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Abstract

Background: Advanced glycation end-products (AGEs) have been implicated in diverse pathological settings including
diabetes, inflammation and acute ischemia/reperfusion injury in the heart. AGEs interact with the receptor for AGEs (RAGE)
and transduce signals through activation of MAPKs and proapoptotic pathways. In the current study, adult cardiomyocytes
were studied in an in vitro ischemia/reperfusion (I/R) injury model to delineate the molecular mechanisms underlying RAGE-
mediated injury due to hypoxia/reoxygenation (H/R).

Methodology/Principal Findings: Cardiomyocytes isolated from adult wild-type (WT), homozygous RAGE-null (RKO), and
WT mice treated with soluble RAGE (sRAGE) were subjected to hypoxia for 30 minutes alone or followed by reoxygenation
for 1 hour. In specific experiments, RAGE ligand carboxymethyllysine (CML)-AGE (termed ‘‘CML’’ in this manuscript) was
evaluated in vitro. LDH, a marker of cellular injury, was assayed in the supernatant in the presence or absence of signaling
inhibitor-treated cardiomyocytes. Cardiomyocyte levels of heterogeneous AGEs were measured using ELISA. A pronounced
increase in RAGE expression along with AGEs was observed in H/R vs. normoxia in WT cardiomyocytes. WT cardiomyocytes
after H/R displayed increased LDH release compared to RKO or sRAGE-treated cardiomyocytes. Our results revealed
significant increases in phospho-JNK in WT cardiomyocytes after H/R. In contrast, neither RKO nor sRAGE-treated
cardiomyocytes exhibited increased phosphorylation of JNK after H/R stress. The impact of RAGE deletion on GSK-3b
phosphorylation in the cardiomyocytes subjected to H/R revealed significantly higher levels of phospho-GSK-3b/total GSK-
3b in RKO, as well as in sRAGE-treated cardiomyocytes versus WT cardiomyocytes after H/R. Further investigation
established a key role for Akt, which functions upstream of GSK-3b, in modulating H/R injury in adult cardiomyocytes.

Conclusions/Significance: These data illustrate key roles for RAGE-ligand interaction in the pathogenesis of cardiomyocyte
injury induced by hypoxia/reoxygenation and indicate that the effects of RAGE are mediated by JNK activation and
dephosphorylation of GSK-3b. The outcome in this study lends further support to the potential use of RAGE blockade as an
adjunctive therapy for protection of the ischemic heart.
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Introduction

Mounting evidence indicates that ischemia and ischemia/

reperfusion (I/R) play important roles in cardiomyocyte loss in

pathophysiological conditions. As the major constituent of

myocardium, the ventricular myocyte is a terminally differentiated

cell that responds to appropriate external stimuli by adaptive

growth. In vivo, the myocyte may be exposed to a variety of cellular

stresses, such as hypoxia, ischemia, and I/R. Cardiomyocyte loss,

both necrotic and apoptotic, is a feature of many pathological

conditions in the heart [1]. Because adult cardiomyocytes possess

minimal capacity to reenter the cell cycle [2,3], limiting myocyte

loss and protection of the myocyte against injury through

suppression of cell death-provoking pathways represents a logical

strategy to prevent heart failure [4].

Our understanding of the intracellular signaling pathways that

mediate stress responses of the myocardium is evolving. We

demonstrated earlier that advanced glycation end-products

(AGEs), the products of nonenzymatic glycation and oxidation

of proteins and lipids, accumulate in diverse biological settings,

such as diabetes, inflammation, and acute I/R in the heart [5,6,7].

AGEs interact with the receptor for AGEs (RAGE) which results

in the propagation of stress signals and activation of MAPKs, NF-

kB, and several proapoptotic pathways [8,9]. We demonstrated

that the specific AGE, carboxymethyllysine (CML), is generated

during I/R and that expression of dominant negative signal

transduction deficient RAGE in endothelial cells or mononuclear

phagocytes attenuates I/R injury in diabetic mice hearts [10].

Also, using pharmacological blockade of the ligand-RAGE

interaction and genetic modulation of RAGE, we demonstrated
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that RAGE-ligand interaction leads to key cell death signaling

events in myocardial infarction [11]. In the present study, adult

cardiomyocytes were used as an in vitro I/R injury model to

delineate the molecular mechanisms by which RAGE mediates

injury due to hypoxia and reoxygenation. Specifically, the goal was

to establish involvement of RAGE in hypoxia/reoxygenation

injury in adult cardiomyocytes and establish potential molecular

mechanisms by which RAGE-ligand interactions lead to injury.

Our results indicate cardiomyocyte RAGE and its ligand CML

exert pathogenic effects in these cells and identify JNK and

GSK3b signal transduction as key signaling events in adult

cardiomyocytes in H/R injury.

Results

RAGE and ligands expression increased upon H/R in
cardiomyocytes

We employed established methods for isolation of adult

cardiomyocytes [12]. These methods yielded at least 70% of the

cardiomyocytes displaying rod shape morphology, which was

similar to previously reported studies [12]. The identity of our

isolated cells as cardiomyocytes was further confirmed by using

immunofluorescence and FACS with the cardiomyocyte-specific

antibody a-sarcomeric actinin (data not shown).

To establish a role for RAGE in cardiomyocytes in H/R injury,

we first assessed the expression of RAGE in normoxia and H/R

conditions in WT cardiomyocytes. Thirty minutes of hypoxia

followed by 1 hr of reoxygenation resulted in <2.0-fold increase in

RAGE expression by Western blotting when compared to

cardiomyocytes under normoxia conditions (P,0.05; Fig. 1A).

As H/R resulted in increased expression of RAGE in cardiomy-

ocytes, we next sought to identify if H/R resulted in increased

generation of RAGE ligand AGEs. Increased detection of CML-

AGE was observed after H/R in the cardiomyocytes (<1.9 fold vs.

normoxia, Fig. 1B; P,0.05). Western blotting of the cardiomy-

ocyte lysates revealed three major bands immunoreactive with

anti-CML antibody at ,64 kDa, 47 kDa and 40 kDa. The band

at ,64 kDa was quantified as shown, but similar results were

identified for the 47 kDa and 40 kDa bands (not shown).

Measurement of heterogeneous AGEs by ELISA revealed a

significant increase in AGE levels in cardiomyocytes subjected to

hypoxia injury (P,0.05, vs. normoxia; Fig. 1C). These data

established that H/R increases RAGE and its ligand AGEs in

cardiomyocytes.

Genetic deletion and pharmacological blockade of RAGE
alleviate cellular injury in cardiomyocytes upon H/R

The above experiments strongly pointed to up-regulation of

RAGE and its ligand AGEs in H/R. To assess the potential

mechanistic involvement of RAGE in cardiomyocytes during H/R

injury, cardiomyocytes isolated from WT and RKO mice were

subjected to 30 min of hypoxia followed by 1 hr of reoxygenation,

and LDH release was measured. Furthermore, sRAGE, a ligand-

binding decoy, was administered to mice for 7 days and the

cardiomyocytes isolated to test the impact of binding up RAGE

ligands and preventing their interaction with RAGE in WT

cardiomyocytes subjected to H/R injury.

LDH release, a marker of cardiomyocyte injury after H/R, was

markedly lower in RKO (0.9260.06 fold that in normoxia) versus

wild-type cardiomyocytes (1.8160.08 fold that in normoxia,

p,0.05 for RKO versus WT). Consistent with roles for RAGE

ligands, pharmacological blockade of RAGE with sRAGE

protected the cardiomyocytes from H/R damage, similar to the

effects observed in cardiomyocytes devoid of RAGE (Fig. 2).

Deletion of RAGE modulates H/R stress through blockade
of JNK signaling pathway

In view of the significant impact of deletion of RAGE on H/R

injury in cardiomyocytes, we next sought to examine the potential

impact of RAGE on the major early signal transduction

mechanisms linked to the recruitment of cell death pathways.

Since our previous work in the whole heart consequent to

infarction of the left anterior descending coronary artery

demonstrated that JNK signal transduction is a central down-

stream effector pathway of the ligand-RAGE axis during

ischemia/reperfusion, we sought to determine the effect of this

pathway in isolated adult cardiomyocytes exposed to H/R.

Significant increases in phospho-JNK were observed following

H/R in WT cardiomyocytes (comparing WT normoxia vs. WT

H/R). In contrast, RKO and sRAGE-treated cardiomyocytes did

Figure 1. Analysis of receptor for advanced glycation end-products (RAGE) expression and RAGE ligands subjected to hypoxia
followed by reoxygenation. WT cardiomyocytes were collected and lysates obtained at the end of normoxia (N), 30 min of hypoxia (H), and
hypoxia (30 min) followed by 1 hr reoxygenation (HR), were subjected to Western blot analysis (A–B) and ELISA (C) for the detection of RAGE and its
ligands. Cell lysate was probed with (A) anti-RAGE antibody; (B) anti-CML antibody. After being probed with the target antibodies, blots were stripped
and reprobed with anti-b-actin IgG. Relative density units are reported. n = 3. (C) 100 mg/well protein was coated and analyzed by ELISA for detection
of heterogeneous AGE epitopes. Each sample was measured in two parallel wells and experiment was repeated three times.
doi:10.1371/journal.pone.0010092.g001
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not reveal increases in phospho-JNK levels after H/R, although

basal levels of phospho-JNK were consistently higher in RKO vs.

WT cardiomyocytes (P,0.05, Fig. 3A and B). Note that in these

studies, activity of JNK was measured both by Western blotting

and by direct activity assay (Fig. 3A and D, respectively).

In addition to the JNK pathway, we also investigated changes in

p38 and ERK kinases that have been shown to be central players

in myocardial ischemia-reperfusion injury. As shown in Figure 3B

and C, both WT and RKO cardiomyocytes showed similar

changes in p38 and ERK during H/R stress despite significant

degrees of injury in H/R as illustrated above.

To further establish the importance of JNK in mediating injury

due to H/R in cardiomyocytes, the JNK-specific inhibitor

SP600125 was used. As shown in Fig. 4A, inhibition of the JNK

signaling pathway attenuated injury due to hypoxia or H/R in

WT cardiomyocytes, as assessed by release of LDH. Furthermore,

attenuation of increases in cleaved caspase 3 and cytochrome c

release was observed in WT cardiomyocytes treated with the JNK

inhibitor (Fig. 4B and C). Studies investigating the effects of JNK

signaling blockade in RKO and sRAGE-treated cardiomyocytes

using SP600125 indicated no additional protective effect on

release of LDH (Fig. 4D), suggesting that RAGE deletion fully

blocks the effects of JNK signaling in cardiomyocytes under H/R

conditions.

To further probe the implications of the apparently high basal

level of phospho-JNK in normoxic cardiomyocytes, we performed

additional studies. We pre-perfused the hearts of RKO mice with

JNK-specific inhibitor SP600125 and its negative control for

30 mins before the cardiomyocyte isolation process. LDH

measurement for validating cell injury extent showed that pre-

inhibition of JNK activation in the RKO heart did not eliminate

the protective effects of RAGE deletion under H/R injury

(Fig. 4E).

Deletion of RAGE promotes cardiomyocyte survival
through enhancing the phosphorylation of GSK-3b

Since several studies suggest a crucial role for GSK-3b in

protecting hearts during ischemia/reperfusion, we investigated the

impact of RAGE deletion on GSK-3b phosphorylation in

cardiomyocytes subjected to H/R stress. We first explored levels

of GSK-3b and its phosphorylated form in H/R-treated

cardiomyocytes from WT, RKO and sRAGE-treated animals.

Significantly higher levels of phospho-GSK-3b/total GSK-3b
were noted in RKO, as well as sRAGE-treated mice versus WT

cardiomyocytes after H/R (P,0.05; Fig. 5A).

To determine if deletion of RAGE protects cardiomyocytes

from H/R injury via increases in phosphorylation of GSK-3b, two

different types of GSK-3 inhibitors were used in our studies.

Cardiomyocytes were treated with (a) Lithium Chloride (LiCl),

which targets the inhibitory phosphorylation site of GSK3a-

Ser21/GSK3b-Ser9; and (b) SB216763, which targets the

stimulatory phosphorylation site GSK3a-Tyr279/GSK3b-

Tyr216. Significant attenuation of H/R-induced LDH release

was observed in WT cardiomyocytes incubated with both

inhibitors (Fig. 5B). Since the endogenous level of GSK-3 is

highly abundant, we explored if administration of GSK-3

inhibitors LiCl and SB216763 to RKO cardiomyocytes affords

additional protection during H/R stress. The administration of

GSK3 signaling inhibitors did not exert additional beneficial effect

in the cardiomyocytes isolated from RKO and sRAGE-treated

mice as assessed by LDH release (Fig. 5B).

Since PI3K/Akt is a well-established upstream kinase that has

been shown to phosphorylate GSK-3 at serine residues, we

investigated Akt phosphorylation patterns in WT, RKO and

sRAGE-treated cardiomyocytes upon H/R. As shown in Fig. 6A,

phospho-Akt in WT cardiomyocytes was significantly lower than

that observed in RKO and sRAGE-treated cardiomyocytes during

H/R (p,0.05). To establish if Akt phosphorylation is a key event

that modulates H/R injury, WT and RKO as well as sRAGE-

treated cardiomyocytes were treated with the upstream phosphoi-

nositol-3 kinase (PI3-K) signaling inhibitor LY249002 during H/

R. As shown in Fig. 6B, LDH release was marginally impacted in

WT cardiomyocytes subjected to H/R stress in the presence and

absence of LY249002, whereas in RKO and sRAGE-treated

cardiomyocytes a significant increase in LDH release was observed

in LY249002-treated cells vs. vehicle treatment. Although PI3-K

inhibition in RKO increased LDH release, the magnitude of

increases in injury was still lower than that in WT cardiomyocytes

subjected to H/R.

To further explore the signaling cascade involving Akt and

GSK phosphorylation, the level of p-GSK was studied with the

addition of LY249002. As shown in figure 6C and 6D, changes in

phospho-Akt phosphorylation correlated with modulation of

phospho-GSK, suggesting that Akt was upstream of GSK-3b.

These data indicate that PI3-K-Akt-GSK-3b is a central signaling

mechanism by which RAGE deletion exerts protective effects on

cardiomyocytes during H/R.

Assessment of potential interaction between JNK and
Akt signaling pathways in the cardiomyocytes in H/R

To further investigate the possibility of cross-talk between these

two signaling pathways, JNK and Akt, studies were carried out to

determine the activation of either of the kinases in the presence of

respective inhibitors. As shown in figure 7A and B, inhibition of

JNK kinase with SP600125 in WT cardiomyocytes did not have

any apparent effect on Akt phosphorylation. Similarly, inhibition

of Akt in RKO cardiomyocytes did not alter JNK phosphorylation

significantly.

Impacts of RAGE ligand on modulating H/R stress
signaling machinery in the cardiomyocytes

Lastly, as our data revealed increases in RAGE ligand CML-

AGE during H/R, we sought to test if exogenous treatment of WT

cardiomyocytes with the RAGE ligand CML without H/R would

Figure 2. Genetic deletion and pharmacological blockade of
RAGE alleviate cellular injury in cardiomyocytes upon H/R.
Cardiomyocytes were isolated from WT, RKO, or sRAGE-treated animals
and subjected to hypoxia for 30 mins with or without subsequent
reoxygenation for 1 hr. The supernatant of cardiomyocytes was
collected and the level of LDH released into the medium was
determined. n = 6.
doi:10.1371/journal.pone.0010092.g002
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modulate phosphorylation of JNK and GSK3b pathways. As

shown in Figure 8A and B, incubation of WT cardiomyocytes with

CML significantly increased the phosphorylation of JNK, and

suppressed phosphorylation of GSK3b in a time- dependent

manner.

Discussion

Our earlier studies demonstrated that induction of I/R in the

intact murine heart resulted in significant upregulation of RAGE,

particularly in cardiomyocytes. Further, we reported that blockade

of RAGE or genetic deletion of RAGE protects the myocardium

from ischemia/reperfusion injury in a murine model. Thus, the

current study was designed to elucidate the mechanism by which

RAGE induced hypoxia/reoxygenation injury in adult cardiomy-

ocytes. We report that analogous to experiments in I/R in the

intact heart, H/R induces significant increases in expression of

RAGE and its ligands in cardiomyocytes. Further studies on

elucidating the potential signal transduction pathways revealed

that JNK signaling was remarkably down-regulated in RKO

cardiomyocytes, and that phosphorylation of GSK-3b was

significantly increased in RKO cardiomyocytes. Pharmacological

blockade of RAGE using the ligand binding decoy sRAGE

confirmed that RAGE mediates some of its effects via JNK and

GSK-3b.

Our previous data revealed that LAD occlusion itself produced

the pre-AGE methylglyoxal (MG), followed by significant AGE

production during reperfusion [11]. In isolated perfused heart

studies, it was shown that ischemia/reperfusion generates CML

and that its interaction with RAGE is a key mediator of injury

[10]. Since multiple cell types express RAGE, contributions of

RAGE to LAD or I/R injury may be evoked from multiple

cellular sources both innate and exogenous to the heart. In the

present study, we show using genetic and pharmacological

approaches that upregulation of RAGE and its ligands such as

CML-AGE is linked to H/R injury in cardiomyocytes. These data

Figure 3. Deletion of RAGE modulates H/R stress via blockade of JNK signaling pathway. Cardiomyocytes were collected and lysates
obtained at the end of normoxia (N), 30 min of hypoxia (H), and hypoxia (30 min) followed by 1 hr reoxygenation (HR). Lysates were subjected to
Western blot analysis for the detection of (A) phospho-JNK and total-JNK. (B) phospho/total-ERK and (C) phospho/total-p38 level. n = 5. (D) JNK
activity was measured by using commercially available ELISA kit; n = 3.
doi:10.1371/journal.pone.0010092.g003
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are consistent with an important role for cardiomyocyte RAGE in

mediating injury due to LAD occlusion/reperfusion in the in vivo

heart.

Cardioprotection rendered by JNK inhibition has been

supported by a number of studies in the literature

[13,14,15,16]. However, some studies have suggested that JNKs

are capable of transducing antiapoptotic signals, but the

mechanisms of these prosurvival effects are much less clear than

the mechanisms promoting cell death [17,18,19,20]. Kaiser et al.

showed that JNK12/2, JNK22/2, and transgenic mice

expressing dominant negative JNK1/2 within the heart have

less JNK activity in the heart, and less injury and cellular

apoptosis in vivo following ischemia/reperfusion injury. In

contrast, MKK7 transgenic mice, which are associated with a

mild increase in JNK1/2 activity, also promoted cellular

protection following I/R injury in vivo [21]. These dichotomous

reports about JNK effects likely reflect differences in the

contribution of specific cell types towards injury. In cardiomy-

ocytes, expression of dominant negative JNK1 or dominant-

negative MKK4 increased nitric oxide-induced cardiomyocytes

apoptosis, suggesting a protective role for early, transient

activation of JNK signaling [13]. In cultured neonatal cardio-

myocytes, oxidative and hypoxic stress-mediated injury was

increased by expression of JNK inhibitory mutants [22]. Shao

et al. found inhibition of JNK activity leads to increased apoptosis

in cultured neonatal cardiomyocytes and increased infarct size in

vivo [23]. Consistent with our previous observation, in contrast to

WT cardiomyocytes, RKO cardiomyocytes showed significantly

decreased JNK activity upon H/R injury. After pre-incubation

with a JNK specific inhibitor, WT cardiomyocytes exhibited

reduced cell damage after H/R injury. These data provide strong

support for the premise that RAGE mediates H/R injury, in part

via modulation of JNK phosphorylation in cardiomyocytes. The

fact that our studies in vivo [11] agree closely with the results of

our present experiments in isolated adult cardiomyocytes

strengthens our conclusion of the potential cardioprotective role

played by RAGE ablation in JNK inhibition. One intriguing

observation in the present study is that compared to WT

cardiomyocytes, a higher basal level (under the nomoxia

condition) of JNK activity was observed in isolated RKO

cardiomyocytes. The reasons underlying higher baseline phos-

pho-JNK in RKO in normoxia are unclear, however, our data

indicated that after H/R, phosphorylation of JNK was not

increased in the RKO cardiomyocytes, unlike that observed in

the WT cardiomyocytes. It is possible that kinases such as AMPK

may play a role in basal levels of phosphorylated JNK in these

cells [24]. Further study of pre-perfusing the RKO hearts with

JNK-specific inhibitor prior to the isolation process showed that

pre-inhibition of JNK activation in these hearts did not abrogate

the protective effects of RAGE deletion seen in H/R-stressed

cardiomyocytes. Taken together, our data indicate that inhibition

of JNK in RKO cardiomyocytes post H/R leads to protection;

and pre-ischemic JNK activity has no important role in the

protection seen in RKO cardiomyocytes.

Figure 4. Inhibition of JNK alleviates the injury due to H/R in cardiomyocytes. WT cardiomyocytes were subjected to hypoxia/
reoxygenation after 1 hr incubation with JNK inhibitor SP600125 (10 mM) or the vehicle control DMSO. (A) Cell supernatant was collected for LDH
level measurement. n = 3. (B) Cleaved caspase 3 levels and (C) Cytochrome c were detected after hypoxia/reoxygenation by Western blot analysis.
Data are representative of three independent experiments. (D) Cardiomyocytes isolated from WT and RKO and sRAGE-treated mice were incubated
with JNK inhibitor SP600125 (10 mM) or its vehicle control DMSO for 1 hr, followed by hypoxia 30 mins/reoxygenation 1 hr treatment. Cell
supernatant was collected for LDH release measurement. (E) The hearts of RKO mice were pre-perfused with JNK-specific inhibitor SP600125 or its
negative control for 30 mins prior to the cardiomyocyte isolation process. Cell supernatant was collected for LDH level measurement. Pre-perfusion
with the JNK inhibitor did not abrogate the protective effects of RAGE deletion in H/R. n = 3. SP: SP600125.
doi:10.1371/journal.pone.0010092.g004

Figure 5. Deletion of RAGE promotes cardiomyocyte survival in H/R by enhancing phosphorylation of GSK3b. (A) Cells were collected
and lysates obtained at the end of normoxia (N), 30 mins of hypoxia (H), and hypoxia (30 min) followed by 1 hr reoxygenation (HR). Lysates from WT,
RKO and sRAGE-treated cardiomyocytes were subjected to Western blot analysis for the detection of phospho-S9-GSK3b and total-GSK3b. n = 3. (B)
Cardiomyocytes were incubated with or without GSK3 inhibitors LiCl (12.5 mM) and SB216763 (3 mM) for 1 hr, followed by 30 min hypoxia/1 hr
reoxygenation (HR), cell supernatant was collected for LDH release measurement. n = 3.
doi:10.1371/journal.pone.0010092.g005
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There are two GSK3 isoforms, a and b (51 and 47 kDa,

respectively); the functional effects of GSK3b have been especially

highlighted in the heart. GSK3ab is an essential signaling kinase

for many physiological processes, including insulin action, energy

metabolism, circadian rhythm, and neuroprotection [25]. At the

cellular level, GSK3 regulates cell proliferation, differentiation,

and death. A number of transcription factors have been identified

as substrates of GSK-3, such as c-Jun, CREB, NFATs, and C/

EBPs [26,27,28,29]. Phosphorylation of these transcription factors

mediates cellular and physiological functions of GSK3 [30].

Pharmacological inhibition of GSK3b reduced infarct size and

improved post-ischemic function [31–32]. Consistent with the

cardioprotection achieved by inhibiting the activity of GSK3b, the

cardiomyocytes of RKO mice showed significantly enhanced

phospho-GSK upon H/R injury.

Unlike many signaling kinases, GSK3 is constitutively active

and inhibition of GSK3 activity leads to signaling propagation.

Several upstream regulators have been reported to turn off the

activity of GSK3, among which Akt/PKB is a well-characterized

Ser/Thr kinase phosphorylating GSK3. Akt/PKB phosphorylates

GSK3a(Ser-21) and GSK3b(Ser-9), and these residues lie in a

typical Akt/PKB consensus substrate motif [33]. However,

GSK3a(Ser-21)/GSK3b(Ser-9) are phosphorylated by other

kinases which also recognize the ‘‘Akt/PKB consensus sequence.’’

Markou et al demonstrated inhibition of GSK3b as a consequence

of its phosphorylation by Akt/PKB in cardiomyocytes [34]. Akt, a

central regulator of cardiomyocyte survival, has been found to

protect cardiomyocytes against ischemia/reperfusion injury in the

mouse heart [35]. Consistent with these studies, our data show

increased phosphorylation of Akt and GSK3b and reduced injury

due to H/R stress and provide direct evidence, in RKO

cardiomyocytes, for the pivotal role of RAGE in this process.

Further, our studies with inhibitors revealed no significant cross-

talk between the two potential signaling pathways, JNK and Akt,

in adult cardiomyocytes subjected to H/R injury.

Taken together, these data illustrate key roles for RAGE-ligand

interaction in the pathogenesis of cardiomyocyte injury induced by

hypoxia and reoxygenation and that the effects of RAGE are

mediated by JNK activation and dephosphorylation of GSK3b.

The outcome in this study lends further support to the potential

use of RAGE blockade as an adjunctive therapy for protection of

the ischemic heart.

Figure 6. Akt/PKB contributes to the phosphorylation of GSK. (A) Cells were collected and lysates obtained at the end of normoxia (N),
30 min of hypoxia (H), hypoxia (30 min) followed by 1 hr reoxygenation (HR). Lysates from WT, RKO and sRAGE-treated cardiomyocytes subjected to
Western blot analysis for the detection of phospho-Akt and total-Akt. n = 3. (B) Cardiomyocytes were incubated with LY294002 (10 mM) or its vehicle
control DMSO for 1 hr, followed by HR. Cell supernatant was collected for LDH release measurement. n = 3. (C–D) Cardiomyocytes were incubated
with LY294002 (10 mM) or its vehicle control DMSO for 1 hr, followed by HR. Cell lysate was collected for Western blot studies for detection of
phospho/total Akt (C) and GSK3b (D). n = 3. LY: LY294002.
doi:10.1371/journal.pone.0010092.g006
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Materials and Methods

Animals
All animal experiments were approved by the Institutional Animal

Care and Use Committee of Columbia University and conformed to

the guidelines outlined in the National Institutes of Health Guide for

Care and Use of Laboratory Animals (NIH Pub. No. 85-23, 1996).

Male C57BL/6 mice were purchased from The Jackson Laboratory

(Bar Harbor, ME) and were used as control wild-type (WT) mice.

Homozygous RAGE-null (RKO) mice (generated in the 129 strain)

Figure 7. Signaling pathways cross-talk study. (A) Cardiomyocytes isolated from WT mice were incubated with SP600125 (10 mM) or its vehicle
control DMSO for 1 hr, followed by 30 min of hypoxia (H), hypoxia (30 min) and 1 hr reoxygenation (HR). Cell lysates were collected for the study of
phospho/total-Akt by Western blot. n = 3. (B) Cardiomyocytes isolated from RKO mice were incubated with LY294002 (10 mM) or its vehicle control
DMSO for 1 hr, followed by 30 min of hypoxia (H), hypoxia (30 min) and 1 hr reoxygenation (HR). Cell lysates were collected for the study of
phospho/total-JNK by western blot. n = 3. SP: SP600125; LY: LY294002.
doi:10.1371/journal.pone.0010092.g007

Figure 8. Impact of RAGE ligand on key stress signaling pathways in the absence of H/R in cardiomyocytes. WT cardiomyocytes were
incubated with CML-AGE (50 mg/ml) for different time points as indicated. Cells were lysed and subjected to Western blot analysis for the detection of
phospho-JNK and total-JNK level (A), as well as phospho-S9-GSK3b and total- GSK3b (B). Data are representative of three independent experiments.
doi:10.1371/journal.pone.0010092.g008
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were backcrossed for .12 generations into C57BL/6 mice;

homozygous RKO animals were used in the experiments for

comparisons with WT mice. Male mice weighing 25–30 g at age

10–12 weeks were used in all experiments and maintained in a

temperature-controlled room with alternating 12:12-h light-dark

cycles. Soluble RAGE (sRAGE) at 100 mg/day or equal volumes of

its diluent, PBS (vehicle), was administered by an intraperitoneal

route for 7 days and the mice were sacrificed 1 hour after the last

treatment and the adult cardiomyocytes were immediately isolated.

For JNK inhibition studies, the hearts of RKO mice were pre-

perfused with JNK-specific inhibitor SP600125 or its negative control

for 30 mins prior to the cardiomyocyte isolation process.

Reagents
The primary antibodies used were anti-mouse/rat RAGE

(Gene Tex Inc.), anti-CML monoclonal antibody (COSMO Bio

CO., LTD); anti-phospho-JNK antibody (Promega); total-JNK

antibody, anti-phospho-ERK/total-ERK antibody, anti-phospho-

p38/total-p38 antibody, anti-phospho-GSK3b/totalGSK3b, anti-

phospho-Akt (Thr308 and Ser473)/total-Akt IgG, anti-caspase-3

IgG (Cell Signaling); anti-cytochrome c IgG (BD Pharmingen);

and anti-beta-actin IgG (BD Biosciences Pharmingen). The

secondary antibodies used were goat-anti-rabbit IgG-peroxidase

antibody and rabbit-anti-mouse IgG-peroxidase antibody (Sigma).

All primary antibodies were diluted 1:1000 prior to use in western

blot studies. PI3-K inhibitor LY294002 and JNK inhibitor

SP600125 as well as negative control were purchased from

Calbiochem. GSK3 inhibitor Lithium Chloride and SB216763

were obtained from Fluka and Sigma, respectively.

Isolation of adult ventricular cardiomyocytes
Myocytes were isolated from untreated or sRAGE treated adult

mice hearts by a modified method described earlier [12]. In brief,

hearts excised from anesthetized mice were subjected to

Langendorff perfusion with Krebs medium containing calcium

(2.5 mM) for 5 minutes, followed by perfusion with Calcium free

Krebs medium (8–10 minutes). Hearts were then perfused with an

enzymatic solution containing collagenase type II (0.35 mg/ml;

Worthington, Freehold, NJ) and protease type XIV (0.01 mg/ml,

Sigma) for 5–8 minutes. 50 mM Ca2+ was then added into the

enzyme solution for perfusing the heart for another 5–10 minutes

until the hearts became soft. The hearts were then removed,

minced into small pieces and were subjected to further serial

enzymatic digestion at 37uC for 1–3 minutes. Cardiomyocytes in

the digests were collected by centrifugation at 500 rpm for a

minute and the myocyte pellet was resuspended in storage

medium (Ca2+ free Kreb’s containing 1% BSA and Calcium

(125 mM). Extracellular Ca2+ was incrementally added back to

500 mM over a period of 40 minutes. The rod shaped myocytes

settled down immediately, whereas round ones and other cells

experienced extended floating in the supernatant. By aspirating

the supernatant and repeated washing, we obtained rod-shaped

myocyte population. Cardiomyocytes were incubated in Kreb’s

buffer containing 1 mM Ca2+ for the following study. Cell viability

was assessed by using the commercially available CellTiter-

FluorTM kit (Promega, Madison WI, USA). Characterization of

cardiomyocytes was done by staining with a-sarcomeric actinin

antibody (Sigma, St. Louis, MO, USA) and FACS study. Isolated

cardiomyocytes were subjected to hypoxic stress for 30 minutes

under 0.5% oxygen using an In Vivo 400 hypoxic workstation

maintained at 37uC followed with or without reoxygenation for

1 hr. In specific experiments, cardiomyocytes were treated with

SP600125 (10 mM), LY294002 (10 mM), LiCl (12.5 mM),

SB216763 (3 mM) for 60 minutes prior to hypoxia/reoxygenation.

In experiments involving specific RAGE ligand CML-AGE,

myocytes were incubated in vitro with CML-AGE (50 mg/ml)

for various times ranging from 0 to 2 hrs.

LDH release
Cardiomyocyte injury due to H/R stress was assessed by

measuring LDH release in the supernatants that were collected at

the end of hypoxia, or H/R. LDH was measured using the

commercially available kit (Pointe scientific, Inc.) as published

earlier [10].

Western blot analysis
Lysates from cardiomyocytes, subjected to normoxia, hypoxia,

hypoxia/reoxygenation stress and other treatments, were obtained

using commercially available kits which contained the protease and

phosphatase inhibitors (PIERCE). The protein concentration was

determined using a DC Protein Assay kit (Bio-Rad). Equal amounts

of protein were separated by SDS-PAGE (4–12% gradient gels), and

proteins were transferred to a nitrocellulose membrane (Invitrogen).

After blocking in 5% dry milk in TBST (20 mM Tris-HCI, pH 7.5,

250 mM NaCl, 0.1% Tween 20), membranes were incubated

overnight with target primary antibodies (1:1000 dilution) according

to the manufacturer’s instructions. Membranes were incubated

sequentially with secondary antibody for 1 hr. Blots were visualized

with an ECL Horseradish Peroxidase Western Blot Detection

System (Cell Signaling), and quantitative analysis was performed

using Image Quant TL software (Amersham).

ELISA assay of AGEs
Isolated adult cardiomyocytes were subjected to hypoxia and

reoxygenation procedures and cell lysates were prepared as

described above. 100 mg/well protein was coated overnight onto

an ELISA 96-well plate using carbonate-bicarbonate buffer

(Sigma). AGE ELISA was performed using T-gel (Pierce)

affinity-purified chicken anti-AGE as the primary antibody, at a

concentration of 30 mg/mL for 3 hours at room temperature. The

secondary antibody (anti-chicken IgY) (Sigma) was diluted to 1:10

000 for 1 hour at room temperature. The signals were developed

in phosphate-citrate (Sigma) and hydrogen peroxide (Sigma).

Ribose glycated albumin was used to prepare the standard curve.

Each sample was measured in two parallel wells and experiment

was repeated three times.

ELISA assay of JNK activity
Detection of phospho-JNK was carried out by using a

commercially available ELISA kit (SA Biosciences, Catalog

No. 900-106), according to the manufacture’s instruction.

Statistical analysis
All data are reported as numbers of experiments or samples (n)

and means6SD for each experiment. Student’s t-test was used to

compare two groups. A probability value of P,0.05 indicated

statistical significance.
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