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ABSTRACT

Motivation: DNA copy number aberration (CNA) is a hallmark of
genomic abnormality in tumor cells. Recurrent CNA (RCNA) occurs in
multiple cancer samples across the same chromosomal region and
has greater implication in tumorigenesis. Current commonly used
methods for RCNA identification require CNA calling for individual
samples before cross-sample analysis. This two-step strategy may
result in a heavy computational burden, as well as a loss of the
overall statistical power due to segmentation and discretization of
individual sample’s data. We propose a population-based approach
for RCNA detection with no need of single-sample analysis, which
is statistically powerful, computationally efficient and particularly
suitable for high-resolution and large-population studies.

Results: Our approach, correlation matrix diagonal segmentation
(CMDS), identifies RCNAs based on a between-chromosomal-site
correlation analysis. Directly using the raw intensity ratio data from
all samples and adopting a diagonal transformation strategy, CMDS
substantially reduces computational burden and can obtain results
very quickly from large datasets. Our simulation indicates that the
statistical power of CMDS is higher than that of single-sample
CNA calling based two-step approaches. We applied CMDS to
two real datasets of lung cancer and brain cancer from Affymetrix
and lllumina array platforms, respectively, and successfully identified
known regions of CNA associated with EGFR, KRAS and other
important oncogenes. CMDS provides a fast, powerful and easily
implemented tool for the RCNA analysis of large-scale data from
cancer genomes.

Availability: The R and C programs implementing our method are
available at https://dsgweb.wustl.edu/qunyuan/software/cmds.
Contact: qunyuan@wustl.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

DNA copy number aberration (CNA) is a significant phenomenon
of amplification and deletion of chromosomal regions in tumor
cells. Identification of CNAs may provide important insight into the

*To whom correspondence should be addressed.

molecular mechanism of oncogenesis, as well as useful information
for the diagnosis and treatment of cancers. A recurrent CNA
(RCNA) is a CNA that occurs in multiple patients across the same
chromosomal region. In contrast to non-recurrent CNAs, RCNAs are
often identified as more significant events with greater implication
in tumorigenesis.

In recent years, array-based technologies, such as array
comparative genomic hybridization (CGH), single nucleotide
polymorphism (SNP) arrays and copy number (CN) arrays,
have facilitated the genome-wide studies of CNA. Numerous
mathematical methods for CNA identification have been developed
(Beroukhim et al., 2007; Diskin et al., 2006; Guttman et al., 2007;
Hsu et al., 2005; Hupe et al., 2004; Jong et al., 2004; Lai et al.,
2005a; Lai et al., 2005b; Lipson et al., 2006; Nilsson et al., 2009;
Olshen et al., 2004; Picard et al., 2005; Rouveirol et al., 2006; Rueda
et al., 2009; Shah et al., 2006; Shah et al., 2007). These methods
can be roughly categorized into two classes: CNA identification
for individual samples and RCNA identification across multiple
samples. In contrast to the CNA analysis of individual samples,
RCNA analysis involving multiple samples is more difficult and
its application still remains limited due to the diversity of CNA
patterns among individuals and the computational burden resulting
from the high density of signals and large sample size. Published
approaches for RCNA analysis include significance testing for
aberrant copy number (STAC) (Diskin ez al., 2006), geometic family
algorithm (GFA) (Lipson et al., 2006), minimal alteration region
(MAR) method (Rouveirol ez al., 2006), Multiple Chain Hidden
Markov Model (HMM) (Shah et al., 2007), genomic identification
of significant targets in cancer (GISTIC) method (Beroukhim et al.,
2007), multiple sample analysis (MSA) (Guttman et al., 2007),
probabilistic recurrent copy number region method A (pREC-A)
(Rueda et al., 2009), etc. Despite the use of different algorithms,
most of these approaches adopt a two-step strategy that requires
signal discretization (smoothing, binarization, segmentation, HMM
modeling, cutoff definition, etc.) for individual samples prior to
cross-sample analysis. Although discretization provides a useful
CNA pattern for individuals, it may result in loss of the raw
distribution information during the conversion of continuous signals
into discretized data. As a result, the overall statistical power
of RCNA detection may be diminished. Furthermore, individual
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sample analysis, along with cross-sample analysis, may produce
a heavy computational burden that could impede the application
of these methods in genome-wide studies with high resolution and
large sample size. Especially in the near future, the next generation
sequencing data from large populations will present more challenges
to these methods.

In this article, we propose a computationally efficient and
statistically powerful approach, correlation matrix diagonal
segmentation (CMDS), which directly analyzes the intensity ratio
data to identify RCNAs across a large set of samples, with no prior
need of single-sample analysis. First, we introduce the rationale
behind CMDS and the procedure for its implementation. Next,
we investigate the statistical power of CMDS under a variety of
configurations via simulation, and compare CMDS with single-
sample analysis-based methods in terms of power and computational
time. Finally, we demonstrate the applicability and efficiency
of CMDS by analyzing two real datasets of lung cancer and
brain cancer from Affymetrix and Illumina high-resolution array
platforms.

2 METHODS
2.1 Proposed method

When a RCNA exists in the same chromosomal region across individuals
(Fig. 1A), it produces CN co-variation between neighboring chromosomal
sites within the region. As a result, a correlation block can be observed in the
CN correlation matrix of chromosomal sites (Fig. 1B). Therefore, RCNAs
can be identified by detecting the corresponding correlation blocks along the
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Fig. 1. Illustration of the CMDS approach. (A) Visualization of CN values
of 500 chromosomal sites and 100 samples. White indicates amplification
(CN > 2). (B) Visualization of the CN correlation matrix of 500 sites. The
white block corresponds to a RCNA region. (C) The RCNA scores obtained
by the DT. (D) Negative log;,(p)-values from significance test of RCNA
scores.

diagonal of the correlation matrix. Based upon this rationale, we propose the
CMDS approach, described below and as illustrated in Figure 1.

2.1.1 Input data As input CMDS takes the CN data of m physically
ordered chromosomal sites of n individual samples, denoted by a nxm
matrix (X), in which the element x;; is the CN value of individual i at
chromosomal site j. Usually, x;; is measured by the intensity ratio (or logz
ratio) between a target sample and reference sample(s).

2.1.2 CN correlation matrix The first step of CMDS is to calculate
Pearson’s correlation coefficients between chromosomal sites based on the
CN matrix X via the formula:

- Xijj —Xj Xik — Xk
rjg=——" — | — 1
e ;( 5j Sk M
where rj is the correlation coefficient between sites j and k; X;, X, s;
and s; are CN means and SDs of sites j and k across n individuals. For
the convenience of probability calculation, rj; is normalized by Fisher’s
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log — 1%
1—rj
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The zj; values of all possible pairs of m sites compose a diagonally symmetric
m x m correlation matrix (Z), which is the basis of the CMDS analysis. The
statistical scenario underlying CMDS is, if no CNA exists across samples
(i.e. the variation in X is resulted only from random experimental noises),
the expected rjx should be O (i.e. no correlation between sites) and Z will
randomly follow the standard normal distribution (SND). In contrast, if
CNA recurs at a chromosomal region across samples, it will cause positive
correlation (i.e. rj; > 0) between the sites within the region. As a result, the
expected zj; values corresponding to the region will be higher than others
and result in a square block along the diagonal of Z (Fig. 1B). Thus, RCNA
regions can be detected by searching square blocks along the diagonal of Z.

Zjk =

2.1.3 Diagonal transformation  Usually, identification of square blocks in
a matrix can be treated as an image recognition problem. However, the size
of Z in genome-wide studies could be too large for direct image processing,
and image recognition does not provide probability measures for significance
testing of such correlation blocks. Since we are only interested in the blocks
along the diagonal, it is unnecessary to search the entire matrix. We therefore
propose a computationally efficient and easily implemented approach that
performs a diagonal transformation (DT) to convert the 2D problem into a
1D problem. Along the diagonal of the correlation matrix Z, DT calculates
a RCNA score (Ry,) for each chromosomal site & based on the correlation
values of b+ 1 sites surrounding (and including) the site A:

h+bj2—1  h+b)2

2
Ri=ios 2 D 3

j=(h—=b/2) k=j+1

In the DT formula above, the average of the zj values of b+ 1 sites around
the site i (b/2 left sites, b/2 right sites, plus the site & per se) are used to
measure the degree of RCNA of the site &, which is equivalent to sliding
a (b+1) x (b+ 1) square block along the diagonal of Z and averaging the
zjx values within each block (excluding self correlation values, i.e. j # k).
Since DT only needs to calculate the zj; values within small blocks (not all
the elements in Z), it is very low cost in terms of both computer time and
memory.

2.1.4  Significance test of the RCNA score Under the null hypothesis that
there is no CNA (i.e. no correlation between chromosomal sites), the RCNA
score R;, will randomly follow a normal distribution with a mean of ug =0

and a variance of )

b(b+1)
In real data analysis, ug and O’l% may deviate from their theoretical values
due to artifactual correlations between samples and/or adjacent chromosomal
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positions, which usually are the results of experimental noise, batch effect,
genomic wave effect (Diskin et al., 2008; Marioni et al., 2007), non-recurrent
CNA and/or CNA of a whole chromosome or chromosomal arm in some
individuals. Therefore, we propose to use the observed mean and variance
of Ry, fig and &1%, to replace ugr and J,%, and then test if the R;, value is
different from fig. The final statistic for the RCNA test of site A is:
in=Ry—r)/5x ®)
here 1, is the standardized R, value and follows Student’s ¢ distribution.
Since the df of t, is large in genome-wide analysis and the ¢ distribution
is very close to the SND, P-values can be obtained from SND. We choose
right-tailed probability for this test, because theoretically there is no true
negative correlation in Z and the expected #;, value can only be >0.

We have investigated the distribution of R; values and found that the
standardization step is important for real data analysis. Direct testing based
on unstandardized R;, values may lead to a substancial increase of false
positives (Supplementary Fig. 1).

2.2 Datasets

Both simulated and real datasets were used in this study.

2.2.1 Simulated data Multiple datasets were simulated for statistical
power analysis. Given a set of chromosomal sites and a CN value ¢, we
simulated log, intensity ratios based on a normal distribution N(u(,,az),
where (. =log,(c/2) and o =0.509 (this is an empirical estimate from lung
cancer data described later). The length of the CNA region for individual
samples was simulated based on a Poisson distribution with mean =3¢,
where ¢ is the length of RCNA region (i.e. the overlapping region across
individuals). To make the simulation more realistic, we randomly selected
5% of samples from each simulated set and added one non-recurrent CNA
region to each sample. The lengths and positions of the non-recurrent regions
were generated using the Poisson distribution and uniform distribution,
respectively.

2.2.2 Lung cancer dataset DNA CN data (tumor/normal intensity ratios)
for 371 lung cancer (adenocarcinoma) patients were used. This dataset was
generated from the Affymetrix Human Mapping 250K STY SNP Array
platform in the Tumor Sequencing Project (TSP) and is publicly available
at http://www.broad.mit.edu/cancer/pub/tsp/. More details can be found
elsewhere (Weir et al., 2007).

2.2.3 Brain cancer dataset DNA CN data (tumor/normal intensity ratios)
for 213 brain cancer (glioblastoma) patients was also used. This dataset
was generated from the Illumina Infinijum 550K BeadChip platform in
The Cancer Genome Atlas (TCGA) project and is publicly available at
http://cancergenome.nih.gov. More details can be found elsewhere (The
TCGA Research Network, 2008).

2.3 Methods for comparison

In order to evaluate the performance of CMDS, we compared it with a typical
single-sample calling based RCNA testing approach, STAC (Diskin et al.,
2006) and a HMM-based RCNA analysis method, pREC-A (Rueda et al.,
2009). Since STAC requires input data in the form of a binary matrix that
indicates whether the CN of each chromosomal site for each sample is normal
or aberrant (i.e. CNA status), we first segmented the data for individual
samples using two different methods, adaptive weights smoothing (AWS)
(Hupe et al., 2004) and circular binary segmentation (CBS) (Olshen et al.,
2004); then we defined different matrices of binary CNA status using three
cutoffs (CN > 2.25, 2.50 and 2.75) and performed cross-sample RCNA tests
using STAC. According to the two different methods used in the first step
for single-sample analysis, we refer to the STAC analyzes as two different
methods, AWS-STAC and CBS-STAC. Statistical power and computational
time were compared for CMDS, AWS-STAC, CBS-STAC and pREC-A using
simulated data.

3 RESULTS

3.1 Statistical power of CMDS

The statistical power of CMDS depends on multiple factors,
including the block size (b) chosen for DT, sample size (n),
frequency of RCNA in population (f), total number of chromosomal
sites (m) to be tested, length (¢) and CN (c) of the RCNA region, etc.
To understand how these factors affect the power, we investigated
simulations under a variety of configurations.

Given a set of n, f, ¢, m, t and b, we simulated log, intensity
ratios and performed the CMDS analysis on the simulated data. For
each configuration, false positive rate (FPR) and true positive rate
(TPR) were counted at different P-value cutoffs and then averaged
over 500 replications of simulation. The FPR versus TPR plots, also
called receiver operating characteristic (ROC) curves, are presented
in Figure 2.

Among the factors determining the power of CMDS, b is the
only parameter that needs to be specified for the CMDS analysis.
Our simulations show that the optimum of b for CMDS is around
20 (Fig. 2A). Suboptimal values for b will deteriorate the power,
because smaller values will produce more noise and larger values
will lose sensitivity in the estimation of RCNA score. It is clear from
Figure 2B—F that the power of CMDS increases with factors n, f,
m, t and the CN amplitude of RCNA region (i.e. the absolute value
of ¢-2). For instance, for detection of a RCNA region with ¢ =3,
f=0.1, r=30 and m =1000, the power of CMDS (with b =20 and
o level=0.01) will increase from ~50% to >90%, if the sample size
n is quadrupled from 25 to 100.

D E F

Fig. 2. ROC curves of CMDS under different configurations. Results are
based on 500 replications of simulation. Since only the power at small type
I error levels is of interest, FPR is presented only from O to 0.1. Simulation
and analysis parameters are as follows: (A) b=5-50, n=50, f=0.1, c=3,
m=1000, t = 10-50 (randomly chosen from uniform distribution). (B) b =20,
n=25-100, f =0.1, ¢ =3, m =1000, t =30. (C) b =20, n =50, f =0.1-0.5,
¢=3,m=1000, t =30. (D) b =20, n =50, f =0.1, c =0-5, m =1000, t =30.
(E) b=20, n=50, f =0.1, ¢ =3, m=1000, t =25-100. (F) b =20, n =50,
f=0.1, ¢ =3, m=1000-5000, t =30.
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Fig. 3. Power comparison of CMDS, STAC and pREC-A. The result is based
on 500 replications of simulation under a configuration of m =1000, t =30,
n=50, f =0.2 and ¢ =3 or 4 (3 and 4 are randomly chosen). b =20 is used
for the CMDS analysis. A CN cutoff of 2.5 is used to define amplification
status for individual sample data before STAC analysis. TPR and FPR are
averaged over replications, and FPR is presented only from 0 to 0.01.

3.2 CMDS versus other approaches

3.2.1 Power Through 500 replications of simulation under a
configuration of m =1000, t =30, n=50, f =0.1 and c¢=3 or 4
(3 and 4 are randomly chosen for individual samples with CNAs), we
compared the statistical power of CMDS against two single-sample
calling based two-step approaches, AWS-STAC and CBS-STAC,
and a HMM-based approach, pREC-A. Since different cutoffs (CN
>2.25, 2.50 and 2.75) for both AWS and CBS produce minor
differences of power in the final analysis of STAC, we only present
here the STAC results of applying the cutoftf CN > 2.5. The ROC
curves (Fig. 3) indicate that CMDS is more powerful than AWS-
STAC and pREC-A. Although CBS-STAC shows the highest power
when FPR is relatively high, CMDS outperforms it when FPR is
less than about 0.002. In the analysis of real high-resolution data,
since a FPR level <0.002 is usually required due to the problem
of multiple testing and the need to control for false discovery rate
(FDR), CMDS will be more powerful in practice.

3.2.2  Execution time To compare the execution time of CMDS
against AWS-STAC, CBS-STAC and pREC-A, we used three
existing R packages, RIaCGH 2.0.0, GLAD 1.18 and DNAcopy 1.18
(downloaded from http://www.bioconductor.org) for the pREC-A,
AWS and CBS analyzes, respectively, and a Java program STAC1.2
from http://cbil.upenn.edu/STAC for the STAC concurrence test. To
analyze a dataset consisting of 10000 chromosomal sites and 100
samples, our R version of CMDS takes only 13 s, which is about
0.02, 0.3 and 0.1% of the time used by pREC-A, AWS-STAC and
ABS-STAC, respectively. For more details about this comparison of
execution time, please refer to Supplementary Table 1.

It should be noted that the processing time for STAC is a rough
estimation, because it is sensitive to the cutoff used in the AWS or
CBS step (here we choose CN > 2.5. STAC would require more time
with the use of a smaller cutoff). In addition, STAC is a permutation-
based testing approach. We limited the number of permutations to
10000 in this comparison. In practical analysis of genome-wide data,
since P-values need to be estimated with higher precision for the
purpose of multiple testing adjustment (e.g. Bonferroni correction or

1 o |
| Chrom.7 o Chrom. 11
—_ k B
e 2 un |
= =
g 5 gl
w 1
WYY KT Ao i
S T T T = —r
0 50 100 150 0 2 40 B 8 W 12
Position {Mbp]) Fosition (Mbp)
- Chrom. 12 w© w —
e
w - f
- o =
ol =]
™ e
|
- MJ\-. bbb - aJ)i WLMWMMM
T T T T T T T T
0 20 40 60 80 100 1M 20 a0 & 80 100
Fosition (Mbp) Fosition (Mbp)

Fig. 4. Negative log|o(p)-values from the CMDS analysis of the TSP lung
cancer data, demonstrating five significant RCNA regions, 7p11.2, 11q13.3,
12p12.1, 12ql5 and 14ql13.3, where five known cancer genes, EGFR,
CCNDI, KRAS, MDM?2 and TITF1, are located.

FDR calculation), the required permutation number could be larger
and the total time of AWS-STAC or CBS-STAC analysis would
increase substantially.

3.3 Applications

To evaluate the applicability of CMDS, we applied it to the TSP lung
cancer data and the TCGA brain cancer data. With an option of b=30
and using a cutoff of FDR < 0.05, CMDS identifies 1406 significant
sites (39 chromosomal regions) in lung cancer (Supplementary
Table 2) and 3792 significant sites (37 chromosomal regions)
in brain cancer (Supplementary Table 3). The most significant
regions include 7p11.2, 11q13.3, 12p12.1, 12q15, 14q13.3 for lung
adenocarcinoma (Fig. 4) and 1p33, 1p36, 4q12, 7p11.2, 12ql4.1,
12q15 for glioblastoma (Fig. 5). These regions are important RCNA
regions that have been previously reported and/or validated and
encompass (or closely adjacent to) tumor-related genes, such as
EGFR, CCND1, KRAS, MDM2,TITF1, CDK4, PDGFRA, CDKN2C
(Weir et al., 2007; The TCGA Research Network, 2008). These
results indicate that our approach is applicable to real data.

Based on the CMDS analysis, we performed direct comparison
of the significant CNAs in lung adenocarcinoma and glioblastoma.
Our analysis revealed some common focal changes, such as the
amplification of EGFR (7p12), CDK4 (12q14) and MDM?2 (12q15),
as well as the deletion of CDKN2A in both cancer types. This
suggests that those molecules are key players in important pathways
during the carcinogenesis of both tumor types. Furthermore,
treatments targeting these molecules may be potentially useful for
treating multiple cancer types. On the other hand, several focal
events are found exclusively in either lung adenocarcinoma or
glioblastoma. For example, KRAS (12p12) and CCNDI (11q13)
amplification occurs strictly in lung adenocarcinoma, indicating
its specific relevance to smoking. In addition, TITFI (14ql3)
amplification is also specifically identified in lung adenocarcinoma
and this is consistent with the high level expression of TITFI in
lung and its developmental role in lung epithelial differentiation.
However, PDGFRA (4q11—q13), amplified in glioblastoma, shows
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Fig. 5. Negative log;,(p)-values from the CMDS analysis of the TCGA
brain cancer data, demonstrating seven significant RCNA regions, 1p33,
1p36, 1932.1,4q12, 7p11.2, 12q14.1, 12q15, where six known cancer genes,
CDKN2C, MDM4, PDGFRA, EGFR, CDK4, MDM?2, are located.

no sign of CNA in lung adenocarcinoma. With the amount of
genomic data for different cancer types increasing rapidly, CMDS
will provide a valuable and very efficient tool for this type of
cross-comparison.

The analyzes above were performed chromosome by chromosome
using our R version of CMDS on a single PC (Dell Optiplex 755
PC, with 3 GHz CPU and 4 GB RAM, under Windows XP and R
2.9.1), which took about 17 and 36 min for analyzing TSP data and
TCGA data, respectively, including data file reading, calculations
and output of result. Our C version of CMDS on a single LINUX
machine took only ~3 and 5 min, respectively. It is also possible
to run CMDS on a per-chromosome basis in a parallelized fashion;
doing so reduced execution time to a few minutes for the R version
and less than a minute for the C version.

4 DISCUSSION

Developing CNA analysis methods that are both statistically
powerful and computationally efficient is a necessity due to the
constant increase in experiment resolution and sample size. We
have developed the CMDS approach for identifying RCNAs using
genome-wide and population-based data, and demonstrated its
power, efficiency and applicability in processing both simulated
and real data. In contrast to most existing methods, CMDS directly
uses raw CN data and does not require pre-analysis (smoothing and
segmentation etc.) of individual samples. To avoid calculating a huge
matrix, CMDS adopts a quick DT method to construct a RCNA
score, the significance of which can be quickly tested based on a
normal distribution. These features make CMDS a more efficient
and powerful approach. It provides a fast and easily implementable
tool for RCNA analysis and is especially well-suited for analysis of
emerging genome-wide studies with larger sample size and higher
data resolution.

CMDS reports significant RCNA regions at a population level;
however, there is sometimes a need to obtain CNA calls from
individual samples for downstream analyzes such as a correlation

test between CNA and clinical features. In such a case, single-
sample calls (SSC) can be obtained for the significant RCNA
regions identified by CMDS, using a threshold or statistical test
(e.g. t-test or permutation test on CN means of candidate regions).
Thus, the information from multiple samples can be used for SSC,
and computational time can be substantially reduced by excluding
regions with no significant RCNA. Of course, similar to Guttman’s
conserved genomic aberration detection through the MSA method
(Guttman et al., 2007), this multiple sample-based strategy for SSC
may lose power for identifying non-recurrent or broad CNA regions.

An important feature of CMDS is that correlations between
chromosomal positions are used to measure the CNA concordance
in a population. In a recent study (McCarroll et al., 2008), a similar
correlation-based approach was used to investigate common copy
number variants (CNVs) in the HapMap human populations. This
suggests that although CMDS was originally developed for CNA
analysis of cancer populations, it may be applicable to data from
normal populations. Our preliminary studies indicate that CMDS
can be applied not only to array data but also to whole-genome
sequencing data with extremely high resolution, to quickly identify
common CNV regions in normal populations (Supplementary
Fig. 2). Of course, since CNVs in normal populations differ from
CNAs in cancer populations in terms of frequency, amplitude,
length, etc., further investigation on the statistical property of CMDS
for CNV analysis is warranted.
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