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Summary
Acute respiratory infections (ARI) are a common reason for seeking medical attention and the
threat of pandemic influenza will likely add to these numbers. Using human viral challenge studies
with live rhinovirus, respiratory syncytial virus, and influenza A, we developed peripheral blood
gene expression signatures that distinguish individuals with symptomatic ARI from uninfected
individuals with > 95% accuracy. We validated this “acute respiratory viral” signature -
encompassing genes with a known role in host defense against viral infections - across each viral
challenge. We also validated the signature in an independently acquired dataset for influenza A
and classified infected individuals from healthy controls with 100% accuracy. In the same dataset,
we could also distinguish viral from bacterial ARIs (93% accuracy). These results demonstrate
that ARIs induce changes in human peripheral blood gene expression that can be used to diagnose
a viral etiology of respiratory infection and triage symptomatic individuals.

Introduction
Acute respiratory infections (ARI) are among the most common reasons for seeking medical
attention in the United States (Hong et al., 2004; Johnstone et al., 2008). Rhinovirus (HRV),
influenza, and respiratory syncytial virus (RSV) are recognized as leading etiologies of ARI
in adults (Peltola et al., 2008). Viral ARIs are generally self-limited, but can lead to disease
exacerbation among individuals with prior pulmonary disease (Johnston, 1995; Rakes et al.,
1999). Most adults experience at least one HRV infection per year (Arruda et al., 1997);
(Schaller et al., 2006). Adult RSV infections may be self-limited or lead to airways
obstruction and morbidity (Falsey et al., 2005). Influenza infection remains common, with
associated significant health-care and societal costs (Gums et al., 2008). Early detection of
influenza A can facilitate individual treatment decisions, as well as provide early data to
forecast an epidemic/pandemic (Memoli et al., 2008).

HRV, RSV, and influenza are all spread by droplet inhalation, and upon contact with the
respiratory epithelium, these viruses initiate a cytokine and chemokine response that
orchestrates proliferation, chemotaxis and amplification of inflammatory cells (Bhoj et al.,
2008; Kirchberger et al., 2007). Nasal epithelial inflammation produced on contact with
virus triggers a coordinated host response that may result from infection limited to the upper
respiratory tract or spread to the lower respiratory tract with bronchiolitis and pneumonia.
Understanding the host responses to these common infections will allow for better
understanding of disease pathobiology and provide a basis for development of novel
diagnostic methodologies for distinguishing viral respiratory infection from respiratory
disease caused by other common pathogens.

Peripheral blood leukocytes are a reservoir and migration point for cells representing all
aspects of the host immune response. Gene expression patterns obtained from these cells can
discriminate between complex physiologic states (Aziz et al., 2007), exposures to pathogens
(Ramilo et al., 2007; Simmons et al., 2007), immune modifiers (e.g., LPS) (Boldrick et al.,
2002; Kobayashi et al., 2003), and environmental exposures (Dressman et al., 2007;
Meadows et al., 2008; Wang et al., 2005). While current infectious disease diagnostics rely
on pathogen-based detection (Chiarini et al., 2008; Lambert et al., 2008; Robinson et al.,
2008), the development of reproducible means for extracting RNA from whole blood,
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coupled with advanced statistical methods for analysis of complex datasets, now allows the
possibility of classifying infections based on host gene expression profiling that reveal
pathogen specific signatures of disease.

To realize the potential of genome-scale information requires a paradigm shift in the way
complex, large-scale data are viewed, analyzed and utilized. The biology of infection, the
host response and the ensuing disease process are highly complex. Our previous work in
defining the complexity of the cancer phenotype using gene expression analysis has defined
approaches involving successive sub-categorization of patients according to combinations of
both clinical and genomic risk factors, highlighting the predictive value of multiple genomic
patterns (Acharya et al., 2008; Garman et al., 2008; Xu et al., 2008). The role of formal
statistical models to incorporate, evaluate, and weigh multiple gene expression patterns is
fundamental to this methodology. We have shown that specific classes of statistical tree
models are capable of such synthesis and can improve prediction and classification for
individual patients. One core methodology that underlies our comprehensive models uses
statistical prediction tree models, and the expression data enters into these models signatures
(estimated “factors”) that are candidate predictive factors in statistical tree models. This
approach to molecular characterization and candidate gene identification has provided
significant value in recent work (Acharya et al., 2008; Garman et al., 2008; Lucas et al.,
2006; Meadows et al., 2008; Seo et al., 2006), uncovering patterns of non-linear associations
between gene expression and phenotypic outcomes(Brieman, 2001; Kooperberg et al., 2001;
Ruczinski, 2003).

Using three human viral challenge cohorts for HRV, RSV, and influenza A, we developed a
robust blood mRNA expression signature that classifies symptomatic human respiratory
viral infection. Factor analysis (Carvalho et al., 2008) of mRNA expression data revealed a
pattern of gene expression common across symptomatic individuals from all viral
challenges. This was termed the “acute respiratory viral” bio-signature of disease, that
encompassed transcripts of genes known to be related to viral infection and the overall
immune response. Further, this signature could accurately classify influenza A infection in
an independent community-based cohort. For this signature to serve as an important
diagnostic indicator of viral respiratory infection, and for the purpose of clinical triage and
treatment decisions, it should be distinct from the overall response to bacterial respiratory
tract infections. An analysis of publically available peripheral blood-based gene expression
data from patients with bacterial infection indicated that the acute respiratory viral signature
was viral infection-specific and could distinguish patients with viral and bacterial infections
as well as healthy controls. Moreover, bacterial and viral respiratory infections could be
accurately classified using this gene expression signature. This work emphasizes the
important concept that capturing the human host response to pathogen exposure may serve
as the basis for both diagnostic testing as well as a window into the fundamental biology of
infection.

Results
Organization and data flow are shown in Figure 1. Exposures were performed on
independent cohorts and datasets combined for analysis.

Viral challenge
HRV—The attack rate was 50%, as ten of the 20 inoculated subjects developed ARI-like
symptoms and had confirmed viral shedding (Table 1; Supplemental Figures 1 and 2). Peak
symptoms occurred at 48 hours (n=2), 72 hours (n=4) or 96 hours (n=4) post inoculation
(median 72 hours).

Zaas et al. Page 3

Cell Host Microbe. Author manuscript; available in PMC 2010 April 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



RSV—The attack rate was 45%, as nine of the 20 inoculated subjects developed ARI-like
symptoms and had confirmed viral shedding (Table 1, Supplemental Figures 1 and 2). One
subject (RSV020) had late symptoms and uninterpretable culture data and was excluded.
Peak symptoms occurred at 93.5 hours (n=1), 117.5 hours (n=1), 141.5 hours (n=5) and
165.5 hours (n=1) post inoculation (median 141.5 hours).

Influenza—The attack rate was 53%, as nine of the 17 inoculated subjects developed ARI-
like symptoms and had confirmed viral shedding (Table 1, Supplemental Figures 1 and 2).
Peak symptoms occurred at 50 hours (n=1), 62 hours (n=2), 74 hours (n=2), 86 hours (n=2),
98 (n=1) and 110 hours (n=1) post inoculation (median 80 hours).

A common blood RNA based viral response signature differentiates adults with
symptomatic HRV, RSV, or influenza A infection from uninfected individuals: We first
combined data from each challenge and analyzed it as a single dataset. Eighty-four
timepoints were included in the analysis (HRV: 10 baseline, 10 symptomatic, 10 matched
timepoint asymptomatic; RSV: 10 baseline, 9 symptomatic, 10 matched timepoint
asymptomatic; influenza: 8 baseline, 9 symptomatic, 8 matched timepoint asymptomatic).
Twenty factors were developed using all available probes and a single factor (Factor 16)
could best discriminate symptomatic (infected) subjects (HRV, RSV or influenza A) from
asymptomatic (uninfected) individuals. Baseline (pre-inoculation) gene expression was
indistinguishable from the matched timepoint of asymptomatic subjects (Figure 2). Baseline
gene expression in subjects who became symptomatic was indistinguishable from those who
remained asymptomatic (data not shown). The top 30 predictive genes contained in Factor
16 are known to characterize host response to viral infection (Supplemental Table 1). These
30 genes were used as features for the sparse probit regression model to perform leave-one-
out cross validation and generate an ROC curve (Figure 2) to estimate performance of the
model. Leave-one-out cross validation correctly identified 96.5% of infected subjects
(misclassification rate 3.5%, 3/84). These data - from three distinct viral challenge
experiments – demonstrate a clear acute respiratory viral response factor as a common
feature of peak infection.

To further validate the robust acute respiratory viral response signature, we next analyzed
each dataset (HRV, RSV and influenza A) separately to identify a factor that characterized
symptomatic viral infection for each individual dataset (Supplemental Figure 3). We
performed sparse probit regression on the 30 genes with the highest factor loading values in
each factor, and this data was used for leave-one-out cross validation and generation of an
ROC curve to estimate factor performance. Notably, the p-values associated with each factor
(i.e. the likelihood that this group of genes would not be selected randomly) were 2.33
×10−5 (HRV), 2.29 × 10−7 (RSV), and 4.95 × 10−13 (influenza) (www.gather.duke.edu).
The individual challenge-specific factors were used as a de facto “training set” to classify
subjects from the other challenges. As shown in Supplemental Figure 4 and Table 2, when
the model was trained on any individual dataset, prediction of symptomatic versus
asymptomatic was >96%. This supports the conclusion that, at peak viral respiratory
infection symptoms, the host response converges to encompass a gene expression program
highly characteristic of response to viral infection. Supplemental Figure 5 shows overlap
between genes represented in the factors predictive for the individual viruses. Most genes
contained in the individual virus factors were present in the acute respiratory viral factor.
Genes unique to an individual virus factor include the following: SOCS1 (HRV) and
FCGR1A, GBP1, LAP3, ETV7 and FCGR1B (RSV). Complete gene lists for the individual
virus factors and the acute respiratory viral factor are listed in Supplemental Table 1. Genes
represented in these factors were highly representative of host response to viral infection,
including RSAD2, interferon response elements and the OAS gene family.
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Validation of an acute respiratory viral peripheral blood gene expression signature for
experimentally induced symptomatic HRV, RSV, or influenza using data from an
independent set of individuals with symptomatic community acquired influenza A
infection: Given the strong viral response signature that distinguished symptomatic HRV,
RSV, and influenza infection from uninfected subjects, we sought to confirm the specificity
of this response to viral infection diagnosed in a community setting. We utilized two
methods to validate our acute respiratory viral signature using microarray datasets derived
from PBMC mRNA from a published study (Ramilo et al., 2007) of viral respiratory
infection ascertained a from cohort of pediatric patients with microbiologically proven
influenza A infection with linked gene expression data. First, we used the acute respiratory
viral classifier built on the combined three challenge datasets to predict disease state
(uninfected vs influenza A infection) in the literature cohort (Figure 3). Despite differences
in subject ascertainment in the experimental cohort and the literature cohort [as well as other
potential confounders (such as age and demographics)], we were able to accurately classify
subjects as influenza A infected versus no infection in the literature cohort. This
classification of subjects in this cohort was highly accurate [100% (23/23) for influenza
infected versus no infection] (Figure 3b). Prediction of viral infection in a pre-existing
dataset using genes identified as discriminative in an experimental dataset reinforces the
robust nature of both the methodology and the classifier.

In the second approach, we re-analyzed the raw gene expression data from the literature data
set [14] using the same methods that were utilized to generate the HRV, RSV, and influenza
expression signatures. Similar to our analysis of the HRV-, RSV-, and influenza-infected
cohorts, twenty factors were built using the entire gene set from all persons in the literature
cohort (Supplemental Figure 6). These factors were used to build a classifier that
distinguished persons with influenza A (n = 18) from healthy controls (n = 6 pediatric
subjects hospitalized for elective surgery). The top 30 genes in this factor were used as
features for the sparse probit regression model to perform leave-one-out cross validation and
generate ROC curves to estimate performance of the algorithm. Leave-one-out cross
validation correctly identified 100% of the 24 individuals in this dataset. Of the 27 unique
genes represented in the literature cohort factor, 20 were also present in the acute respiratory
viral factor derived from the experimental cohorts. Of the 28 unique genes represented in the
acute respiratory viral factor derived from our experimental cohorts, 20 were also present in
the literature cohort factor. The probit function was also used to discriminate between
influenza A infection and bacterial infection, with cross-validation correctly classifying
90/97 subjects (misclassification rate 7%). This finding further supports the acute respiratory
viral factor derived above is a robust disease signature at time of peak symptoms. Predictive
performance of each gene contained in the probit function generated from the acute
respiratory viral factor to predict pathogen class in the independent dataset is shown in
Supplemental Figure 7.

Peripheral blood gene expression signatures can discriminate between individuals with
symptomatic HRV, RSV or influenza A virus and bacterial infection: We next sought to
further show that our acute respiratory viral gene expression factor was specific for viral
infections. We used microarray datasets available in the literature [14] derived from PBMC
mRNA from a cohort of pediatric patients with microbiologically proven S. pneumoniae, S.
aureus, or E. coli infections [(S. pneumoniae (n=13), S. aureus (n=31), or E. coli (n=29)].
We used the acute respiratory viral classifier built on the three combined challenge datasets
to predict disease state (influenza A infection versus bacterial infection) in the literature
cohort (Figure 4). Classification of subjects in the literature cohort was highly accurate: 80%
(73/91) for influenza infected versus any bacterial infection (Figure 4) and 93% (31/33) for
influenza infected versus pneumococcal infection (data not shown). This analysis confirms
specificity of the viral infection signature to discriminate not only between subjects with
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acute respiratory viral infection and uninfected subjects, but also from subjects with acute
bacterial infections, including bacterial respiratory infection. Ultimately, the differentiation
that is most valuable clinically may be discriminative between host response to viral
respiratory tract infection and bacterial pneumonia (i.e. S. pneumoniae infection). Thus,
despite inherent differences in sample acquisition and study design between the
experimental HRV, RSV, and influenza cohorts and the literature cohort, these analyses
confirm the robust nature of gene expression signatures that differentiate subjects with
respiratory viral infection from subjects with bacterial infections, including pneumococcal
infection, and from healthy subjects.

Discussion
We performed three independent human viral challenge studies (HRV, RSV, and influenza)
to define host-based peripheral blood gene expression patterns characteristic of response to
viral respiratory infection. The results provide clear evidence that a unique biologically
relevant peripheral blood gene expression signature classifies respiratory viral infection with
a remarkable degree of accuracy. These findings underscore the conserved nature of the host
response to viral infection, which is also evident in the cross-validation between
experimental cohorts. The “acute respiratory viral” gene expression signature derived from
these cohorts was validated in an independently derived external dataset, and, importantly,
can distinguish respiratory viral infection from bacterial infection. These findings provide
compelling evidence that peripheral blood gene expression can function as a biomarker for
specific classes of infectious pathogens and may potentially serve as a useful diagnostic for
triaging treatment decisions for ARI.

Discrimination between infectious causes of illness is a critical component of acute care of
the medical patient as such distinctions facilitate both triage and treatment decisions. While
traditional culture, antigen-based, and PCR based diagnostics are useful in pathogen
classification, these assays are not without limitations(Bryant et al., 2004; Campbell and
Ghazal, 2004). Current rapid diagnostic methods are lacking in sensitivity, with influenza
and RSV tests (e.g. BinaxNOW antigen testing) reporting sensitivities of 53-80% (Jonathan,
2006; Landry et al., 2008; Rahman et al., 2008) or are labor-intensive, such as direct-
fluorescent antibody (DFA) testing. Categorizing infection based on host response is an
emerging hypothesis that not only enhances our diagnostic capabilities, but may provide
additional insight into the pathobiology of infection. We have identified gene expression
patterns that characterize host response to viral infection and that identify infected
individuals with a high degree of accuracy. Several lines of evidence validate our findings,
including the internal cross validation between exposure cohorts as well as validation with
the free-living influenza A and bacterial infection pediatric cohort (Ramilo et al., 2007).
Other investigators have identified host gene expression patterns – in nasal epithelium – that
are associated with viral infection. Differentially expressed genes in nasal epithelium
exposed to HRV 16 (in vitro and from experimentally infected subjects) were similar to
those found in the current study in peripheral blood (Proud et al., 2008). In particular,
RSAD2 (viperin), a potential antiviral molecule (Chin and Cresswell, 2001; Jiang et al.,
2008; Wang et al., 2007b), was the most highly differentially expressed gene in nasal
epithelium between infected and uninfected individuals at 48 hours post inoculation. Our
HRV (HRV-16) predictive factor included RSAD2 (viperin) and the probit regression model
selected it as the key differentially expressed gene in blood for determining infected state in
the HRV cohort. Whole blood gene expression studies looking at RSV infection in
hospitalized infants shared differentially expressed genes with the RSV factor found in our
study, with a predominance of interferon-response elements, FCγ1AR, and OAS3 (Fjaerli et
al., 2006). Finally, data from the naturally-occurring influenza A/bacterial infection study
(Ramilo et al., 2007) confirmed a distinct host response signature to viral infection occurring
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both in this cohort and our experimentally infected cohorts. Taken together, this provides
strong evidence for highly accurate in vivo detection of human viral respiratory infection
through analysis of peripheral blood gene expression. Notably, different peripheral blood
immune cell types induce varying gene expression programs in response to pathogen
exposure. Thus, the peripheral blood gene expression signatures derived and validated in
these cohorts may only be applicable to individuals without underlying immune
deficiencies. Additional studies in immune deficient populations will be needed to
generalize the current findings to these rare but clinically important patient subsets.

Evident from the genes in each factor, signatures that discriminate subjects with
symptomatic respiratory viral infections from healthy subjects and subjects with bacterial
infection contain biologically plausible gene networks involved in host viral response. The
acute respiratory viral factor was most heavily represented by genes in the interferon
signaling canonical pathway (p = 9.75 × 10−9) and the pattern recognition pathway for
bacteria and viruses (p = 5.67 × 10−5). This over-representation of interferon response
elements remained when individual viral challenges were analyzed as separate entities
(HRV p = 1.38 × 10−10, RSV p = 2.25 × 10−9, influenza p = 1.25 × 10−7).
(www.ingenuity.com). Overlap between the genes defining each factor (discriminating
symptomatic individuals versus asymptomatic individuals OR discriminating viral
respiratory infection from bacterial infection) was strong. Baseline gene expression among
all challenge subjects was similar and indistinguishable from the later timepoints for
asymptomatic subjects and classification of subjects from one cohort based on the other
cohorts was remarkably accurate. Discovery of discriminant factors for disease states such
as this one is inherently blind to biology, as the model is not aware of data labels. Despite
differences in study design, commonalities between experimentally infected adults with
HRV, RSV, or influenza A and community infected children with influenza A predominated
over virus-specific aspects of each signature. However, when selecting the gene or genes
with greatest discriminating power for leave-one-out cross validation, the model chose
different genes for each viral illness (HRV: RSAD2; RSV: RTP4; influenza A: ISG15; viral
vs. bacterial: IFI27, RSAD2, IFI6, CXCL10, FLJ20035, GBP1 and SIGLEC1 and viral vs.
S. pneumoniae: RSAD2). Thus, with careful exploration of disease biology or with
additional cohorts for validation, disease specific markers of infection may arise, adding
parity to the diagnostic signatures. Overlap is minimal with differentially expressed genes
from other studies of peripheral blood response to environmental stress found in a study of
humans exposed to ionizing radiation, and the genotoxic stress of chemotherapy and LPS
(Dressman et al., 2007; Meadows et al., 2008), decreasing the likelihood that these genes are
part of a generalized response program inherent to immune effector cells.

Despite data acquisition and processing differences, gene expression patterns derived from
publically available microarray data for individuals with influenza A infection were similar
to those with experimentally acquired symptomatic HRV, RSV, or influenza A infection.
Genes found to characterize the response to respiratory viral infection in our cohorts overlap
with genes found in many gene expression studies of host response to viral infections, both
in vivo (Bhoj et al., 2008; Proud et al., 2008; Ramilo et al., 2007) and in vitro (Jenner and
Young, 2005). This generalizability of the respiratory viral response signature finding
illustrates that the host response to respiratory viral infections is robust and conserved such
that it can be discerned in divergent patient populations (healthy adult volunteers
experimentally infected with HRV or RSV and children hospitalized with influenza A).
Second, this finding illustrates the dominance of a pathogen specific response at time of
peak symptoms over a generalized “infection” response, as discrimination between viral and
bacterial infection is possible. The ability of these signatures to differentiate between
pathogen classes (viral versus bacterial) provides a marked distinction between these
findings and current methods of infectious or inflammatory illness classification (e.g.
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peripheral white blood cell count or measurement of inflammatory markers such as C-
reactive protein). The sensitivity and specificity of these markers in both our experimental
setting and when applied to a cohort from the literature data represent an improvement on
the performance of current rapid (e.g. rapid antigen testing) diagnostics as well as current
culture-based diagnostics. A combination of these tests may ultimately prove to offer the
best sensitivity and specificity for disease diagnosis. These data provide an important
backbone to the concept that host peripheral blood gene expression may be a valuable tool
alone or in conjunction with standard microbiologic testing for infectious diseases.
Validation in an additional community based cohort, as well as developing signatures to
diagnose pre-symptomatic viral respiratory infections is desirable.

An important question that arises is whether the changes in host gene expression described
here occur before peak symptoms? While still preliminary, we have time course data on
subsets of these cohorts. The factor analysis was applied using the RSV, HRV and influenza
data from all samples at all times, from which the factor discussed above [Factor 16] was
constituted. In Figure 5 we plot the factor score (strength) of the discriminative factor, as a
function of time. Two curves are depicted, representing the average factor scores, averaged
separately for those that would eventually be symptomatic, and those that would not. The
differences in f scores between individuals who remain asymptomatic and those who
become symptomatic reach statistical significance (p = 0.028) at 45.5 hours following
inoculation. This factor was found to be detectable prior to development of peak symptoms
among symptomatic individuals. Thus, using host response as the diagnostic paradigm,
presymptomatic diagnosis may be possible.

Signature validation across experimentally infected cohorts illustrates the robust nature of
the host response to viral infection. Additional validation of the gene expression signatures
in other community-based cohorts would elevate these findings to a true diagnostic test that
could enhance or supersede traditional microbiologic based diagnostics. Additionally, such
data would be extremely valuable if it could be used to either diagnose infection class prior
to standard microbiologic studies (i.e. in the early phases of disease) or indicate prognosis
following disease acquisition or therapeutic intervention. In our study, we were able to
utilize an easily obtained sample (peripheral blood) to characterize response to a respiratory
infection. While development of a diagnostic test that utilizes host gene expression to
characterize or predict infectious diseases is not yet possible from the data generated in this
study, it represents an important advance showing that peripheral blood gene expression can
be used to characterize host response to infection.

Experimental Procedures
All exposures were approved by the relevant institutional review boards (IRBs) and
conducted according to the Declaration of Helsinki. Funding for this study was provided by
the US Defense Advanced Research Projects Agency (DARPA) through contract
N66001-07-C-2024.

Human viral challenges
HRV Cohort (n=20)—We recruited healthy volunteers via advertisement to participate in
the HRV challenge study through an active screening protocol at the University of Virginia
(Charlottesville, VA). Subjects who met inclusion criteria underwent informed consent and
pre-screening for serotype-specific anti-HRV approximately two weeks prior to study start
date. On the day prior to inoculation, subjects underwent repeat HRV antibody testing as
well as baseline laboratory studies, including complete blood count, serum chemistries, and
hepatic enzymes. On day of inoculation, 106 TCID50 GMP HRV serotype 39 (Charles River
Laboratories, Malvern PA) was inoculated intranasally according to published methods
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(Drake et al., 2000; Gwaltney et al., 1992; Turner, 2001). Subjects were admitted to the
quarantine facility for 48 hours following HRV inoculation and remained for 48 hours
following inoculation. Blood was sampled into RNA PAXGene™ collection tubes
(PreAnalytix; Franklin Lakes, NJ) at pre-determined intervals post inoculation.
Nasopharyngeal (NP) lavage samples were obtained from each subject daily for HRV titers
to accurately gauge the success and timing of the HRV inoculation. Following the 48th hour
post inoculation, subjects were released from quarantine and returned for three consecutive
mornings for sample acquisition and symptom score ascertainment.

RSV Cohort (n=20)—A healthy volunteer intranasal challenge with RSV A was
performed in a manner similar to the HRV challenge. The RSV challenge was performed by
Retroscreen Virology, Ltd (London, UK) in 20 pre-screened volunteers who provided
informed consent. On day of inoculation, a dose of 104 TCID50 RSV (serotype A)
manufactured and processed under current good manufacturing practices (cGMP) by
Meridian Life Sciences, Inc. (Memphis, TN USA) was inoculated intranasally per standard
methods. Blood and NP lavage collection methods were similar to the HRV cohort, but
continued throughout the quarantine. Due to the incubation period of RSV A, subjects were
not released from quarantine until after the 288th hour AND were negative by rapid RSV
antigen detection (BinaxNow Rapid RSV Antigen; Inverness Medical Innovations, Inc).

Influenza Cohort (n=17)—A healthy volunteer intranasal challenge with influenza A A/
Wisconsin/67/2005 (H3N2) was performed at Retroscreen Virology, Ltd (Brentwood, UK)
in 17 pre-screened volunteers who provided informed consent. On day of inoculation, a dose
of 106 TCID50 Influenza A manufactured and processed under current good manufacturing
practices (cGMP) by Baxter BioScience, (Vienna, Austria) was diluted and inoculated
intranasally per standard methods at a varying dose (1:10, 1:100, 1:1000, 1:10000) with four
to five subjects receiving each dose. Due to the incubation period, subjects were not released
from quarantine until after the 168th hour. Blood and NP lavage collection continued
throughout the duration of the quarantine. All subjects received oral oseltamivir (Roche
Pharmaceuticals) 75 mg by mouth twice daily at day 6 following inoculation and were
negative by rapid antigen detection (BinaxNow Rapid Influenza Antigen; Inverness Medical
Innovations, Inc) at time of discharge.

Case Definitions—Symptoms were recorded twice daily using standardized symptom
scoring(Jackson et al., 1958). The modified Jackson Score requires subjects to rank
symptoms of upper respiratory infection (stuffy nose, scratchy throat, headache, cough, etc)
on a scale of 0-3 of “no symptoms”, “just noticeable”, “bothersome but can still do
activities” and “bothersome and cannot do daily activities”. Modified Jackson scores were
tabulated to determine if subjects became symptomatic from the respiratory viral challenge.
A modified Jackson score of >= 6 over the quarantine period was the primary indicator of
successful viral infection(Turner, 2001) and subjects with this score were denoted as
“symptomatic, infected” Viral titers from daily nasopharyngeal washes were used as
corroborative evidence of successful infection using quantitative culture (Barrett et al., 2006;
Jackson et al., 1958; Turner, 2001).

Subjects were classified as “asymptomatic, not infected” if the Jackson score was less than 6
over the five days of observation and viral shedding was not documented after the first 24
hours subsequent to inoculation. Standardized symptom scores tabulated at the end of each
study to determine attack rate and time of maximal symptoms (time “T”).

Sample Collections—Subjects had the following samples taken 24 hours prior to
inoculation with virus (baseline), immediately prior to inoculation (pre-challenge) and at set
intervals following challenge: peripheral blood for serum and plasma, peripheral blood for
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RNA PAXgene™, NP wash for viral culture/PCR, urine, and exhaled breath condensate
(EBC). For the HRV challenge, peripheral blood was taken at baseline, then at 4 hour
intervals for the first 24 hours, then 6 hour intervals for the next 24 hours, then 8 hour
intervals for the next 24 hours and then 24 hour intervals for the remaining 3 days of the
study. For the RSV and influenza challenges, peripheral blood was taken at baseline, then at
8 hour intervals for the initial 120 hours and then 24 hours for two further days. For all
cohorts, NP washes, urine and EBCs were taken at baseline and every 24 hours. Samples
were aliquoted and frozen at −80°C immediately. This study is focused on comparison of
baseline samples with RNA PAXgene™ samples taken at time of peak symptoms.
Paxgene™ RNA from the timepoint of maximal symptoms was chosen for hybridization to
Affymetrix U133a human microarrays for further analysis. For all results reported, gene
expression signatures were evaluated at the time of maximal symptoms following viral
inoculation for symptomatic subjects and a matched timepoint for asymptomatic subjects.
Baseline (pre-inoculation) samples were also analyzed.

Community influenza and bacterial infection (“literature”) cohort—Raw data
from Ramilo, et al, (Ramilo et al., 2007)was obtained from the public domain database GEO
(www.ncbi.nlm.nih.gov/geo/projectIDGSE6269) and were analyzed independently using
methods described below.

RNA purification/microarray analysis—RNA was extracted at Expression Analysis
(Durham, NC) from whole blood using the PAXgene™ 96 Blood RNA Kit (PreAnalytiX,
Valencia, CA) employing the manufacturer’s recommended protocol. Complete
methodology can be viewed in the Supplementary Methods. Hybridization and microarray
data collection was performed at Expression Analysis (Durham, NC) using the GeneChip®
Human Genome U133A 2.0 Array (Affymetrix, Santa Clara, CA).

Statistical Analysis—Using just the data from the influenza challenge, we tested
(Kruskal-Wallis) each probe for differential expression between subjects who were sick vs
healthy at Time T. Due to the small sample size, there were no probes showing significant
association after correction for multiple hypotheses (Bonferroni). We then analyzed jointly
the results from all three trials in an ANOVA framework. In addition to the intercept term,
we included in the design matrix indicators of sick versus healthy, t0 versus tmax, and
indicator for each of rhinovirus and RSV, and interaction terms for rhinovirus – sick and
RSV – sick (Supplemental Analysis). Following RMA normalization of raw probe data,
sparse latent factor regression analysis was applied to each dataset (Aziz et al., 2007;
Carvalho et al., 2008; Lucas et al., 2006; Wang et al., 2007a). This reduces the
dimensionality of the complex gene expression array dataset assuming that many of the
probe sets on the expression array chip are highly interrelated (targeting the same genes or
genes in the same pathways). Dimension reduction is performed by constructing factors
(groups of genes with related expression values). These are used in a sparse linear regression
framework to explain the variation seen in all of the probe sets. By default, most of the
coefficients in this linear regression are zero. Thus, a small number (e.g. 20) of factors
explain variation seen in any single dataset. Factor loadings are defined as the coefficients of
the factor regression, and, to explore the biological relevance any particular factor, we
examine the genes that are “in” that factor -- the genes that show significantly non-zero
factor loadings. “Factor scores” are defined as the vector that best describes the co-
expression of the genes in a particular factor. Both factor loadings and factor scores are fit to
the data concurrently. While 20 factors were used for the results reported here, we also
considered 30 and 40, with minimal effect on the significant factor loadings. The initial
models were derived using an unsupervised process (Acharya et al., 2008) (i.e. the model
classified subjects based on gene expression pattern alone, without a priori knowledge of
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infection status). The top 30 genes in each factor were used as features for the sparse probit
regression model to perform leave-one-out cross validation and generate ROC curves to
estimate performance of the algorithm. The probit regression model selects the “top”
predictive gene from the gene set for sample classification and generation of an ROC curve.
Validation of the factor most discriminative between the asymptomatic and symptomatic
state was performed using labeled data. Validation between datasets (HRV, RSV, and
influenza A) was performed by training the regression model on one set of data (i.e. one
viral exposure) and using this model to predict health or disease in a different data set (i.e. a
different viral exposure). Validation of the model using the publically available dataset was
performed by utilizing the joint factor analysis on the viral exposure dataset (HRV, RSV,
and influenza), building a probit classifier using the top 30 genes from the most predictive
factor and applying this classifier to the publically available dataset to estimate the
predictive performance of the acute respiratory viral classifier.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Consort diagram of study organization. Three unique cohorts of healthy volunteers were
infected with one of three respiratory viruses (HRV, RSV or influenza A). Combined data
was analyzed using sparse latent factor regression with leave-one-out cross validation.
Subsequent validation occurred using a dataset available from the public domain.
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Figure 2. An acute respiratory viral gene expression signature characterizes symptomatic
respiratory viral infection
Experimentally infected adult subjects with symptomatic HRV, RSV or influenza A
infection can be distinguished from uninfected individuals by a distinct group of genes
(“factor”) demonstrating differential expression among symptomatic individuals as
compared to asymptomatic individuals. For each viral challenge, peripheral blood was
drawn for whole blood gene expression analysis at scheduled time points post intranasal
inoculation of virus. Whole blood gene expression was determined pre-inoculation
(baseline), at time of peak symptoms for each symptomatic individual and a matched
timepoint for each asymptomatic individual. A) Heat map representing gene expression for
genes contained in Factor 16. Columns represent subjects and correspond to points in Figure
1B, with the first 10 columns representing baseline gene expression of asymptomatic
individuals in the HRV challenge, the next 10 columns representing timepoints matched to
peak symptoms for the asymptomatic subjects in the HRV cohort and the following 10
columns representing time of peak symptoms for the 10 subjects who developed
symptomatic HRV infection. A similar layout continues for the RSV and influenza cohorts.
Blue and red represent extremes of gene expression, with visually apparent differences
between baseline and matched timepoints in the asymptomatic individuals versus time of
peak symptoms in symptomatic individuals. The initial models were built without label
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information for each subject (asymptomatic versus symptomatic, baseline timepoint versus
infected/matched timepoint). This design allowed for the model to cluster individuals based
on expression patterns alone, thus minimizing bias in factor organization. Bars underneath
represent individual groups (black = baseline, red = asymptomatic, blue = symptomatic). P-
value (ANOVA) for the difference in factor scores between symptomatic and asymptomatic
subjects at time T for the combined dataset is < 1×10−16; for rhinovirus 2.5 × 10−5, for RSV
is 2.3 × 10−7 and for influenza is 5.0 × 10−13). B) Factor plots representing categorization of
asymptomatic and symptomatic subjects at baseline (black), matched timepoint to peak
symptoms (asymptomatic, red) and peak symptoms (symptomatic, blue). C) Leave-one-out
cross validation correctly identifies 97% of individuals with viral infection versus no
infection (3/84 misclassified). Pd = probability of detection; Pf = probability of false
discovery.
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Figure 3.
Acute respiratory viral factor derived from the three experimental cohorts (HRV, RSV, and
influenza) predicts subjects with culture-proven influenza infection from an independent
dataset with a high degree of accuracy. The acute respiratory viral classifier built on the
combined three challenge datasets was used to predict disease state (uninfected versus
influenza A infection) in the literature cohort. A) Predictive capability of the acute
respiratory viral factor to classify subjects with no infection (red) versus influenza A
infection (blue). X-axis represents the individual subjects and y-axis represents the decision
threshold. 0.5 is chosen as the threshold for generation of the subsequent ROC curves. B)
Prediction of influenza A infected versus healthy hospitalized control subjects using the
acute respiratory viral classifier. Classification of subjects in the literature cohort was highly
accurate [100% (23/23) for influenza infected versus no infection].
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Figure 4.
Acute respiratory viral factor derived from the three experimental cohorts (HRV, RSV, and
influenza) distinguishes subjects from an independent dataset with culture-proven influenza
infection versus bacterial infection (blue = influenza A; green = S. pneumoniae; yellow = S.
aureus; turquoise = E. coli) with a high degree of accuracy. B) Prediction of bacterial
infection (any) versus influenza A infection using the pan-respiratory viral classifier.
Classification is accurate [80%, (73/91)] for influenza A infection versus any bacterial
infection.
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Figure 5.
Detection of the acute respiratory viral factor occurs earlier than time of peak symptoms.
Factor trajectory for the acute respiratory viral factor described in Figure 2 is shown for the
symptomatic (blue) and asymptomatic (red) subjects from the influenza challenge study.
Notably, factor 16 is detectable prior to the timing of peak symptoms. Each point represents
the average factor score for the samples that fall into that group, with error bars representing
the standard deviation. For example, the blue dot at Time 0 represents all samples from
subjects immediately post inoculation who will subsequently become symptomatic (9
subjects). A t-test was performed at teach timepoint for difference in factor score from those
who will become symptomatic from those who will remain asymptomatic. The difference
between factor scores for symptomatic and asymptomatic became significant at P < 0.03 at
45.5 hours and continued through the end of the measurements. * = p <0.03.
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Table 1

Description of experimental cohorts

Cohort Number
Exposed

Number
Symptomatic

Median Time
“T”: Time to
Peak
Symptoms

Corresponding
Time Used for
Asymptomatic
Subjects

Rhinovirus 20 10 72 hours 72 hours

RSV 20 9 141.5 hours 141.5 hours

Influenza 17 9 80 hours 86 hours
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Table 2

Intra-dataset probit classification cross-validation results. The error rate is shown based on the top gene (noted
in parentheses) selected from the training set probit classifier. For this model, the top 40 genes from the
training set discriminative factor were used to build the probit classifier for testing in the validation dataset

Test Rhinovirus RSV Influenza

Train

Rhinovirus 1/30
(RSAD2)

2/29
(RTP4)

0/25
(ISG15)

RSV 1/30
(RSAD2)

2/29
(RTP4)

0/25
(ISG15)

Influenza 1/30
(RSAD2)

2/29
(RTP4)

0/25
(ISG15)
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