range. We then sort the array using the above-mentioned method and find the corresponding
medians.

Our CPU implementation used breadth-first search based on a queue data structure to
accomplish the seed growth. But queues cannot be implemented efficiently on GPU [44].
So, a parallel breadth-first search was implemented on the GPU: each thread was made to
process one seed point. This involves the 26 neighbors of the seed point that must be
analyzed and marked as the next level seed points under the region growing conditions of
the adaptive algorithm (Section II-D). Since the number of seed points varies dynamically,
we vary the number of blocks of threads dynamically by choosing the optimal number of
blocks for each case. Hussein et al. have shown that this can be implemented efficiently on
bounded degree graphs [44]. We maintained a 2-D Boolean matrix which is has as many
rows as the number of current seed points and 26 columns. One kernel initially identifies all
the new points to be grown and populates this matrix. Then, we identify the total amount of
memory to be allocated for the new seed points and allocate them. We used the parallel
prefix scan for parallel counting and computing the total number of seed points [66].
Another kernel identifies all the non-repeating x, y, z coordinates and makes a list of them
(because the size of the list is already known, this can be done without any divergence of
threads). This process is repeated until we have no more seed points to process.

III. Experimental Results
A. Experiments With Phantom Data

To characterize the performance of the proposed algorithms, we computationally
synthesized the 3-D phantom image shown in Fig. 6 incorporating common simulated
defects found in real images, including slow fading of vessel signal, missing signal, varying
radii, branching, cross-channel interference in multi-spectral imaging systems. The
structural and intensity parameters used to generate the phantom images were realistic. The
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phantom includes eight points of abrupt cuts in the vessel signal, 15 points of fading, and 19
points of cross-channel interference introduced by adding spheres of low intensity (to
simulate spectral unmixing artifacts). The intensity of the spheres was made equal to the
points of low intensity in the fading parts of vessel signal to evaluate the effectiveness of the
adaptive region growing algorithm. The phantom image also includes regions where the
vessel surface smudges to become a filled vessel of very low radius. This is observed in real
fluorescence images, particularly in regions of low intensity.

We computed synthetic data using 2 imaging models: Poisson, and additive i.i.d. Gaussian
noise, Since, the background intensity is low compared to the foreground, the Poisson
sampling does not fully allow us to evaluate the robustness of the algorithm at all signal-to-
noise ratios. For this, we also generated datasets with additive Gaussian noise, even though
the algorithm is based on Poisson modeling. The mesh generated from the ground truth
vessel, denoted MP, is taken as the ground truth mesh for evaluating segmentation results.
Specifically, if MS denotes the mesh for a segmentation algorithm to be evaluated, we define
a performance metric termed the “error per face (EPF)” based on the minimum 3-D distance
dmin(.) between each triangle in MS, denoted tS, to the nearest triangle of MP, and the vice-
versa. These two distance values were averaged to compute the EPF measure, as follows:

(11)

This metric (expressed in units of voxels per face) punishes both false positives and false
negatives. In case of a high false positive rate, the average error from every face of the noisy
image’s mesh to the nearest face of ground truth mesh would be high, and in case of high
false negative rate the average error from every face of the ground truth mesh to nearest face
of noisy image’s mesh would be high. The averaged EPF values were plotted against the
averaged peak signal-to-noise ratio (PSNR) value of the noisy image. The PSNR between
two equal-sized 8-bit grayscale images (A, B) is given by [67]

(12)

where

(13)

where N is the number of voxels in the images. A high value of PSNR indicates a low
difference between the two images while a low value of PSNR indicates a large difference.
We use the PSNR values for evaluating both Poisson and Gaussian noise models.

Simulated images corrupted by Poisson noise were computed by varying the background
intensity in the range from 5 to 45, in steps of five gray scale units. We compared the
performance of the algorithm, with, and without the adaptive region growing step. Table I
shows the segmentation parameters used for segmenting the phantom images. Fig. 7(a)
shows the resulting plot of EPF as a function of the PSNR. Overall, the proposed algorithm
exceeds the performance of Hessian filtering based technique, and produces adequately
accurate results in the presence of Poisson noise (EPF measure ranging from 0.45–0.77
voxel per face for PSNR values in the range 110–72) even without the adaptive region
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growth. Adaptive region growth always improves the performance. To evaluate the
algorithm at lower PSNR values, we added Gaussian noise. The standard deviation of the
Gaussian noise σ was varied in the range 0–90 grayscale units to achieve a PSNR range of
126–28. In this realm, the adaptive region growth results in a much greater performance
improvement. Specifically, the EPF values for the basic algorithm ranged from a fraction of
a voxel per face all the way to 5.4 voxels per face. In comparison, the EPF for the same
datasets with the adaptive region growth stays below 1.6 voxel per face.

To provide the reader with a visual feel for the results, the row in Fig. 7(b) shows a
comparison of the basic algorithm against the algorithm with the adaptive region growth for
the case when the Gaussian noise model is used, and σ = 0, 30, 60, 90, respectively. The
results are presented as 2-D projections of 3-D results. They are color coded as follows: red
indicates voxels that were detected by both algorithms being compared; blue indicates
voxels that were picked up by the first algorithm, but missed by the second; green indicates
voxels that were picked up by the second algorithm, but missed by the first; and black
indicates voxels that were missed by both algorithms. At lower noise level, the performance
of the basic algorithm and adaptive region growth are comparable. At the higher noise level
(σ = 90), the relative improvement provided by the region growth is abundantly obvious. In
order to provide the reader with a widely-known benchmark for the basic algorithm (without
region growth) we compared it against the Hessian based plateness filter [29] followed by
adaptive Otsu thresholding [68], as shown in Fig. 7(c). At lower noise level, the Hessian
filtering picks up more vessel content than basic algorithm, but produces thicker vessels than
the ground truth throughout the image. The performance of the Hessian filtering degrades
significantly at higher noise levels. The Hessian plateness function was computed based on
the eigenvalues of the Hessian matrix. The “plateness” function was computed based on the
“vessel-ness” measure suggested in the paper with a minor change to detect plates instead of
vessels. We used the ratio of λ1/λ3 and λ2/λ3 for ℜa and ℜb, respectively. Note, the λs
here denote the Eigen values of the Hessian matrix computed in [29]. ℜa and ℜb refer to the
geometric ratios based on a second-order ellipsoid used in computing the plateness measure
[29]. The first term was a simple Gaussian instead of an inverted Gaussian. The value of a, b
parameters [29] were fixed at 0.5. The value of c was fixed at one half of the maximum
Hessian norm. The range of scale value σ was optimized individually for each noise level.
Since computing a Hessian image is very memory intensive, we also broke down the image
into 4 parts each with about 20 pixels wide extra border and computed the Hessian
individually and merged the fragments. To provide the reader with another view, Fig. 7(d)
shows a sample slice (#19) of the 3-D image for the case when σ = 90. Again, the proposed
algorithm with adaptive region growing step outperforms others.

We measured the performance of the decimation by iteratively decimating the mesh for the
phantom (MP). Even after reducing the mesh to less than 1% of its original size, the EPF
remained less than 1 voxel per face. Decimation achieves a tradeoff between error in the
surface and complexity of the mesh representation. In summary, our Phantom based
experiments clearly demonstrate the validity of the proposed algorithms, and the value of
adaptive region growing algorithm. Accordingly, our experiments with real data always
included the region growing step.

B. Real Data Experiments
Confocal images were collected from the rat brain cortex. The Wadsworth Center
Institutional Animal Care and Use Committee (IACUC) approved all animal procedures.
Adult male Sprague-Dawley rats were anesthetized with a ketamine/xylazine mixture, and
transcardially perfused with 200 mL warm (37 °C) phosphate buffered saline (PBS)
followed by 200 mL 4% paraformaldehyde in PBS using a constant-pressure system [69].
Brains were removed and immersion fixed in 4% paraformaldehyde for an additional 24 h,
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then washed in HEPES-buffered Hanks’ saline (HBHS) containing azide (90 mg/L).
Horizontal 100-μm-thick tissue slices were cut using a vibratome (FHC, Inc.).
Histochemistry was performed as follows. Tissue slices were incubated in 5 mg/mL NaBH4,
washed in HBHS, incubated in 5% BSA in HBHS, and then incubated overnight in primary
antibody identifying endothelial cells (mouse anti-EBA, Sternberger Monoclonals, Inc.,
Lutherville, MA). After washing, sections were incubated overnight in secondary antibody
(Alexa 405 anti-mouse, Invitrogen, Eugene, OR). Following washing, sections were
mounted in ProLong Gold (Invitrogen). Spectral imaging was performed on a Zeiss LSM
510 META system using a 405 nm laser and a 25 × W/0.8 NA. apochromat objective.
Images were 1024 × 1024 pixels. Voxel resolution for all images was 0.36 μm × 0.36 μm ×
1.5 μm along the (X, Y, Z) axes, respectively.

Fig. 2 shows the effectiveness of the technique. An adaptive Otsu algorithm with a
conservative 128 × 128 × 63 window yields a partial segmentation of the vasculature [Fig.
2(c)]. Hessian filtering followed by adaptive Otsu thresholding yields a similar result [Fig.
2(d)]. A recent tube tracing algorithm [3] that is designed for tracing vessel lumens produces
poor traces [Fig. 2(e)]. The robust hypothesis test described above extracts a much more
complete segmentation [Fig. 2(f) and (g)]. Fig. 2(g) shows the value of the adaptive region
growing step in comparison with the basic detection algorithm [Fig. 2(f)]. It clearly rejects
most of the blob-like artifacts from the nuclei channel interference since it takes advantage
of the connectivity of vasculature. Note, Fig. 2(g) and (f) are computed for the same true-
positive rate for a fair comparison.

Fig. 3 shows the results of automated segmentation of a confocal dataset. In Fig. 3(b), we
overlaid the grayscale data on the mesh. In Fig. 3(c), we overlaid the confidence values. In
Fig. 3(d), we overlaid the curvature map. Fig. 3(e) shows the result of automated centerline
extraction and Fig. 3(f) shows the result of manual edit-based validation of the centerlines.
The idea behind edit-based validation is for a human expert to inspect the automated results
and make corrective edits that are recorded and analyzed. There are two important outcomes
from edit-based validation: 1) centerline extraction results that are fully acceptable to the
biological expert and 2) performance data for the automated algorithms. Fig. 8 shows
segmentation results for three representative datasets (more examples are in the
supplement). The topmost row in these figures shows a volume rendering of the original
image data. The next row shows a smoothed mesh representing the automatic segmentation
(with region growing step), using a decimation factor of 4. The third row shows the same
mesh as in the middle column, but with a color map indicating the confidence values. The
color map is shown in Fig. 3. Overall, the proposed algorithm is robust and effective in
extracting the visible vascular structure in diverse confocal datasets studied by us to date.
All the images were 60–70 slices of size 1024 × 1024 pixels. They were automatically

segmented with , N = 21 and a 5 × 5 × 5 neighborhood using adaptive region
growth.

To quantify the centerline extraction performance on real datasets, an expert neuroscientist
manually validated six 3-D datasets using an edit-based strategy [3]. The domain expert is
provided with a graphical editing tool to add, delete or modify parts of centerlines. For this,
the raw image intensities were amplified 5 times to reveal faint vessels during the validation.
The last row of Fig. 8 shows the results in the form of color-coded centerlines. Green lines
indicate valid automatically traced centerlines. Manually added segments are marked in blue
and the deleted segments are marked in red. The vast majority of these added centerlines
were very low contrast and noisy segments with contrast comparable to that of the nuclear
channel interference signal that can be inferred with difficulty by an expert observer.
Recovering these segments automatically would require higher-order constraints and
perceptual organization principles [38]. The lengths of the edited centerlines were recorded.
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From these annotations, the average recall and precision (defined in [3]) were found to be
94.66% and 94.84%, respectively. The average recall and precision values were based on the
lengths of correctly identified centerlines.

C. Parallel Programming Results
We chose representative commercial products from both of the GPU and CPU markets: an
NVIDIA Geforce 8800 GTX which has a core clock speed of 575 MHz, a memory size of
768 MB with 86.4 GB/s memory bandwidth. For the CPU timings, we used a traditional
dual-core AMD Opteron 244(1.81 GHz with 3 GB RAM). The GPU code was developed
using NVIDIA’s CUDA API. The CPU code was compiled under Visual Studio 7 with
optimization level O2 and SSE2. The CPU implementation was single threaded. The GPU
results were compared against the CPU results under Windows XP. For the same input data,
the speed was calculated by comparing the wall-clock time required by the CPU and GPU.
Times are measured after the file I/O, but do include PCI-E bus transfer times. The panel A
of Fig. 5 shows timing results for nine sample datasets. Overall, efficient memory usage and
parallelizing techniques have reduced the total processing time of the algorithm by roughly 8
×. The bulk of the computing time (72%) is taken up by the data-intensive first step. In this
step, we perform hypothesis testing for all points and store them before we do adaptive
region growing. The remaining kernels use 15% of the runtime. Copying data back and forth
between the GPU and the main memory uses 13% of runtime.

IV Conclusion
The software and supplements are available from the authors’ Web site1. This work
provides an effective solution to the problem of accurately segmenting vessel surfaces, and
vessel centerlines from molecular images that label laminae rather than the lumenal flow [3].
Our methods are also applicable to nonvascular membranes, but an actual demonstration is
deferred to future work. The need for this type of algorithm is widespread due to the
pervasive importance of vasculature. For example, investigations in tumor biology require
vessel segmentation for quantifying angiogenesis, evaluating drug candidates, and mapping
the locations and movements of various cells (e.g., pericytes) relative to the vasculature. In
stem-cell science, it is important to quantify the perivascular distribution of progenitors and
other cells in the stem-cell niche. Cancer stem cells too have a perivascular distribution not
unlike stem cells [5]. In the area of brain mapping, Bjornsson et al. [2] have demonstrated
cytovascular mapping of brain tissue for brain studies.

The design principles used in this work, especially the use of robust statistical methods and
adaptive region growing are broadly applicable. The resulting algorithm is capable of
handling a wide range of PSNR values. Our algorithm outperforms the Hessian based
plateness filters, in spite of simplifying voxel independence assumptions. Although our
algorithm is fully automated, there remain a few user-settable parameters that depend on the
noise level of the data set. In future work, automated parameterization could eliminate the
need to initialize parameters for every data set [70]. Finally, there is a need for effective
graphical tools for editing remaining errors [71].

Even serial implementations of our method are practical. Beyond this, the practicality of a
parallel implementation on low-cost GPUs is gratifying, and sets the stage for high-
throughput studies. Further speedups are possible using page-locked host memory, texture
memory access, asynchronous memory copies overlapped with arithmetic computations and

1http://www.ecse.rpi.edu/~roysam/TMI-2008
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atomic functions. Keeping in mind that GPUs increase in performance faster than Moore’s
law, future speedups will occur without reprogramming
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Appendix

Algorithm 1: Basic Vessel Segmentation Algorithm
S ← Read Image

for every x ∈ domain(S) do

 Γ ← [x − w, x + w] × [y − w, y + w] × [z − w, z + w]

 Compute η(x)

 Compute optimum λb, for the given η

 Lmax ← −1

for i = 1 to N do

 Compute optimum λ0, λ1 for the given η

 if  then

  Continue

 else

  Compute the α-ranked likelihood ratio L

 if Lmax ← L then

  posmax ← i

  Lmax ← L

  λC = λ1 − λ0

  end if

 end if

end for

if Lmax > 0 then

 if  then

  Mark(x) ← true

 end if

 Normal(x) ← posmax

 Likelihood(x) ← Lmax

 contrast(x) ← λC

 end if

end for
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Proof for the Expression for Median Distribution of a Finite Set
Claim

The median value of 2n + 1 Poisson-distributed samples with mean λ is distributed
according to the probability mass function gn,λ (m) given by

(14)

where

(15)

Proof
Assuming that the 2n + 1 voxel intensity values are organized as a linear array, we estimate
the probability that the median of these values is some value m. For this, the element at the
nth position in this array must be m. The median distribution for the continuous case is given
by [72], [73]

(16)

where x is a continuous variable representing and idealized notation for the voxel intensity
value. The main difference between median distributions in a discrete case to that of a
continuous case arises in the case when the median value is repeated. Suppose we have r
repetitions of the median value m in the last (n + 1) values, the probability of this event is
given by

(17)

where Pn,r(m) is the probability of the first (n + r) elements being less than or equal to m
with at least last r elements being equal to m. This is easy to see because the probability of
the last (n + 1 − r) elements being greater than m is given by (1 − F(m))n+1− r and there are

 possible choices. Summing the probability in (17) over the possible values of r
yields (14).

To understand (15), consider the first n + r elements. Let the last r + k elements be equal to
m and the rest less than m (where k greater than zero ensures that at least r elements be m).
The probability of the first n − k elements being less than m is given by F(m − 1)n−k and the
probability of r + k elements to be equal to m is given by f(m)r+k. The number of ways of

choosing the r + k elements from n + r elements is given by . Summing over all valid
values of k yields (15). Q.E.D.
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Fig. 1.
Gallery of sample images illustrating some of the challenges to surface segmentation. (a) An
open vessel end with large variations in vessel diameters. (b) Closely situated vessel
segments. (c) Abrupt variations in vessel signal. (d) Irregular broken vessel segments. (e),
(g) Large signal variations and gaps. (f) Shows vessel with strong depth-dependent
attenuation. (h) Low-contrast and blurry vessel signal with complex branching. (i) Contrast
stretched image showing significant signal overlap with other fluorescent imaging channels
(nuclear channel, in this case). Our segmentation algorithm has been designed to robustly
detect the vasculature overcoming these issues.
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Fig. 2.
Illustrating the performance of robust hypothesis testing based initial foreground detection
compared to other approaches. (a) In the alternate hypothesis, there is a locally planar patch
of the vessel surface passing through x within the rectangular neighborhood Γ(x). In the null
case, all of the voxels in the neighborhood belong to the background. (b) maximum-intensity
projection of the original 3-D confocal dataset that is contrast stretched to better show the
imaging noise and overlap from the nuclear channel (small circular objects). (c) Adaptive
Otsu thresholding. (d) Hessian filtering followed by adaptive Otsu thresholding. (e) Direct
tube tracing results [4]. (f) Basic surface extraction algorithm described in Section II-B. (g)
Results of adaptive region growth (Section II-D). These two panels have the same sensitivity
(true positive rate). (h) The variation of the false alarm rate (with median estimate) for
various background intensity values (5×5×5 neighborhood), for the case when λT = 3.
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Fig. 3.
Illustrating the automated vessel segmentation results for a confocal image from the cortical
region of the rat brain (field size: 368.55 μm × 368.55 μm × 93.00 μm with field resolution
0.36 μm × 0.36 μm × 1.5 μm giving rise to 1024 × 1024 × 63 voxels). (a) Maximum-
intensity projection of the grayscale image data displayed in shades of red. (b) Automated
segmentation results rendered as a surface (white) viewed axially. The grayscale data is
overlaid on the rendering to enable simultaneous viewing of the raw data and the
segmentation. (c) Display of the segmentation confidence estimates over the 3-D field using
the indicated color map. (d) Display of the local curvature estimates using the indicated
color map. (e) Result of automatic vessel centerline extraction. (f) Illustrating manual
editing of centerlines by an expert observer for edit-based validation.
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Fig. 4.
Illustrating the voting based centerline extraction method. (a) maximum-intensity projection
of a confocal dataset. (b) Small vessel segment from panel A shown enlarged and volume
rendered. (c) Voting results overlaid on the surface rendering, using the same color map as
in Fig. 3. Small sliced region shows the cross-section. (d) Extracted centerline shown in red
along with the surface rendering.
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Fig. 5.
Illustrating the parallel implementation in GPU. (a) Table of runtimes of the CPU code and
the GPU code. (b) Illustration of the multipass bitonic sorting used in the GPU
implementation. (c) Flowchart of the surface segmentation algorithm with adaptive region
growing step. We implemented five different kernel functions to achieve a parallel
implementation in the GPU.
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Fig. 6.
Showing the 3-D vessel phantom (512 × 512 × 100 × 8-bit) used for our experiments. (a)
Maximum-intensity projection displayed using the colormap (grayscale units) shown on the
left. The phantom was designed to simulate varying diameters, intensity values, and the
presence of spectral unmixing artifacts (faint blobs in the background). (b) 3-D surface
rendering of the phantom’s vessel structure. (c) Slice 19 of the phantom displayed using the
colorscale on the left to show the hollow nature of the vessels. (d) Slice 19 data shown with
added noise (Gaussian, σ = 90).
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Fig. 7.
Results on phantom image data. (a) Shows a plot of the average error per face (EPF)
measure as a function of the peak signal-to-noise ratio (PSNR) for the case of Poisson and
additive white Gaussian noise respectively for three algorithms. (b) Compares the best
performance of basic algorithm with/without region growth in the presence of Gaussian
noise for various values of the noise standard deviation (σ). The adaptive region growing
step clearly picks up more vessel content without picking up the noise. (c) Compares the
performance of the basic algorithm over the Hessian filtering based algorithm. (d) Shows
one single slice of the noisy image data for Gaussian noise with σ = 90 along with the
segmentation results from the Hessian filtering, basic algorithm, and adaptive region growth,
respectively.
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Fig. 8.
Segmentation results on real data. (a)–(c) Volume rendering of the image data. (d)–(f) 3-D
rendering of the mesh generated from the segmentation. (g)–(i) Confidence map of the
segmentation is mapped over the segmentation (color scale shown in Fig. 6). (j)–(l) Results
of edit-based validation (green lines are computed centerlines, blue lines were added by the
human expert, and red lines were deleted).
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