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ABSTRACT

Motivation: Somatic amplification of particular genomic regions and
selection of cellular lineages with such amplifications drives tumor
development. However, pinpointing genes under such selection has
been difficult due to the large span of these regions. Our recently-
developed method, the amplification distortion test (ADT), identifies
specific nucleotide alleles and haplotypes that confer better survival
for tumor cells when somatically amplified. In this work, we focus
on evaluating ADT’s power to detect such causal variants across a
variety of tumor dataset scenarios.
Results: Towards this end, we generated multiple parameter-based,
synthetic datasets—derived from real data—that contain somatic
copy number aberrations (CNAs) of various lengths and frequencies
over germline single nucleotide polymorphisms (SNPs) genome-
wide. Gold-standard causal sub-regions were assigned within these
CNAs, followed by an assessment of ADT’s ability to detect these
sub-regions. Results indicate that ADT possesses high sensitivity
and specificity in large sample sizes across most parameter cases,
including those that more closely reflect existing SNP and CNA
cancer data.
Availability: ADT is implemented in the Java software HADiT and
can be downloaded through the SVN repository (via Develop→
Code→SVN Browse) at: http://sourceforge.net/projects/hadit/.
Contact: ninad.dewal@dbmi.columbia.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The characterization of genes and variants that cause cells to
proliferate out of control has been an activity long at the forefront
of cancer research. Such variants are thought to confer selective
advantage to progenitor cancer cells from the perspective of the
disease and therefore would be observed with greater probability
within a progressing tumor (Nowell, 1976). According to the
commonly accepted Two-Hit Hypothesis, at least two such variants,
or ‘hits’, are required for cells to become cancerous (Knudson,
1971). We adopt this concept to focus on integrating variation that
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can be transmitted through the germline with somatically occurring
changes. We consider a method to localize specific variants that are
selected for by the disease.

Germline variants due to point mutations serve as the first variant
type. Well-known examples include mutations in BRCA1 (Miki
et al., 1994) and BRCA2 (Wooster et al., 1995) that lead to
breast cancer. Common germline variants in the form of single
nucleotide polymorphisms (SNPs) have also been detected by
genome-wide association studies (GWAS) as contributing to risk
of developing cancer. Recently demonstrated examples of such
associations include loci implicated in colorectal and prostate cancer
susceptibility on chromosome 8q24 (Amundadottir et al., 2006;
Freedman et al., 2006; Gudmundsson et al., 2007; Tomlinson et al.,
2007; Zanke et al., 2007), as well as loci associated with lung
(Amos et al., 2008; Hung et al., 2008; Thorgeirsson et al., 2008),
breast (Ahmed et al., 2009; Easton et al., 2007; Fletcher et al.,
2008) and ovarian cancers (Song et al., 2009). However, examining
SNPs alone has limitations. For example, disease markers, especially
those with small effects, necessitate large sample sizes—often in the
thousands—to generate sufficient power. Furthermore, population
stratification within a cohort may either corrupt results or, if taken
into account, reduce the effective sample size. Lastly, SNPs by
themselves are unlikely to adequately explain the complexity of
cancer, a disease with a genetic component that is inherently somatic.

A hallmark of tumor genomics is the existence of copy number
aberrations (CNAs)—the second type of variant we consider—in
somatic DNA. Long regions of amplification, recurrent over multiple
tumor samples, have been observed in studies over the last two
decades (Cher et al., 1996; Joos et al., 1995; Kallioniemi et al., 1992;
Korn et al., 1999; Paris et al., 2004; Sun et al., 2007; Zhao et al.,
2005) and can be visualized in Figure 1. These regions encompass
extra copies of contained genes and may result in overexpression,
as seen for example with HER2 in breast cancer (Slamon et al.,
1987). Yet, the span of these recurrent CNA regions as detected
by comparative genomic hybridization (CGH) experiments is often
greater than 1 Mb, much broader than a single gene, thus making
it difficult to pinpoint specific genes in such regions (Bentz et al.,
1998; Solinas-Toldo et al., 1997).

We discuss a new method for examining germline SNPs within
somatically amplified CNA stretches to help target particular
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Fig. 1. Amplified regions within a chromosome. The figure displays an
example of amplification status of calls across a chromosome as observed
in real data. Recurrent stretches (or regions) of amplification are denoted by
lines that span across many of the samples, highlighted by the translucent
rectangle, with the driver SNP located at the midpoint, as indicated by
the dotted line. Non-recurrent (or sample-specific) amplified regions are
represented as stray stretches. During the evaluation experiments that
simulate such data, four parameters are defined and tested: (i) the mean length
of recurrently amplified regions in base pairs, (ii) the number of recurrently
amplified regions across the genome, (iii) the mean length of non-recurrently
(or sample specific) amplified regions in base pairs, and (iv) the number of
non-recurrently (or sample specific) amplified regions per sample.

locations, putative disease genes, within these lengthy regions. The
typing of both of these types of variants can be obtained from
SNP array platforms using algorithms for genotype calling and
copy number inference (Komura et al., 2006; Korn et al., 2008;
Laframboise et al., 2007; Nannya et al., 2005). At a high level, our
approach—called the amplification distortion test (ADT)—utilizes
SNP and CNA information to perform a genome-wide scan for SNP
alleles and haplotypes that are selected for somatic amplification
across tumor samples. Hits that pass genome-wide significance
thresholds (GWST) can eventually undergo fine mapping, which will
reveal existing and novel oncogenes. A basic flavor of this method
uses only information from heterozygote tumor calls, in a manner
analogous to the transmission disequilibrium test (TDT) in germline
genetics. We further present and discuss variants of our method that
tally additional information from homozygous tumor calls.

This manuscript provides a formal description of ADT,
generalizes the method to haplotypes, and focuses on assessing
the method’s power to detect such causal variants. This is done
via analyzing ADT’s performance across a variety of synthetic
datasets that represent hypothetical tumor data. Results emphasize
the dependence of sensitivity of ADT on practical parameters; and
confirm this test to be powerful for large sample sizes.

The remainder of the article is partitioned into the following
sections. Section 2 delineates the ADT method itself, significance
testing, and algorithmic optimizations. Section 3 describes the
evaluation of ADT’s power. The final section summarizes our work
and discusses future avenues.

2 METHODS
Amplification distortion builds on allele calls from all copies of a locus
within a region of somatic amplification. While two of these calls make

up the original germline genotype, additional calls indicate a copy-gain
aberration and specify the amplified allele. We hypothesize that, on occasion,
amplification of a particular allele may be causing tumor development and
therefore will be selected over the other allele across many tumor samples.
This selection implies that by ascertaining cases with tumors that had been
subjected to selective pressure, we should expect to find such samples
with this allele amplified and referred over its alternative allele more often
than the converse. It is in heterozygote samples that such competition
between alleles will be most directly observable, allowing determination
of imbalanced amplification in ascertained tumors. Homozygote samples
offer complementary information towards this end, as described later.
This persistent selective imbalance has been reported in targeted somatic
regions in mouse and human tumor DNA (Ewart-Toland and Balmain, 2004;
Ewart-Toland et al., 2003; Nagase et al., 2003).

Towards quantifying this distortion, we were inspired by the TDT,
formulated to perform association analysis on genetic germline data across
parent–offspring duos (Spielman et al., 1993). TDT builds on Mendel’s First
Law—transmission of either allele at a marker from a heterozygous parent
to an offspring with equal probability. TDT posits that this equality holds for
affected offspring over many duos, a null hypothesis that is violated when
a particular allele at the marker is associated with the disease trait. TDT
therefore measures imbalance from 0.5/0.5 transmission across duos via the
binomial test. Exclusive examination of transmission within families makes
TDT immune to population stratification effects.

We use this idea of a distorted passing down of an allele to formulate
our method, the ADT, to analyze tumor data for selective imbalance of
allelic amplification. The null hypothesis states that during tumor formation
across samples, either allele at a heterozygous marker is amplified with equal
chance, and this amplified allele is clonally passed down along with the
original germline allele pair to future somatic generations. Thus, according
to this hypothesis, the amplified allele in a heterozygous tumor may be any
of the two germline alleles with equal probability. The alternative hypothesis
proposes that one of the alleles instead is amplified with significantly greater
chance (distortion), and amplification of this particular allele has passed
down the lineage (along with the original germline allele pair) because it
confers selective advantage to the progression of the tumor. ADT calculates
distortion using a binomial test on amplified instances of an allele as well
as on amplified instances of haplotypes, as described in detail below. The
focus on somatic tumor tissue within an individual—namely the clonal
transmission of allelic amplification down a cellular lineage during the
tumor’s growth—grants the binomial test within ADT the benefit of being
robust against population stratification. This allows identification of selected
alleles across individuals of varying ethnic background.

As selection of a particular allele implies advantage of that allele towards
tumor growth, it may be informative to analyze homozygous calls at a marker
across samples as well. Comparing the ratio of amplified and non-amplified
instances of homozygous genotypes may lend support towards selective
amplification of an allele. This will be addressed following the focus on
heterozygote analysis.

The formal definition of ADT is as follows. The input comprises of SNP
and CNA call data for m markers and n tumor samples as two m ×n matrices:
D0 and D1, where the former matrix contains copy number information for
the SNP Array designated A allele and the latter matrix for the B allele.
For example, the call for a copy-neutral heterozygous sample j at SNP i
would be represented by D0[i,j] = 1, D1[i,j] = 1, with 0≤ i < m and 0≤ j < n.
However, a heterozygous sample j with an extra copy (amplification) of the
A allele would be represented as: D0[i,j] = 2, D1[i,j] = 1. These matrices can
be referenced by Dx , where allele x ∈ {0, 1}.

We first define an m×n matrix Z, which indicates the number of distinct
alleles somatically amplified at a call:

Z[i,j] =0 if D0[i,j]+D1[i,j] ≤ 2
=1 if D0[i,j]+D1[i,j] > 2 and min(Dx[i,j]) < 2
=2 Otherwise
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Zero values of Z represent copy-neutral or copy-loss regions. Those calls
containing amplification of one allele, indicated by Z = 1, are of interest to
us. Amplification of both homologous chromosomes, indicated by Z = 2, is
a rare event that we discount.

We next define an m ×n matrix G that contains the germline genotype
information for the calls. We limit ourselves to diploid, autosomal loci due
to our dependence on heterozygous calls. In addition, we only consider calls
that are copy neutral at the germ line level. Such information can be obtained
via calls on matched normal samples or through previously published copy
number variation regions available online, such as the database of genomic
variants (Iafrate et al., 2004).

G[i,j] =00 if D0[i,j] ≥ 2 and D1[i,j] = 0
=11 if D1[i,j] ≥ 2 and D0[i,j] = 0
=01 if D0[i,j] ≥ 1 and D1[i,j] ≥ 1
=∅ Otherwise

We also define an m ×n matrix A over {0, 1, ∅} that registers the identity of
the amplified alleles:

A[i,j] =0 if Z[i,j]=1 and D0[i,j] > D1[i,j]
=1 if Z[i,j]=1 and D1[i,j] > D0[i,j]
=∅ Otherwise

Note that amplification of both homologous chromosomes is very rare
and is discounted as ∅.

2.1 Distortions at individual SNPs
We first proceed with identifying the single SNPs within the A matrix at
particular positions; we will explore haplotypes later. We define an m ×2
matrix C = [ci,x], which stores the number of amplified instances of allele x
participating strictly in heterozygous calls at a SNP i.

ci,x =|{ j|(A[i,j] = x and G[i,j] = 01)}| (1)

In other words, for single SNP analysis, an amplified instance of x equates
to a heterozygous call that contains amplification of x exclusively. Thus,
‘amplified instances of x’, or ci,x , signifies the number of heterozygous calls
across samples at a SNP i possessing amplification strictly for x. For each
allele x, we define the complement operator x̄ such that 0̄= 1 and 1̄= 0. We
also define a vector h = [h(0), ...,h(m −1)] of size m, which stores the total
number of amplified instances of x and x̄ at a SNP i:

h(i)=ci,0 +ci,1. (2)

We can now define our hypotheses mathematically. Let Xi
0, Xi

1, …, Xi
h(i)−1

be random indicator variables corresponding to the heterozygous, amplified
samples at SNP i, specifying which allele would be amplified. Xi

j are therefore
independent, identically distributed Bernoulli variables. The random variable
of their sum Si

1 = �Xi should match ci,1. Symmetrically, we define the
random variable Si

0 =h(i)−Si
1 , observed to match ci,0.

The null hypothesis states that neither allele at i is selected for
amplification over the other across many samples. Formally, we hypothesize
that:

H0 :Si
x ∼ Binomial[h(i),0.5]. (3)

We set a significance threshold α according to the binomial distribution,
reporting ci,x as significant if:

Pr(Si
x ≥ ci,x) ≤ α. (4)

Traditionally α is 0.05; however, we assign a GWST to α to address
multiple hypotheses, as described later in Section 2.3.

Significance of x and x̄ is clearly mutually exclusive. To test the
hypotheses, we utilize the binomial test to calculate the probability of
observing at least the number of amplified instances of x. In our case, the
binomial test assumes 0.5 for its probability of success, which is appropriate
under the null hypothesis:

p-valuei(x) = Pr(Si
x ≥ ci,x) =

h(i)∑
c′=ci,x

[(
h(i)
c′

)(
0.5h(i)

)]
(5)

Each p-valuei(x) is then converted to a logarithm-of-odds (LOD) score via
performing: −log10[p-valuei(x)]. The LOD score is a direct quantification
of amplification distortion for an allele at a SNP.

2.2 Haplotype distortions
As amplicons span long regions of the genome, SNPs neighboring a distorted
SNP are amplified as well. Linkage disequilibrium (LD) would thus produce
amplified haplotypes. ADT can be generalized to detect those haplotypes
selected for amplification.

It is first necessary to define an m ×n matrix U over {0, 1, ∅} that registers
the identity of the unamplified (non-amplified) alleles that correspond to
the amplified alleles present in the A matrix via residing on the respective
homologous chromosomes:

U[i,j] =0 if (A[i,j] = 1 and G[i,j] = 01) or (A[i,j] = 0 and G[i,j] = 00)
=1 if (A[i,j] = 0 and G[i,j] = 01) or (A[i,j] = 1 and G[i,j] = 11)
=∅ otherwise

Note that we have used amplification status to implicitly phase the data
into the A and U matrices, and as such, ADT does not require the input data
to be previously phased. Somatic amplification is a rare event that typically
occurs along only one of the two homologous chromosomes; as such,
amplified calls are likely to lie along the same chromosome and thus comprise
an amplified haplotype instance. The corresponding non-amplified haplotype
instance is the haplotype formed from non-amplified calls residing on the
other homologous chromosome. ADT quantifies distortion for a particular
haplotype by comparing the number of amplified instances to the sum total
of amplified instances and corresponding non-amplified instances of that
haplotype across samples. Justification for such a comparison will be covered
shortly. Note that since we discount calls that possess no amplification or calls
with both alleles amplified, we avoid ambiguity in assigning phase.

In addition, note that the definition of U allows for homozygous calls.
In the single SNP case, we considered exclusively amplified heterozygous
calls. Heterozygosity at the haplotype level for a sample, however, requires
only one heterozygous call at minimum to exist in the spans of the
homologous haplotype pair; this allows for homozygous calls to be included
in haplotypes. Haplotypes consisting of exclusively homozygous calls result
in no distortion, as there will be an equal number of amplified and
corresponding non-amplified instances of each haplotype across samples.

We now proceed with details of ADT’s haplotype distortion detection:
Let w represent the window size, or haplotype length, where (1 ≤ w ≤ m).

For single SNP analysis again, w = 1. This variable is user-defined and is used
consistently across the genome in an overlapping sliding window fashion.

Let i represent an index of a marker, where (0 ≤ i < m −w +1)
Aw[i,j] is the amplified haplotype string from matrix A starting at index

i for a sample j with window size w, such that it is the concatenation of
characters (A[i,j], A[i + 1,j], …,A[i+w −1, j]).

Aw
i is the set of unique strings from all Aw[i, j] (0 ≤ j < n), excluding those

Aw[i, j] strings that contain ∅ characters.
Uw[i, j] is the corresponding non-amplified haplotype string from matrix

U starting at index i for a sample j with window size w, such that it is the
concatenation of characters (U[i,j], U[i + 1,j], …, U[i +w −1, j]).

Uw
i is the set of unique strings from all Uw[i, j] (0 ≤ j < n), excluding

those Uw[i, j] strings that contain ∅ characters.
ALLw

i is the set of unique strings from (Aw
i ∪ Uw

i ). Set elements can be
accessed using index k (0 ≤ k < |ALLw

i |).
Now we have a set of unique haplotype strings per genome position and

window size. For haplotypes starting at SNP i with length w, we define
vectors CA = [cA

k ], CU = [cU
k ] and CTotal = [cTotal

k ], each of size |ALLw
i |. These

vectors store the respective amplified, corresponding non-amplified, and sum
total counts of the unique haplotype strings:

cA
k =|{j|Aw[i,j] =ALLw

i [k]}| (6)

cU
k =|{j|Uw[i,j] =ALLw

i [k]}| (7)

cTotal
k =cA

k +cU
k (8)
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It was mentioned above that ADT calculates distortion by comparing cA
k

with cTotal
k ; the rationale for this is provided here. In the single SNP case, we

compared the amplified counts of allele x with x̄ via testing allele count ci,x

against the sum total count h(i). This translates similarly to the haplotype
case, with the major difference that |ALLw

i | can be as large as 2w.
Let hk represent the haplotype ALLw

i [k]. The haplotypes across the n
samples can then be depicted in (amplified / corresponding non-amplified)
pairs for each amplified sample as, for instance: (h0/h1), (h0/h2), (h0/h3),
(h1/h2), (h1/h3), (h2/h0), …, (h0/h2). To accurately calculate distortion for
hk , we must examine only those pairs that include hk . cA

k is the number of
pairs in which hk is amplified. cU

k is the number of pairs in which hk remains
non-amplified while the other haplotype in the pair is amplified. Comparing
cA

k with cU
k via cTotal

k translates to comparing hk with the other haplotypes
(with which it pairs) starting at i, thus revealing the level of selection for
amplification of hk . A high cU

k over cA
k suggests against such selection.

We can now revisit our hypotheses mathematically. Let ωi
k represent

all the haplotype pairs across the n samples starting at marker i such that
each pair: possesses hk and another haplotype, and either hk or the other
haplotype are amplified. Note that cTotal

k = |ωi
k |. Let Ti

k be a random variable
representing the number of amplified instances of hk in ωi

k . In the haplotype
case, the null hypothesis states that hk is not selected for amplification over
the other haplotypes with which hk forms pairs across samples. We formally
hypothesize:

H0 :Ti
k ∼ Binomial(cTotal

k ,0.5). (9)

We set a significance threshold α according to the binomial distribution,
reporting cA

k as significant if:

Pr(Ti
k ≥ cA

k ) ≤ α. (10)

In other words, the alternative hypothesis states that hk is selected for
amplification over the other haplotypes with which hk forms pairs across
samples. Traditionally α is 0.05; however, we assign a GWST to α to address
multiple hypotheses, as described later in Section 2.3.

To test the hypotheses, we utilize the binomial test to calculate the
probability of observing at least the number of amplified instances of hk .
In our case, the binomial test assumes 0.5 for its probability of success,
which is appropriate under the null hypothesis:

p-valuei(hk) = Pr(Ti
k ≥ cA

k )=
C+=cTotal

k∑
C′=cA

k

[(
C+
C′

)(
0.5C+)]

(11)

Each p-valuei(hk) is then converted to a logarithm-of-odds (LOD)
score via performing: –log10[p-valuei(hk)]. The LOD score is a direct
quantification of amplification distortion for a haplotype hk at SNP i.

2.3 Significance testing
Running ADT over thousands of SNPs introduces a high risk of spurious
results. To alleviate effects from multiple hypotheses, permutation testing is
performed for single SNP or haplotype analysis to determine a respective
genome-wide threshold of significance for LOD scores. In both cases, our
approach requires permuting the dataset over t = 104 iterations. During each
iteration k of the t iterations, the amplification status of alleles for a sample j is
uniformly flipped in heterozygous calls genome-wide with 50% probability.
To model this, we define a k × j matrix F = [fk,j], which represents whether
the call values for sample j are flipped during an iteration k:

fk,j = 0 with 50% probability (flipping should not occur),
= 1 otherwise (flipping should occur).

We now define new Dx
k matrices, each of size m×n, to reflect the changes

made during an iteration k:

D0
k =D1[i,j] if fk,j = 1 and G[i,j] = 01

=D0[i,j] Otherwise
D1

k =D0[i,j] if fk,j = 1 and G[i,j] = 01
=D1[i,j] Otherwise

The respective A and U matrices, as well as the single SNPs or haplotypes,
can be subsequently determined from the Dx

k matrices during an iteration k.

We define a list L that retains the top t LOD scores over all iterations. The
GWST is set to the LOD score s that has at most 0.05 probability of appearing
on average over the t iterations:

GWST = s, such that [|{L[v]|L[v] ≥ s}|/t] = 0.05, (12)

with (0 ≤ v < t).

The LOD scores that ADT calculated from analyzing the original Dx matrices
are compared with GWST. Only those scores that are greater than or equal
to GWST are deemed to be significant genome-wide and are unlikely to be
an effect of noise. This is equivalent to comparing the binomial test p-values
with α, where α = 10(−GWST).

Alternatively, we can set a chromosome-wide significance threshold
(CWST), defined similarly to the GWST but restricted to a chromosome-
by-chromosome basis. We define a list Lc that retains the top t LOD scores
over all iterations from chromosome c. The threshold for c, CWSTc, is set to
the LOD score sc that has at most 0.05 probability of appearing on average
over the t iterations:

CWSTc =sc, such that [|{Lc[v]|Lc[v]≥ sc}|/t] = 0.05, (13)

with (0 ≤ v < t)

CWST is designed to offer a targeted option within ADT. This alleviates the
situation in which moderately amplified regions containing distortion on one
chromosome are discounted due to falling below a GWST that is influenced
by highly amplified regions on another chromosome. A consequence of this
addition is an increase in the power of the method, as discussed later.

Lastly, ADT and the permutation testing procedure examine only those
SNPs with six or more amplified heterozygous calls as a means to explicitly
reduce testing burden. However, by the nature of the calculation of the GWST
and CWST, SNPs with fewer calls would be automatically eliminated from
consideration anyway, as they would reside at the bottom of lists L and Lc,
thereby unable to affect determination of the thresholds.

2.4 Algorithmic optimizations
The hefty computation requirements of permutation testing necessitated
optimizations in memory use and execution time. Towards this end, ADT
uses object pools and sliding windows in an optimal fashion, keeping track
of amplified haplotype windows and counts by using bounded buffers and bit
vectors. ADT is implemented in the Java software Haplotype Amplification
Distortion in Tumors (HADiT); location of the source code with these
optimizations is given in Supplementary Material (Section Software).

ADT is also highly parallelizable. With the requirement that data files be
partitioned by chromosome, ADT can multi-thread chromosome processing
to take advantage of multi-core machines. ADT can be further parallelized
to run over a computing cluster, letting each machine process a chromosome
or specified set of chromosomes. These optimizations allow ADT to scale
robustly to larger dataset sizes, such as the magnitude of sequencing data.

2.5 Analysis of homozygous calls
Up until this point, ADT utilizes only heterozygous calls, analysis that
is unique to this application. However, this ignores potentially useful
information from homozygous calls, whose analysis can rely on existing
techniques from GWAS studies. Briefly, skewed ratios of somatically
amplified to non-amplified homozygous counts at a marker may imply
selection of an allele being amplified, thereby complementing or adding to
the information provided by the binomial test alone. Similar to the germline
tests of case-control association versus TDT, the additional information from
homozygotes comes at a price of sensitivity to population structure here
as well.

Towards this end, we adapted two commonly used chi-square based tests
that utilize homozygote information and incorporated them under the ADT
‘umbrella’ to work alongside the binomial test. Each test is applied on one
SNP marker i at a time but is not applied towards haplotypes.
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The first of these is the Cochran–Mantel–Haenszel (CMH) test, which
examines a series of 2×2× k tables to compare two groups in a binary
response. For each of the k tables, the binary response is either ‘amplified’
or ‘non-amplified’. The k (where k = 3) group pairs are, respectively: AA/BB;
AA/AB (with the A allele amplified); and BB/AB (with the B allele
amplified). These tables are depicted in Supplementary Figure 28. Each table
cell contains the appropriate counts for the SNP in question. Because the first
table is not independent of the latter two, it is analyzed separately. The CMH
test is first applied to this table exclusively to produce a p-value and LOD
score. The CMH test is then applied to the latter two tables together to
produce another LOD score. The maximum LOD score is taken to represent
SNP i. A GWST is generated for the LOD scores and is discussed below.

The second of these tests is the Cochran–Armitage (CA) Trend test,
applied widely in GWAS to determine associations between germline alleles
(via genotypes) and phenotypes. In our case, we adapted the CA test via
assigning amplification status as the phenotype. As such, for a SNP i,
we generate a 3×2 table, with each column representing the genotypes
AA/AB/BB and the rows representing the phenotype (‘amplified’ / ‘non-
amplified’) (see Supplementary Fig. 29). Each table cell contains the
appropriate counts for SNP i. We also construct two more 3×2 tables,
identical to the original with the exception of the amplified heterozygous
cell. In the first new table, this cell contains counts of the heterozygous calls
with the A allele amplified. In the second new table, this cell contains counts
of the heterozygous calls with the B allele amplified. These two tables are
created to test for allele specificity in the amplified heterozygous calls. The
CA test is applied to each of the three tables at SNP i, and the minimum
p-value of the three is retained.

The permutation procedure for obtaining a GWST is common to both of
these tests. For each SNP i, the number of amplified calls zi is known from the
tables generated above. For each permutation iteration j of t = 103 iterations,
we randomly assign zi genotypes at SNP i to be amplified, thus keeping the
number of amplified calls across iterations constant. The respective test is
then run on the amplified and non-amplified genotype counts. The LOD
scores are stored and sorted, and the score with 0.05 significance genome-
wide is set as the respective threshold. Performance of these tests is given in
Section 3.

As mentioned above, population stratification may confound results. For
example, if a dataset consists of two groups, in which a region tends to be
somatically amplified in the first group but not in the second, the prevalent
alleles in the region in the first group may appear to be selectively amplified
despite no biological phenomenon occurring in reality. As such, precautions
should be taken to ensure that the dataset consists of individuals within the
same population.

Lastly, our CMH and CA tests allow for homozygous calls in which both
copies of the allele are amplified. This contrasts with our discarding of double
amplifications in heterozygous calls, as they would imply ambiguous phase
during ADT binomial test analysis. Phase is not an issue for homozygous
calls, especially when performing single SNP analysis. Furthermore, since
homozygous calls contain two or more copies of the same allele, we are
only concerned with whether the call is amplified or not, versus knowing
which allele is exclusively amplified as is the case with heterozygous calls.
For these reasons, we retain homozygous calls with double amplifications
during CMH and CA analysis.

3 EVALUATION AND RESULTS
It is imperative to measure ADT’s power across a variety of tumor
dataset scenarios. To this effect, we generated numerous synthetic
datasets containing causal regions and assessed ADT’s ability to
detect those regions. These simulations revealed that ADT possesses
sensitivity proportional to the dataset size, while specificity remains
consistently high. This analysis provided critical insight into ADT’s
ability to accurately analyze real cancer data.

In further detail, simulation of a particular dataset first requires an
existing phased dataset containing only genotype information for n
samples. Recurrent stretches of amplification are assigned to several
regions in the genome. Each stretch contains a causal driver SNP at
its mid-point, and the driver may or may not be allele-specific, as
suggested by our alternate and null hypotheses, respectively. In other
words, for a heterozygous sample j, either the phase containing the
driver allele is amplified with a certain probability, or the other phase
is amplified. For a homozygous sample j, either phase can be chosen
for amplification. LD with the driver allele allows neighboring
SNPs to partake in amplification distortion and result in distorted
haplotypes. We thus define truth positive regions as 390 kb regions
centered at the driver SNP; 390 kb represents the mean length of
recurrent amplification stretches as observed in real cancer data, a
detail utilized and described in Table 1.

Non-recurrent stretches of amplification are also sprinkled over
individual samples. Such stretches are not causal and thus possess
no driver alleles. Along with non-amplified regions, they represent
the dataset’s truth negative regions, which are then partitioned into
segments of up to 390 kb in length; 390 kb was chosen in order to
maintain consistency with truth positive region lengths.

A visual example of a dataset is depicted in Figure 1. Each
simulated dataset is analyzed by ADT, which returns LOD scores
for each SNP. We test whether ADT returns genome-wide significant
LOD values—as determined by permutation testing—within truth
positive regions as well as a lack of genome-wide significant hits in
truth negative regions.

Note that ADT itself does not require input data to be phased;
phasing is used only during this evaluation procedure to assign CNA
stretches along haplotypes when generating simulated data. ADT
treats all input data as if it was unphased and uses amplification
status to implicitly phase the data.

The variability across the synthetic datasets is implemented via
a set of seven parameters, described in Table 1 and Figure 1. We
performed 100 trials for each parameter value combination when
iterating over the parameters’ value space, generating a dataset per
trial and calculating a GWST for each dataset via permutation
testing. To prevent exponential growth of the value space, we
iterated over only one parameter at a time while maintaining
the other parameters at their default values. This allowed us
to restrict ourselves to ∼72 000 synthetic datasets instead of a
prohibitive 250 × 109. The parameter default values were modeled
from observations made in a real glioblastoma cancer dataset,
described in the next section.

3.1 Evaluation results
As stated above, an existing phased dataset is required for the
simulation procedure. We had obtained three such SNP datasets.
The first consists of 204 glioblastoma samples from The Cancer
Genome Atlas (TCGA) that were run on the Illumina 550K platform
(designated as Dataset A). Genotype and CNA information were
determined using log R ratio and B-allele frequency information.
In addition, we had obtained another dataset (Dataset B) comprised
of 698 lung tumor samples run on the Affymetrix 500K platform,
Sty component (250K SNPs) by the Broad Institute. Genotype
and CNA information were determined via the PLASQ procedure
(Laframboise et al., 2007). The caveat with this dataset is that
only roughly half of the samples are published online. Because of
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Table 1. Parameter definitions

Parameter name Default Description

Mean length of a recurrently
amplified stretch

390 kb This parameter represents the mean of an exponential distribution, which upon sampling determines the length
of a recurrently amplified region across samples. By default, the distribution possesses a mean of 390 kb.
This exponential distribution can produce recurrent stretches of over 1 or even 2 Mb.

Number of recurrently amplified
stretches

5 This parameter determines the number of recurrently amplified stretches in the genome, all of which contain
causal (driver) SNPs. A value of five represents a realistic number of truth positive regions.

Mean length of a non-recurrently
amplified stretch

2.5 Mb This parameter represents the mean of an exponential distribution, which upon sampling determines the length
of a non-recurrent (sample specific) amplified stretch for an individual sample. By default, the distribution
possesses a mean of 2.5 Mb.

Number of non-recurrently
amplified stretches

5 This parameter determines the number of non-recurrently amplified stretches for a particular sample. No such
stretch contains causal (driver) SNPs.

Probability of amplifying the
driver allele

0.90 At a driver SNP within a recurrently amplified stretch, a driver allele is pre-selected to be the factor driving
tumor development. For a sample j heterozygous at the SNP, this parameter is the probability for: amplifying
the phased haplotype within the stretch containing the driver allele. Otherwise, the other phased haplotype
is amplified instead.

Probability of amplifying a
sample within a recurrently
amplified stretch

0.20 The mean probability that: a sample j (and therefore all its calls) is amplified within a recurrently amplified
region. The true probability of such amplification for a sample j is determined via sampling from a normal
distribution with µ = the parameter value and σ = 0.03. The default and σ values reflect what is observed
in recurrently amplified regions in the real Illumina 550K data.

Bias to amplify driver allele
homozygous calls

0.70 Either the major or minor allele at a driver SNP can be selected to be the driver allele. This parameter
determines the ‘proportion’ of homozygous calls (corresponding to the driver allele) that are to be amplified
at the driver SNP. The complement of this parameter (subtracted from 1.0) determines the ‘proportion’ of
homozygous calls that are to be amplified for the complementary allele at the driver SNP. The ratio of this
parameter value to its complement can be viewed as the relative risk (risk of amplification relative to the
homozygous genotype). In other words, the ratio of this parameter value to its complement (the relative
risk) is equal to the ratio of the proportion of homozygous calls that are amplified for the driver allele to
the proportion of homozygous calls amplified for the other allele.

The parameters used in the simulations are described above. The default values were obtained by observing parameter-specific properties in a real Illumina 550K dataset obtained
from The Cancer Genome Atlas (TCGA). The derivation of the default parameter values is discussed in Supplementary Material (Determination of simulation default parameters
section).

the importance of demonstrating ADT’s power on a large publicly
available dataset, we delineated a third dataset (Dataset C) that is a
subset of Dataset B, consisting of 345 lung tumor samples whose raw
data are available online (see Supplementary Material Introduction
section).

The genotype component of each dataset was extracted and then
phased computationally using Beagle 3.0 (Browning and Browning,
2007). These phased genotypes were used as master templates
(Template A, B and C, respectively). Recurrent and non-recurrent
amplified stretches were assigned to the templates independently
during each simulation trial when iterating over the parameters.
Default parameter values were modeled from observations made
only in Dataset A due to the reliability of copy number calls in this
dataset versus the other datasets. As such, CNA properties learned
from Dataset A were used to assign CNA stretches to all three
templates. Datasets B and C were used strictly for the large sample
sizes they offered.

3.1.1 Results from the binomial test component of ADT We
observed that the GWST typically increases as the number or length
of amplified stretches increases, encoded via four parameters and
depicted in Supplementary Figures 1–12. The underlying reason is
that the overall number of amplified heterozygous calls—targeted
in permutation testing and contained in such stretches—grows,
thereby elevating the threshold. This in turn reduces sensitivity, as
driver regions have difficulty meeting such high thresholds due to

insufficient amplified heterozygous calls (inadequate power) at the
driver SNPs. These sensitivity plots in Supplementary Figures 1–12
reflect performance of all driver regions—those that are sufficiently
well-powered to meet the threshold as well as those that are not. The
plots reveal that sensitivity is greater in larger sample sizes (∼0.84),
moderate in moderate sample sizes (∼0.62), but reduced in smaller
sample sizes (∼0.35). Specificity remains at 0.99 across cases and
is not displayed.

The final two simulation parameters (probability of amplifying
the driver allele, probability of amplifying a sample within a
recurrently amplified stretch) represent the parameters of the
binomial distribution that underlies ADT. In fact, the latter parameter
dictates the number of samples amplified within a recurrent stretch.
This translates to the number of amplified heterozygous calls at
a driver SNP and therefore has a direct impact on power. Low
values for this parameter signifies that sample size is effectively
reduced.

We calculated the GWST for each of these two parameters jointly
(Supplementary Figs 13 and 14). The joint performance for Dataset
B is displayed in Figure 2, while the joint performances for Datasets
A and C are displayed in Supplementary Figures 15 and 16. We
observe that ADT’s sensitivity increases as the parameters’ values
grow. It stands at 0.84 in Dataset B at the default values, in which
the probability of the driver allele being amplified in an amplified
heterozygous call averages 0.90 and the proportion of amplified
samples in a recurrent stretch averages 0.20.
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Fig. 2. Sensitivity across value combinations of two parameters. Dataset B: 698 Samples. The two parameters are denoted on the z- and x-axes and have the
ability to significantly affect sensitivity of ADT. This graph is produced from performing simulations on the 698 sample Affymetrix 250K dataset. Sensitivity
jumps when the sample amplification parameter reaches 0.1 but tapers afterwards. Sensitivity also increases when the driver allele amplification parameter
reaches 0.7. Sensitivity at the default parameter values (0.2 for sample amplification and 0.9 for driver allele amplification) reaches 0.84. Considering the
default parameter values represent properties seen in real data, this indicates that ADT will perform well on real datasets with large sample sizes.

In Datasets A and C, the sensitivity stands at 0.35 and 0.62
at the default values, respectively. Sensitivity will either rise or
reduce on real datasets whose parameter values either, respectively,
exceed or fall below these default values. One must use ADT
with caution on datasets whose SNPs contain low proportions of
amplified heterozygous calls across samples. These results support
that increasing sample size boosts sensitivity due to increase in
power. Note that the number of samples remains well below the
thousands typically required in GWAS studies. Again, specificity is
not shown because it resides consistently at 0.99 across cases.

As mentioned above, sensitivity suffers in Dataset A because
many driver regions do not possess enough power—the amplified
heterozygous calls necessary at a driver SNP—to meet the GWST
levels. When the number of such calls (Si

0 + Si
1 at SNP i) is too

low, the threshold cannot be crossed even if maximum distortion
(Si

0 = 0 or Si
1 = 0 exclusively) is observed. If the same occurs with

SNPs neighboring a driver SNP, the driver region as a whole will
remain insufficiently powered. The simulations reveal that this is
often the case with small sample sizes, leading to the reported
sensitivities.

To alleviate the concerns between power at driver SNPs and
the GWST, we measured performance using CWSTs instead. The
results on Dataset A are presented in Supplementary Figures 17–21.
Results indicate an increase in sensitivity to between 0.5 and 0.55.
This potentially comes at a cost of specificity, but any decreases in

specificity appeared to be negligible. ADT could thus alternatively
be used in a more targeted manner to identify significant distortions.

Lastly, ADT can report peaks in driver regions that lie below the
GWST, thus providing the researcher the option of fine mapping such
regions. The simulation experiments reveal that ADT performs well
with larger datasets but does not perform as optimally with smaller
dataset sizes. Furthermore, the parameter default values represent
properties observed in real data, thereby providing support of
ADT’s strong performance—an overall sensitivity of 0.84 and 0.62
with practical parameter values—on large and moderate datasets,
respectively.

3.1.2 Results from the chi-square test components of ADT As
noted in the Methods section, the binomial test component of
ADT utilizes only heterozygous calls, potentially reducing power as
heterozygous calls comprise only a subset of genotypes at a driver
marker. Information from homozygous calls can also be used to
implicate alleles selected for amplification.

Towards this end, we adapted and incorporated the CMH and
CA test under the ADT umbrella as alternative or complementary
methods to the binomial test. These tests depend on ratios of
amplified homozygous calls at a marker, determined by the
parameter bias to amplify driver allele homozygous calls.

Performance was measured in Dataset A. Results from CMH
are displayed in Supplementary Figures 22 and 24, while results
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Table 2. Comparison of ADT binomial test, CMH and CA across two parameters

Probability of amplifying a sample within a recurrently amplified stretch 
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The following is a comparison table between the three tests incorporated under the ADT umbrella across two parameter value ranges as indicated in the table. Each cell contains the
color shading code of the test that possesses the greatest sensitivity for that row and column value. If multiple tests have sensitivities close in value, they are depicted in rank order
within the cell from greatest (left) to least (right). The color shading codes are: ADT-Binomial Test (light grey), CMH with the minor allele selected to be the driver allele (vertical
stripes), CMH with the major allele selected to be the driver allele (diagonal stripes), CA with the minor allele selected to be the driver allele (horizontal stripes), and CA with the
major allele selected to be the driver allele (black). The cell containing ‘Default’ corresponds to the default parameter values.

from CA are provided in Supplementary Figures 23 and 25. The
first two figures from CMH and CA involve the minor allele being
selected as the driver allele, while the latter two figures involve
the major allele being selected as the driver allele. The graphs
show joint performance of the parameters: bias to amplify driver
allele homozygous calls, probability of amplifying a sample within
a recurrently amplified stretch.

For both CMH and CA, when the minor allele is selected,
sensitivity generally rises to a peak (for a given value of bias to
amplify driver allele homozygous calls), after which it begins to
decline as the number of samples amplified increases. This occurs
because: as the proportion of samples to be amplified increases
(starting from zero), the homozygous calls of the minor allele
are preferred to be amplified. The rise to the peak signifies that
the fraction of minor allele homozygous calls being amplified is
becoming larger than that of the major allele (and large enough
to cross GWST). However, as the proportion of samples amplified
increases further, the minor allele homozygous calls eventually
saturate with amplification, and so the major allele homozygous
calls are increasingly chosen to be amplified instead (in order
to maintain the total proportion of samples amplified). Thus, the
fraction difference reduces, leading to a decline in sensitivity.

When the major allele is selected, sensitivity builds more slowly
towards the peak for both CMH and CA. The reason is that
many more amplified samples are needed to achieve an amplified
homozygous fraction difference between the major and minor
allele that would cross genome-wide significance levels (when the
major allele homozygous calls are being selected for amplification).
However, sensitivity begins to first decline and then plummet when
more than 80% of samples are amplified. The cause is that both minor
and major allele homozygous calls are saturating with amplification,
resulting in a shrinking amplified homozygous fraction difference.

Given this preliminary view of performance of CMH and CA, a
potential question is: how do they compare to the ADT binomial
test? More specifically, in which parameter scenarios do CMH or
CA perform better than ADT, and vice versa? Before proceeding,
one caveat to keep in mind is that ADT analyzes information
different from that of CMH or CA. For example, as mentioned
earlier, ADT examines only heterozygote calls while the first table
in CMH utilizes only homozygous calls. Furthermore, CA utilizes
both homozygous and heterozygous calls. Thus, the tests may not be
directly comparable due to differing input data. However, it is still
important to ascertain which test performs best in which scenario,
as defined by the parameters in Table 1.

The binomial test’s performance for Dataset A is displayed in
Supplementary Figure 15; we focus mainly on the trend line for
which probability of amplifying the driver allele is 0.90, as this
parameter was retained at its default value for CMH and CA. Recall
that this parameter applies only to heterozygous calls. For CMH and
CA, we focus for now on the trend line for which bias to amplify
driver allele homozygous calls is defaulted to 0.70. In this manner,
we can compare CMH and CA with ADT on a common parameter:
probability of amplifying a sample within a recurrently amplified
stretch.

Comparisons of the graphs reveal thatADT binomial test performs
stronger while varying this common parameter (refer to Table 2).
At the default values of all parameters, CMH and CA possess a
sensitivity of ∼0 regardless of the allele selected to be the driver.
ADT binomial test, on the other hand, possesses a sensitivity of 0.35.
Furthermore, ADT binomial test outperforms CMH or CA when
the proportion of amplified samples drops below the 0.20 default
value. For such small amplified sample counts, ADT binomial test
LOD scores are better able to pass their significance thresholds than
can the CMH or CA LOD scores. On the other hand, when the
proportion of amplified samples rises to 0.30 or 0.40, ADT still
performs better, reaching sensitivities of 0.57 and 0.70. With the
minor allele selected to be the driver, CMH, respectively, performs
at 0.02 and 0.22, and CA performs at 0.12 and 0.24. With the major
allele selected, CMH, respectively, performs at ∼0 and 0.04, and
CA performs at 0.18 and 0.24.

When the minor allele is selected, CMH and CA sensitivities
peak with 50% of samples being amplified, but their sensitivities
still fall below ADT binomial test’s 0.74 sensitivity. Afterwards,
the CMH and CA sensitivities fall while the binomial test’s
sensitivities continue to rise; the reasoning for this decline was
provided earlier. When the major allele is selected instead, the
CMH and CA sensitivities continue to rise but never quite reach
the ADT binomial test sensitivities (∼0.90) when many samples are
amplified; afterwards, the CMH and CA sensitivities drop. These
results indicate that ADT binomial test performs stronger than CMH
or CA across the range of proportion of samples to be amplified
(while other parameters remain at their default values).

However, if we vary the parameter bias to amplify driver allele
homozygous calls, we observe cases in which CMH and CA perform
equivalently or better than ADT binomial test (for which bias to
amplify driver allele homozygous calls always possesses its default
0.70 value). Such cases are depicted in Table 2. Although ADT
binomial test consistently performs better when the bias parameter is
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Fig. 3. ADT binomial test results. Dataset A: 204 samples. This displays a Manhattan plot of amplification distortion p-values (y-axis in a −log10 scale)
along the genome (x-axis). Signals on chromosome 7 exceed the 3.61 genome-wide significance threshold, indicated by the horizontal line. Only two SNPs
cross this threshold (rs1997375, rs10250847). The SNP rs10250847 passes certain quality control criteria and may motivate further biological investigation.
The distribution of the ADT binomial test statistic is provided in a quantile–quantile (QQ) plot in Supplementary Figure 30.

≤0.70 (due to similar fractions of amplified homozygous calls for the
two alleles at a driver SNP), CMH or CA often gain the upper hand
when this parameter exceeds 0.70. For example, when the sample
amplification parameter is low and the bias parameter is high, both
CA and CMH possess higher sensitivities (when the driver allele is
the minor allele). As the sample amplification parameter increases
while the bias parameter remains high, CA (with the driver allele
being the major allele) climbs to the top. ADT binomial test returns
to possessing the greatest sensitivity when the sample amplification
parameter reaches 0.90 or above.

These results reveal that ADT binomial test performs well in
many cases, including practical ones defined by default parameter
values, while CMH and CA perform well in others. As such,
if real tumor data possesses properties for which CMH or CA
are known to perform better, those tests should be used to
achieve greater sensitivity for detecting selectively amplified alleles.
Conversely, if real tumor data possesses properties for which ADT
binomial test is known to perform better, then that test should be
utilized.

To relieve the user from making such a choice, the HADiT
software package can conduct all three tests on an input tumor
dataset, generating three corresponding LOD scores per SNP.
Respective permutation tests can then be performed to determine
the GWST for each test type. A SNP is reported as significant if at
least one of its three LOD scores crosses the respective threshold.
The benefit of this ‘OR operation’ is that SNPs that are significant
via different tests can be reported at once. For example, if SNP i is
significant according to the ADT binomial test but is not significant
via CMH or CA, it would still be reported. Likewise, if SNP j is
significant according to CMH or CA but not according to ADT
binomial test, it would also be reported. Moreover, SNPs that are
deemed significant by more than one test make stronger candidates
for drivers. Performance of utilizing all three tests in this fashion is
provided in Supplementary Figures 26 and 27.

The ‘OR operation’ was performed versus combining the three
p-values because the tests possess differing null distributions and
utilize input data that are dependent, thus violating assumptions of
standard p-value combination methods (e.g. Fischer’s method) and
highly complicating permutation testing procedures.

A consequence of the ‘OR operation’ is that none of the three
tests affects the sensitivity of the other; rather, they represent
options under the ADT umbrella. Results from CMH or CA may
serve to support the significance of driver alleles discovered by
ADT binomial test, or vice versa. HADiT thus offers the user the
functionality of these tests in a complementary fashion.

Table 3. Genotype discordances between original genotypes and imputed
genotypes (Dataset A: 204 samples)

SNP rs1997375 rs10250847

No. of calls 204 204
No. of AB calls imputed to be AA or BB 41 0
No. of AA or BB calls imputed to be AB 4 0
No. of AA or BB calls imputed to be BB or AA 3 0
No. of total genotype discordances 48 0

The table contains a summary of genotype comparisons between the original genotype
calls and the Beagle 3.0-imputed genotype calls for the top two genome-wide significant
SNPs. The top SNP (rs1997375) displays many (48) discordances in total. However, the
second SNP (rs10250847) does not, lending evidence towards it being a stronger hit.

3.2 Biological results
We analyzed Dataset A using the binomial test portion of ADT
and present the results in Figure 3 and Table 3. Only two SNPs
(rs1997375, rs10250847) cross the GWST of 3.61. As a quality
control measure, we filtered out SNPs that had more than 10%
missed calls. In addition, we imputed the genotypes at the top
genome-wide significant SNPs using Beagle 3.0 (Browning and
Browning, 2007). The rationale behind this is that regions with
amplification are problematic for genotype calling algorithms and
may lead to erroneous calls. We thus checked the original genotype
calls and imputed calls for genotype concordance for each top SNP.
Although the best hit rs1997375 displays much discordance and
thus is deemed unreliable, the next hit rs10250847 displays strong
concordance, lending support towards its potential validity (see
Table 3).

Furthermore, this latter SNP resides within the epidermal
growth factor receptor (EGFR) region (∼434 kb telomeric to the
transcriptional start site of the EGFR locus), which is well-known
to be involved in various cancers (Olayioye et al., 2000). Intriguing
connections between the germline and somatic genomes are starting
to appear in the literature. For example, in lung cancer patients, it
has long been recognized that individuals of Asian ancestry have
a higher prevalence of somatically acquired EGFR mutations than
individuals of European ancestry (Nomura et al., 2007; Shigematsu
et al., 2005). These mutations are strongly correlated with response
rate to EGFR tyrosine kinase inhibitors (Huang et al., 2004; Lynch
et al., 2004; Paez et al., 2004; Pao et al., 2004; Shigematsu and
Gazdar, 2006; Tam et al., 2009; Zhang et al., 2005). While the
mechanism underlying the prevalence difference is unknown, it is
conceivable that there is an inherited predisposition to developing
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the somatic mutation. More recently, a trio of studies demonstrated
a strong association between a germline haplotype and a somatically
acquired mutation in JAK2 in myeloproliferative neoplasms (Jones
et al., 2009; Kilpivaara et al., 2009; Olcaydu et al., 2009). It is
clear that complex interactions can occur between the germline and
tumor genomes; how prevalent this phenomenon is, however, will
require further investigation. Our results suggest that rs10250847
is a preliminary candidate motivating further examination into this
genetic region in glioblastomas.

4 DISCUSSION AND CONCLUSIONS
Previous studies had observed anecdotal evidence of particular
nucleotide alleles being preferred in amplified regions in tumors. We
formalized this notion via hypothesizing amplification distortion, in
which a certain tumor-driving allele is selected to reside in amplified
regions versus the other allele over many tumor samples. LD allows
this distortion to extend to haplotypes centered at the driver. To test
this hypothesis, we devised the ADT. ADT accepts genome-wide
SNP and CNA data from SNP arrays and returns LOD distortion
scores for each allele or haplotype starting at each SNP. ADT can
also permute the data to determine a genome-wide threshold of
significance for these scores. Alleles with significant LOD values are
either potential causal variants or are associated with causal variants.
Techniques such as fine mapping can then be used to identify cancer
genes proximal to such alleles.

We evaluated the power that ADT possesses to detect
distorted alleles. We generated synthetic datasets that represent the
hypothetical variety of cancer data consisting of SNP and CNA
information. The results on such datasets indicate that ADT performs
well with large sample sizes, especially if the simulated data reflects
properties of true cancer data. One limitation may be that such
large SNP array tumor datasets are not currently available publicly.
However, in the coming years, it may be possible to obtain or
aggregate sufficient quantities of tumor SNP array data, akin to the
datasets that have been available for GWAS studies. Alternatively,
labs may privately possess hundreds of tumor samples that are not
yet published. Such groups could use ADT to identify potential
causal variants with strong power.

Since the purpose of ADT is to localize causal variants—putative
genes—within amplicons, a natural extension is to incorporate
gene expression data towards the distortions. In other words,
are there associations between enriched expression levels of
proximal or perhaps distal genes with alleles that are selected for
amplification? The interesting methodological challenges would
stem from the complexities of examining associations with distal
genes specifically. Another direction for future study is the
adaptation of ADT towards sequencing data. Although we expect
ADT to scale well to the size of such datasets, the method will need
to handle the inherent differences between sequence and SNP array
data. For instance, sequence data will include all nucleotides, not just
SNPs, which will have an impact on amplified haplotype detection.
Furthermore, somatic mutations can be detected and incorporated
into the algorithm. Such enhancements in the near future will further
empower ADT.

In the pursuit of detecting causal variants, it aids the cancer
community to integrate multiple sources of information. We present
a method that aims to do this. The strong evaluation of ADT provides
us confidence to offer the community this powerful genome-wide

scanning method. We hope that cancer researchers will benefit from
its use towards helping lay the groundwork for discovering variants
and possibly oncogenes.
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