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Abstract
We have developed a three dimensional (3D) multispectral fluorescence optical tomography small
animal imaging system with an innovative geometry using a truncated conical mirror, allowing
simultaneous viewing of the entire surface of the animal by an EMCCD camera. A conical mirror
collects photons approximately three times more efficiently than a flat mirror. An x-y mirror scanning
system makes it possible to scan a collimated excitation laser beam to any location on the mouse
surface. A pattern of structured light incident on the small animal surface is used to extract the surface
geometry for reconstruction. A finite element based algorithm is applied to model photon propagation
in the turbid media and a preconditioned conjugate gradient (PCG) method is used to solve the large
linear system matrix. The reconstruction algorithm and the system feasibility are evaluated by
phantom experiments. These experiments show that multispectral measurements improve the spatial
resolution of reconstructed images. Finally, an in vivo imaging study of a xenograft tumor in a mouse
shows good correlation of the reconstructed image with the location of the fluorescence probe as
determined by subsequent optical imaging of cryosections of the mouse.

1. Introduction
Three dimensional (3D) small-animal fluorescence optical tomography is an emerging tool to
image non-invasively the distribution of fluorescence reporters and probes [1,2]. Fluorescence
optical imaging of deep tissues is limited by the low spatial resolution due to photon scattering
and low sensitivity due to photon absorption. Multispectral or hyperspectal measurements are
a promising approach to improve the spatial resolution [3,4]. Compared with optical fiber-
based fluorescence optical tomography systems [5,6], CCD based fluorescence optical
tomography systems provide many more detector nodes, which potentially result in better
spatial resolution [7]. So far, most CCD imaging systems have adopted a transmission mode
in which the fluorescence measurements are taken at the opposite side of the illumination
location [8–10]. In this paper, we present a prototype of a conical mirror-based 3D multispectral
fluorescence optical tomography system for small animals in which the entire animal body
surface can be observed simultaneously. This makes it possible to have more detector nodes
for each illumination position. The system also is designed to permit multispectral detection.
With this novel conical mirror, the CCD camera area is used more efficiently and more emission
photons are detected compared with the use of multiple flat mirrors in a pyramidal configuration
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– another geometry that allows visualization of the entire mouse surface [11]. A conical mirror
approach for bioluminescence tomography imaging has also been proposed by others [12].

In this paper, we first describe the 3D fluorescence optical tomography imaging system in
Section 2. In Section 3, phantom fabrication, mouse surface geometry extraction, 3D mesh
generation and reconstruction methods are described. Imaging results, including an in vivo
study, and discussion are presented in Section 4.

2. Experimental System
Fig. 1 shows a photograph and a schematic of the 3D fluorescence optical tomography imaging
system. A 650 or 785 nm laser (BWF-OEM-650-200, B&W Tech Inc, Newark, DE for phantom
experiments; BWF-OEM-785-1.0-100-0.2, B&W Tech Inc, for in vivo experiments) with a
collimation lens at the end of its pigtail fiber is used to excite the fluorescence dye. A bandpass
filter (650FS20-50, Andover Corporation, Salem, NH for phantom experiments; 780FS20-50,
Andover Corporation, Salem, NH for in vivo experiments) placed in front of the laser rejects
light at other wavelengths. Another lens focuses the beam into a small spot of ~1 mm diameter
at the surface of the mouse. Two motorized scanning mirrors allow us to direct the laser beam
(after reflection from the conical mirror) across the mouse surface. A transparent glass stage
was placed in the center of the conical mirror to support the animal. Bandpass filters, placed
inside a filter wheel, are used to select emission wavelengths. In the front of the filter wheel,
an appropriate long pass filter (665FG07-50, Andover Corporation, Salem, NH for phantom
experiments; LP02-785RU-25, Semrock Inc., Rochester, NY for in vivo experiments) is used
to remove excitation laser spillover into the measurements at the emission wavelengths. An
EMCCD (C9100-3, Hamamatsu Corp., Bridgewater, NJ) images the emitted photon
distribution. Three line lasers, mounted on a linear stage, are used to scan the mouse surface
for the extraction of surface geometry. The experimental acquisition time depends on how
many illumination positions and how many emission wavelengths are used for imaging.

3. Methods and Materials
3.1 Phantom Fabrication

A cubic phantom (32×32×29 mm3), composed of 1% Intralipid, 2% Agar, 20 μM bovine
hemoglobin (H2625, Sigma-Aldrich Inc., St. Louis, MO), 1% sodium azide (VW3465-2,
VWR, West Chester, Pennsylvania, for hemoglobin de-oxygenization), and tri-buffered saline
[13], was prepared with one 12 mm capillary tube (1.5 mm outer diameter, 1.0 inner diameter)
embedded inside it. The capillary tube was filled with 4.6 μM DiD (D307, Invitrogen
Corporation) solution. This cubic phantom was used for the phantom experiment described in
Section 4. A similar cubic phantom with two capillary tubes embedded inside it with separation
of 12 mm was used for the experiment described in Section 3.3.

The cubic phantom was fabricated as follows. Water and 2% agar was heated to 95 °C and
agar was dissolved. At 70 °C, saline buffer and sodium azide were added. At 60 °C, intralipid
was added. The bovine hemoglobin powder was added at 50 °C. At 39.5 °C, the liquid phantom
was poured into a cubic mold and kept in a refrigerator for half an hour before the phantom
was taken out. The top part of the cubic phantom was cut off and the capillary tube was inserted.
The cut phantom with embedded tubes was placed inside the mold. Then additional liquid
phantom material was poured on the top of the cut phantom to fill the mold and complete the
fabrication.

3.2 Conical Mirror Fabrication and Image Mapping
The conical mirror was made of aluminum with an outside diameter of 200 mm and length of
65 mm. Its small and large apertures are 50 and 180 mm in diameter. The imaging field of view

Li et al. Page 2

Opt Express. Author manuscript; available in PMC 2010 April 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is 75 mm long. After the mirror was polished, silver of several micrometers thickness was
coated on the conical mirror surface (Evaporated Coatings, Inc, Willow Grove, PA). The silver
mirror coating has high reflectance efficiency (larger than 95%) in the NIR wavelength range.

A cube with a known surface pattern, as shown in Fig. 2a, was placed in the center of the conical
mirror on a transparent stage and imaged with the EMCCD, as shown in Fig. 2b. The four arc
sections separated with four red lines (added manually for clarity) are the images of the four
side surfaces. The front surface of the cube also is imaged directly by the CCD camera. There
is a 1:1 correspondence between a point on the surface of the cube, and the image of that point
as seen by the EMCCD camera viewing the conical mirror. Since we know the true shape of
the cube and the pattern on its surface, we can use the image of the cube to calibrate for the
distance between the mirror and camera, the image of the central axis of the mirror in the camera
plane, and the orientation of the camera relative to the mirror. We perform a least squares fit
of these system parameters to a set of feature points in the image of the cube to calibrate the
imaging system. The image of the cube in Fig. 2b can then be mapped back to the object
coordinate space as shown in Fig. 2c.

3.3 Comparison with Flat Mirror
To compare the conical mirror measurement performance with that of multiple flat mirrors,
we inserted a flat mirror directly on top of the conical mirror, keeping all other components
the same as shown in Fig. 3a. A cubic phantom was placed on the platform and illuminated by
a laser beam. A fluorescence image was taken, as shown in Fig. 2b. We compared the signal
obtained from the top surface of the phantom as measured with the flat mirror (Fig. 2b) and
the conical mirror (Fig. 2c). For the flat mirror, the image of the top surface is square in shape,
whereas for the conical mirror, the image is in the shape of an arc bounded by the two black
lines shown in Fig. 2c. The number of pixels in the image of the flat mirror was 5,183 containing
a total of 43.8 million counts, while the conical mirror image of the top surface covered 16,499
pixels with 156.0 million counts. The ratios of the number of pixels used (the cell number in
CCD) and the total camera readout values were calculated to be 3.2 and 3.6, respectively. This
means that more than three times the number of photons were collected from the top surface
using a conical mirror rather than a flat mirror. This same ratio would hold for a series of four
flat mirrors placed around the subject compared with the conical mirror when viewing the
subject from all sides. The sensitivity increment is due to the magnification effects of the
conical mirror and depends on the size of imaged object. The smaller the object is, the larger
the increase in collection efficiency.

3.4 Mouse Surface Extraction
For image reconstruction, the photon propagation inside phantom or mouse tissues is modeled
by the diffusion equation and solved using a finite element method. For a free space (no
coupling media) imaging system, the mouse surface geometry has to be obtained first. As
shown in Fig. 4, all the points in the line BD share one image point D on the conical mirror.
A laser line is used to scan the mouse surface, to differentiate point C from other points along
the line BD and calculate its coordinates (xC, yC, zC) from its image point D. The laser position
is known and the equation describing the line BD can be obtained from system parameters and
the coordinates of point D in the conical mirror local coordinate system. We can find the
coordinates of C from
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where γ is the radial coordinate of point D in the conical mirror local coordinate; A is the laser
interception point at the central axis of the conical mirror which can be measured; θ is the laser
orientation angle which can be measured. In Fig. 4, L indicates the camera position. |DE| equals
H because the angle between OD and OL is 45° and DE is perpendicular to OL. B1, C1 and
D1 are the points corresponding to B, C and D at the different radial angle γ. Three orthogonal
line lasers, which were switched on sequentially for each scanning step, were used to extract
the geometry of top, left and right surfaces. The bottom surface was assumed to be a flat plane
because the mouse was placed on a flat stage.

To examine the feasibility and the accuracy of the proposed surface extraction method, a
rectangular object (shown in Fig. 5a) with transverse section size of 18 × 30 mm2 was placed
in the center of the conical mirror on a transparent stage. The line pattern lasers scanned the
object in 50 steps, with a step size of 1 mm. The extracted geometry is plotted in Fig. 5b, where
different colors indicate the surfaces extracted with different line lasers. From Fig. 5b, we see
that flat surfaces could be extracted correctly although the surface images were distorted in the
conical mirror image. The extracted width, the distance between the black dots and blue dots
in Fig. 5b, was calculated to be 31 mm, in good agreement with the true width of 30 mm. The
scattered points caused by the stage edge could be removed manually.

3.5 Finite Element Mesh Generation
The cubic phantom (Section 3.1) with known size and shape was placed in the center of the
conical mirror for imaging, as shown in Fig. 6a. A cubic 3D finite element mesh with 8690
nodes and 47581 tetrahedral elements (Fig. 6b) was generated by Tetgen (Tetgen1.4.1,
tetgen.berlios.de).

For the in vivo experiment described in Section 4, a 26.2 g nude mouse with a xenograft tumor
on its right flank was placed on the stage in the center of the conical mirror, as shown in Fig
6c. Before the fluorescence measurements were obtained, the three orthogonal line lasers
scanned the mouse surface sequentially with a step size of 1 mm to extract the mouse surface
geometry, as shown in Fig. 6d. The surface plots were smoothed and then used to generate a
watertight surface mesh by surface reconstruction software, TIGHT COCONE (Courtesy of
Professor Tamal K. Dey, Department of Computer Science and Engineering, Ohio State
University) [14]. A 3D finite element mesh with 18998 nodes and 76385 tetrahedral elements
was generated by Tetgen from the surface mesh, as shown in Fig. 6e.

3.6 Forward Modeling and Reconstruction algorithms
The diffusion equation in the continuous wave domain was solved using a finite element
method (FEM) [15], implemented in MATLAB, at both the excitation and emission
wavelengths. For nd detector nodes, ns point excitation sources on the animal surface, nem
emission wavelengths and one excitation wavelength, the system matrix was composed of the
system matrix from each emission wavelength, given as

(1)

where [Ai] (i is from 1 to nem) is the system matrix at ith wavelength and Ci is the spectral
coefficient of ith wavelength obtained from Fig. 7. The dimension of submatrix [Ai] is (nd ×
nS) n where n is the number of node of the finite element mesh. The submatrix is given as
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(2)

in which ⊗ denotes the element product of row vectors Ψ⃑j and Φ⃑k, where j is from 1 to nd and
k is from 1 to ns. These photon fluence vectors, defined on the finite element nodes with
dimension of 1 × n, can be found by solving following diffusion equations in continuous wave
(CW) domain,

(3)

and

(4)

In equations (3) and (4), ∇ denotes grad operator, n⃑ is the vector normal to the boundary, bex
and bem are Robin boundary coefficients, the diffusion

( ), the reduced scattering coefficients

( ) and the absorption coefficients (μa(λex),μa(λem)) are functions of the
excitation wavelength λex and emission wavelengths λem. Sk is determined by the kth

illumination pattern. In this study, a point illumination source is used and only the
corresponding node is set to be 1 when solving Eq. (3) with finite element method. Δj is
determined by the detector nodes. The corresponding node is set to be 1 when Ψ⃑j is found by
solving Eq. (4) with finite element method.

With the finite element method, we obtain the linear system equation, [A][x]=[y], where [x]
is the product of the unknown fluorescence dye concentration and the quantum yield at each
node to be reconstructed, and [y] is the measurement of light emitted from the surface of the
object, obtained from the CCD images. For the Tikhonov regularization method, F = ||[A][x]
−[y]||2 + β||x||2 is minimized to find [x]. A preconditioned conjugate gradient (PCG) method
was used to solve the system matrix and to reconstruct the fluorescence distribution inside the
phantom or the mouse body. A more detailed description of this problem formulation and
iterative approaches to solving the inverse problem can be found in [16].

3.7 Optical Properties of the Phantom Materials
The absorption coefficients and the reduced scattering coefficients, at the excitation
wavelength and each emission wavelength are necessary for solving Eqs. (3) and (4) for the
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system matrix formulation. The optical properties at the excitation wavelength can be found
with a least square algorithm, in which the square of differences between measured and
calculated photon fluence was minimized [17]. Similarly, to find the optical properties at each
emission wavelength, a phantom with an embedded target and known target position was
illuminated with the laser beam and the square of differences between experimental and
calculated fluorescence measurements was minimized. The estimated optical properties at each
wavelength are listed in Table 1.

4. Results and Discussion
Fig. 7a plots the excitation and emission spectra of DiD dye [18]. To compensate for differences
in filter attenuation and quantum efficiency at different wavelengths, the DiD emission spectra
used in the reconstruction algorithm were measured. DiD dye solution was placed inside a
transparent cuvette which was put on the imaging stage and excited with the 650 nm laser. Fig.
7b shows the measured normalized DiD emission spectra. Autofluorescence spectra from
deoxygenated hemoglobin were also measured using a background phantom without target,
and plotted in Fig. 7b. The nine points correspond to the nine bandpass filters installed in the
filter wheel. A long pass filter was mounted in front of the filter wheel as described in Section
2. Both measurements were made from a superficial point. The absolute values of the DiD
emissions are much larger than those of Hb. When the phantom was made of intralipid and
agar without Hb, we did not observe any autofluorescence in the background phantom. The
long pass filter was used to remove excitation photon pollution in the fluorescence
measurements. However, it also attenuated the peak emission spectra from 660 to 690 nm as
shown in Fig. 7 because of its wide roll off. A long pass filter with sharp edge is needed in the
future.

The cubic phantom containing one capillary tube was placed in the conical mirror as shown in
Fig. 6a. The 650 nm excitation laser beam scanned the front surface at 20 positions (spot size
~1 mm), as shown in Figs. 8a and 8c. Fluorescence images at wavelengths of 720, 740, 760,780,
800, 820 and 840 nm (as shown in Fig. 8b) were acquired for each illumination position. The
fluorescence measurements at 1057 detector nodes on four side surfaces were determined from
these images. Fig. 9a shows the conical mirror coordinate system used in the surface extraction
and the local coordinate system of the cubic phantom used in the reconstruction algorithm. Fig.
9b shows the local coordinate system in the conical mirror images. The reconstructed phantom
3D images were plotted at sections with different heights. The height and coordinates of each
section are shown in Figs. 9c and 9d.

Fig. 10a shows the true position of the capillary tube. Figs. 10b-f shows the reconstructed
images with measurements acquired at single wavelengths of 720, 740, 760, 780 and 840 nm,
respectively. These images look similar. With multispectral measurements at three
wavelengths of (720, 740 and 760 nm) and (720, 780, 840 nm), the reconstructed images are
plotted in Figs. 10g and 10h. In terms of target size, Fig. 10g was better than Figs. 10b–f and
Fig. 10h was the best. To analyze the reconstructed images quantitatively, a profile across the
target along XL axis at ZL=16 mm, YL=23 mm and along YL axis at ZL=16 mm, XL=22 mm
is plotted in Figs. 11a and 11b. From Fig. 11, we see that the reconstructed target full width at
half maximum (FWHM) is 3.9 mm along XL direction and 3.5 mm along YL direction when
measurements at three wavelengths (720, 780, 840 nm) were used. These values are 10.3 mm
and 6.2 mm when one wavelength (720 nm) was used. We also see that the reconstructed target
center is at XL=22 mm and YL=23.2 mm for three wavelength measurements and with one
wavelength measurement, the center is at XL=21.4 mm and YL=21 mm. The true target center
is at XL=22 mm and YL=22 mm. In these studies, the regularization parameter was set to be
5.0×10−7. While a thorough investigation of the resolution improvement requires that we study
the noise vs. variance trade-off resulting from changes in the regularization parameter β, these
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preliminary results are sufficient to indicate the potential for improvements in resolution from
multispectral data. In this proof of concept experiment, the laser illumination positions are all
located on the front surface. The illumination position and number could be further optimized
so that image spatial resolution could be further improved and artifacts reduced. The
autofluorescence from Hb was not modeled and reconstructed in this study. The larger spectral
difference between DiD and Hb (see Fig. 7b) and the larger difference in optical properties
(see Table 1) at 720, 780, 840 nm than at 720, 740 and 760 nm may account for why Fig. 10h
has better image quality than Fig. 10g.

A 26.2 g nude mouse with a xenograft tumor (PC-3 cells, right side, dorsal, superficial, close
to the bladder) was imaged with our conical mirror 3D fluorescence optical tomography
imaging system 24 hours after intravenous injection of 10 nM 2DG (2DG, LI-COR, Lincoln,
Nebraska). A thermocouple was used to monitor the mouse body temperature and a warm air
source was switched on manually to maintain mouse body temperature close to 37 °C. A laser
beam at 785 nm, with power of 50 mW and beam size of 1 mm in diameter, scanned the mouse
surface at 45 locations, as shown in Fig. 12. A fluorescence image was acquired at 820 nm for
each illumination position. 2334 measurements at uniformly distributed detector nodes were
obtained from these fluorescence images for each illumination position. After the experiment,
the mouse was euthanized immediately, frozen, sliced and imaged on a Xenogen IVIS 100
system to obtain the true fluorescence dye distribution in each section. For reconstruction, we
assumed that the absorption coefficient and reduced scattering coefficient at both illumination
(785 nm) and emission wavelength (820 nm) were homogeneous inside the mouse body [19].
A representative coronal section and sagittal section of the reconstructed 3D image are shown
in Figs. 13a and 13b, respectively. Three transverse images crossing the tumor and bladder,
the kidney and the liver are shown in Figs. 13c, 13e and 13g. The corresponding transverse
cryosection images are shown in Figs. 13d, 13f and 13h. The coarse agreement between the
3D reconstructed in vivo data and the cryosections are encouraging in this first study.

One challenge with the conical mirror geometry is that all surfaces are viewed at once by the
CCD camera and therefore the dynamic range of the camera becomes important. The EMCCD
camera used in this work has a high dynamic range with a full well capacity of 37,000 electrons.
In a typical whole body fluorescence measurement image of a mouse, settings are such that
the EMCCD pixels immediately around the illumination spot are saturated and the SNR (signal
to noise ratio) of measurements on the opposite side are calculated to be 3.6. For larger animals
and/or higher absorption, a neutral density filter can be used to attenuate the light emanating
from the illuminated side to improve the dynamic range.

In summary, our first phantom and in vivo mouse imaging results have demonstrated the
potential for an efficient 3D fluorescence optical tomography system based on a conical mirror
design. We have also demonstrated that a conical mirror collects emission photons more
efficiently from the whole mouse than a conventional flat mirror-based imaging system.
Phantom experiment results have shown that multispectral measurements can improve the
spatial resolution from 6.2 mm to 3.5 mm. In the future, the effect of the number of detector
nodes and finite element mesh nodes on spatial resolution will be investigated and multispectral
measurements will be applied to in vivo mouse studies to improve the quality and resolution
of these reconstructions.
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Fig. 1.
Photograph and schematic of the 3-D fluorescence optical tomography system based on a
conical mirror for efficient collection of light from the entire mouse.
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Fig. 2.
(a) A cube with known surface pattern; (b) the cube placed inside the conical mirror on a stage
and imaged by the EMCCD camera; (c) the image of the cube after mapping back from the
EMCCD image coordinate space to the object space.
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Fig. 3.
Measurement comparison between flat and conical mirrors. (a) A flat mirror was inserted inside
the conical mirror; fluorescence emission photon density measurements at a wavelength of
700nm with flat mirror in place (b) and with conical mirror only (c). Note that the brightness
and contrast of Figs. b and c have been adjusted to highlight the measurement region.
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Fig. 4.
Principle of surface geometry extraction from a laser line projection on an object in a conical
mirror.
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Fig. 5.
(a) A rectangular object with known size and (b) its extracted geometry.
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Fig. 6.
(a) photograph of the cubic phantom taken by the EMCCD camera when the phantom was
placed in the conical mirror; (b) 3D mesh for cubic phantom; (c) photograph of the mouse
taken by EMCCD camera when the mouse was placed in the conical mirror; (d) extracted
surface plots of the mouse, where different color points were obtained from different line
pattern lasers illuminating different surfaces; (e) final 3D mesh of the mouse surface geometry.
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Fig. 7.
(a) The excitation (dotted line) and emission (solid line) spectra of DiD dye from Invitrogen
SpectraViewer, where horizontal axis indicates the wavelength with unit nm. (b) The
normalized emission spectra of DiD dye solution (blue) and deoxyhemoglobin (red) measured
with the imaging system and 650 nm excitation.
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Fig. 8.
(a) Schematic of the excitation positions (blue dots) and the fluorescence measurement surfaces
(left, right, top and bottom). (b) The fluorescence measurement picture taken by EMCCD for
an illumination position. (c) The true illumination positions of laser beam on the front surface.
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Fig. 9.
Definition of coordinate systems for phantom experiment. (a) The conical mirror coordinate
system (X, Y, Z) and the local coordinate system of cubic phantom (XL, YL, ZL). (b) The local
coordinate system viewed in the CCD measurement picture. (c) To view the reconstructed
image in detail, the sections at different ZL are shown. (d) The coordinates of each plotted
section.
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Fig. 10.
(a) True positions of the target in the cubic background. Reconstructed images with
measurements at single wavelength of 720 nm (b), 740 nm (c), 760 nm (d), 780 nm (e) and
840 nm (f). (g) Reconstructed image with measurements at three wavelengths of 720 nm, 740
nm and 760 nm. (h) Reconstructed image with measurements at three wavelengths of 720 nm,
780 nm and 840 nm. Color bar indicates the concentration of fluorescence dye in arbitrary
units.
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Fig. 11.
Profile plots cross the target centered at z=16 mm, y=23 mm (a) and at z=16 mm, x=22 mm
(b). One wavelength was acquired at 720 nm and three wavelengths was acquired at 720, 780
and 840 nm.

Li et al. Page 19

Opt Express. Author manuscript; available in PMC 2010 April 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 12.
Surface plot of the mouse geometry (blue dots) and the laser illumination positions (red dots).
The measurement points cover the whole body surface for each illumination position.
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Fig. 13.
Reconstructed 3D fluorescence optical image of the mouse 24 hours after 2DG injection. (a)
Coronal section; (b) sagittal section; transverse section at A cross the tumor and bladder (c),
at B across the kidney (e) and at C across the liver (g); fluorescence image of mouse cryosection
corresponding to section A (d), section B (f) and section C (g). MRO indicates “male
reproductive organ”. The color bar indicates the reconstructed fluorescence dye concentration
at arbitrary unit.
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