
 Recent remarkable innovations in platforms for omics-based 
research and application development provide crucial 
resources to promote research in model and applied plant 
species. A combinatorial approach using multiple omics 
platforms and integration of their outcomes is now an 
effective strategy for clarifying molecular systems integral to 
improving plant productivity. Furthermore, promotion of 
comparative genomics among model and applied plants 
allows us to grasp the biological properties of each species 
and to accelerate gene discovery and functional analyses of 
genes. Bioinformatics platforms and their associated 
databases are also essential for the effective design of 
approaches making the best use of genomic resources, 
including resource integration. We review recent advances in 
research platforms and resources in plant omics together 
with related databases and advances in technology.  

  Keywords:   Bioinformatics    •    Database    •    Omics resource  .  

   Abbreviations  :    AT  ,    activation tagging   ;     CE  ,    capillary 
electrophoresis   ;     CRES-T  ,    chimeric repressor silencing technology   ; 
    DIGE  ,    difference gel electrophoresis   ;     ESI  ,    electrospray ionization   ; 
    EST  ,    expressed sequence tag   ;     FT  ,    Fourier transfer   ;     FT-ICR MS  , 
   Fourier transform ion cyclotron resonance mass spectrometry   ; 
    GC  ,    gas chromatography   ;     GST  ,    gene-specifi c sequence tag   ;     LC  , 
   liquid chromatography   ;     MALDI  ,    matrix-assisted laser desorption 
ionization   ;     miRNA  ,    microRNA   ;     MPSS  ,    massively parallel 
signature sequencing   ;     MS  ,    mass spectrometry   ;     NMR  ,    nuclear 
magnetic resonance   ;     QTL  ,    quantitative trait locus   ;     SAGE  ,    serial 
analysis of gene expression   ;     RNAi  ,    RNA interference   ;     sRNA  , 
   small RNA   ;     siRNA  ,    short interfering RNA   ;     SNP  ,    single nucleotide 
polymorphism   ;     SSR  ,    simple sequence repeat   ;     STS  ,    sequence-
tagged site   ;     ta-siRNA; trans-acting siRNA; TF  ,    transcription 
factor   ;     TILLING  ,    targeting induced local lesions in genomes   ; 
    TOF  ,    time of fl ight   ;     TSS  ,    transcription start sites   ;     VIGS  ,    virus-
induced gene silencing.         

 Introduction 

 Sustainable agricultural production is an urgent issue in response 
to global climate change and population increase ( Brown and 

Funk 2008 ,  Turner et al. 2009 ). Furthermore, recent increased 
demand for biofuel crops has created a new market for agricul-
tural commodities. One potential solution is to increase plant 
yield by designing plants based on a molecular understanding of 
gene function and on the regulatory networks involved in stress 
tolerance, development and growth ( Takeda and Matsuoka 
2008 ). Recent progress in plant genomics has allowed us to dis-
cover and isolate important genes and to analyze functions that 
regulate yields and tolerance to environmental stress. 

 The whole genome sequencing of  Arabidopsis thaliana  
was completed in 2000 ( The Arabidopsis Genome Initiative 
2000 ). Subsequently, the National Science Foundation (NSF) 
Arabidopsis 2010 project in the USA was launched with the 
stated goal of determining the functions of 25,000 genes of 
Arabidopsis by 2010 ( Somerville and Dangl 2000 ). Technological 
advances in each omics research area have become essential 
resources for the investigation of gene function in association 
with phenotypic changes. Some of these advances include the 
development of high-throughput methods for profi ling expres-
sions of thousands of genes, for identifying modifi cation events 
and interactions in the plant proteome, and for measuring the 
abundance of many metabolites simultaneously. In addition, 
large-scale collections of bioresources, such as mass-produced 
mutant lines and clones of full-length cDNAs and their integra-
tive relevant databases, are now available ( Brady and Provart 
2009 ,  Kuromori et al. 2009 ,  Seki and Shinozaki 2009 ). The 
genome sequencing project of  japonica  rice was completed in 
2005, and the Rice Annotation Project (RAP), which was orches-
trated via ‘jamboree-style’ annotation meetings, aimed to pro-
vide an accurate annotation of the rice genome ( International 
Rice Genome Sequencing Project 2005 ,  Itoh et al. 2007 ). In con-
junction with the rice genome sequence and its related genomic 
resources, advanced development of mapping populations 
and molecular marker resources has allowed researchers to 
accelerate the isolation of agronomically important quantita-
tive trait loci (QTLs) ( Ashikari et al. 2005 ,  Konishi et al. 2006 , 
 Ma et al. 2006 ,  Kurakawa et al. 2007 ,  Ma et al. 2007 ). 

 The aforementioned recent high-throughput technological 
advances have provided opportunities to develop collections of 
sequence-based resources and related resource platforms for 
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specifi c organisms. A schematic representation of each relevant 
omics resource is shown in       Fig. 1 , together with the current 
status of their availabilities for Arabidopsis, rice and soybean 
as examples. Each biological element that has been measured 
comprehensively by a high-throughput method is represented 
in a corresponding plane in a conceptual model with layers rang-
ing from genome to phenome, a model termed ‘omic space’ 
( Toyoda and Wada 2004 ). Such comprehensive models often 
provide an excellent starting point for designing experiments, 
generating hypotheses or conceptualizing based on the inte-
grated knowledge found in the omic space of a particular organ-
ism. Furthermore, development of such omic resources and data 
sets for various species allows the comparison of omic properties 
among species, which promises to be an effi cient way to fi nd col-
lateral evidence for conserved gene functions that might be evo-
lutionarily supported. Bioinformatics platforms have become 
essential tools for accessing omics data sets for the effi cient 
mining and integration of biologically signifi cant knowledge. 

 We provide an overview of several representative resources 
available for use in omics plant research, with particular empha-
sis on recent progress related to crop species. We describe 
sequence-related resources such as whole genome, protein 
coding and non-coding transcripts, and provide sequencing 
technology updates. We then review resources for genetic map-
based approaches such as QTL analyses and population studies. 
We also describe the current status of resources and technolo-
gies for transcriptomics, proteomics and metabolomics, and 
review the comprehensive profi ling of elements in each omics 
fi eld as well as instances of their combinatorial uses in the inves-
tigation of particular biological systems. Mutant resources for 
use in phenome research will also be discussed. Finally, the inte-
gration of omics data sets across plant species and the progress 
of comparative genomics will be introduced. Throughout this 
review, we provide examples of applications of such resources 
and available databases.   

 Sequence resources in plants 

 Comprehensively collected sequence data provide essential 
genomic resources for accelerating molecular understanding of 
biological properties and for promoting the application of such 
knowledge. The recent accumulation of nucleotide sequences 
of model plants, as well as of applied species such as crops and 
domestic animals, has provided fundamental information for 
the design of sequence-based research applications in func-
tional genomics. In this section, we describe recently developed 
plant sequence resources. Species-specifi c nucleotide sequence 
collections also provide opportunities to identify the genomic 
aspects of phenotypic characters based on genome-wide com-
parative analyses and knowledge of model organisms ( Cogburn 
et al. 2007 ,  Flicek et al. 2008 ,  Paterson 2008 ,  Tanaka et al. 2008 ).  

 Genome sequencing projects 
 The fi rst genome sequence of a plant was completed for 
 A. thaliana , which is now used as a model species in plant 

molecular biology due to its small size, short generation time 
and high effi ciency of transformation. The Arabidopsis genome 
sequence project was performed as a cooperative project 
among scientists in Japan, Europe and the USA ( Bevan 1997 ). 
The genome sequencing was completed and published in 2000 
by the Arabidopsis Genome Initiative (AGI) ( The Arabidopsis 
Genome Initiative 2000 ). The draft genome sequence of rice, 
both  japonica  and  indica , an important staple food as well as 
a model monocotyledon, was published in 2002 ( Goff et al. 
2002 ,  Yu et al. 2002 ). Subsequently, the genome sequence of 
 japonica  rice was completed and published by the International 
Rice Genome Sequencing Project in 2005 ( International Rice 
Genome Sequencing Project 2005 ). To date, several genome 
sequencing projects involving various plant species have been 
completed (  Table 1 ). 

 There are a number of providers for plant genome sequences 
and annotations. Phytozome is a Web-accessible information 
resource providing genome sequences and annotations of 
various plant species. This resource is a joint project of the 
Department of Energy’s Joint Genome Institute (DOE–JGI) 
and the Center for Integrative Genomics, and is intended to 
facilitate comparative genomic studies among green plants 
( http://www.phytozome.net/Phytozome_info.php ). The current 
version of Phytozome (ver. 5.0, January 2010) consists of 18  
plant species that were sequenced by JGI and other sequencing 
projects. Gramene ( http://www.gramene.org/ ) is an informa-
tion resource established as a portal site for grass species, and it 
provides various kinds of information related to grass genomics, 
including genome sequences ( Ware 2007 ,  Liang et al. 2008 ). 
The current version of Gramene (#30, October 2009) provides 
genome sequence information for 15 plant species, including 
fi ve wild rice genome assemblies. 

 According to data provided on the Entrez Genome 
Project Web site ( http://www.ncbi.nlm.nih.gov/sites/entrez?db
=genomeprj ), as of November 2009,  > 150 instances of genome 
projects in species of Viridiplantae have been tracked, including 
agronomically important crops such as staple foods, fruit trees, 
medical plants and a number of green alga species. With the 
ongoing innovations in next-generation sequencing technolo-
gies, the release of sequenced genomes is expected to acceler-
ate ( Ossowski et al. 2008 ,  Ansorge 2009 ). Whole-genome 
sequence information allows us to derive sets of important 
genomic features, including the identifi cation of protein-coding 
or non-coding genes and constructs such as gene families, regu-
latory elements, repetitive sequences, simple sequence repeats 
(SSRs) and guanine–cytosine (GC) content. These data sets 
have become primary sequence material for the design of 
genome sequence-based platforms such as microarrays, tiling 
arrays or molecular markers, as well as for reference data sets 
for the integration of omics elements into a genome sequence. 
Chromosome-scale comparisons identifying conserved similari-
ties of gene coordinates facilitate documentation of segmental 
and tandem duplications in related species ( Haas et al. 2004 , 
 De Bodt et al. 2005 ). Whole-genome comparisons identifying 
chromosomal duplication and conserved synteny among 
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related species provide evidence for hypotheses on comparative 
evolutionary histories with regard to the diversifi cation of 
species in a related lineage ( Paterson et al. 2009 ,  Schnable 
et al. 2009 ).   

 Large-scale collections of expressed sequence tags 
(ESTs) and cDNA clones 
 ESTs are created by partial ‘one-pass’ sequencing of randomly 
picked gene transcripts that have been converted into cDNA 
( Adams et al. 1993 ). Since cDNA and EST collections can be 
acquired regardless of genomic complexity, this approach has 
been applied not only to model species but also to a number of 
applied species with large genome sizes due to polyploidy and/
or to their number of repetitive sequences. As of November 
2009, there are  > 63 million ESTs in the National Center for 
Biotechnology Information (NCBI)’s dbEST, a public domain EST 
database ( http://www.ncbi.nlm.nih.gov/dbEST/ ) that includes 
a number of plant species (  Table 2 ) ( Boguski et al. 1993 ). 

 Because EST data collected from the cDNA libraries of a par-
ticular organism consist of redundant sequence data derived 
from the same gene locus or transcription unit, it is often neces-
sary to perform EST grouping by transcription units and to 
assemble these groups in order to create a consolidated align-
ment and representative sequence of each transcript before 
further analysis. Such steps are performed computationally: 
a typical work fl ow consists of ‘base calling’, i.e. converting 
the output trace of a sequencer to identifi ed nucleotide data, 
followed by a cleaning step involving identifi cation and removal 
of contaminated sequences, the masking out of cloning vector 
sequences, clustering of identical sequences and alignment of 
clustered sequences ( Ewing et al. 1998 ,  Huang and Madan 1999 , 
 Masoudi-Nejad et al. 2006 ). Then, the obtained data sets of 
representative transcripts can be used as unifi ed transcript 
data. There are several data resources that provide such unifi ed 
data sets of plants, such as NCBI-UniGene, PlantGDB, TIGR 
Plant Gene Index and HarvEST ( Feolo et al. 2000 ,  Lee et al. 2005 , 
 Close et al. 2007 ,  Duvick et al. 2008 ). 

 The comprehensive and rapid accumulation of cDNA clones 
together with mass volume data sets of their sequence tags 
have become signifi cant resources for functional genomics. 
ESTs derived from various kinds of tissues, including tissues 
from organisms in a range of developmental stages or under 
stress, could signifi cantly facilitate gene discovery as well as 
gene structural annotation, large-scale expression analysis, 
genome-scale intraspecifi c and interspecifi c comparative 
analysis of expressed genes and the design of expressed gene-
oriented molecular markers and probes for microarrays 
( Ogihara et al. 2003 ,  Zhang et al. 2004 ,  Kawaura et al. 2006 , 
 Mochida et al. 2006 ).   

 Full-length cDNA projects 
 Although partial cDNAs are useful for rapidly creating catalogs 
of expressed genes, they are not suitable for further study of 
gene function. This is because the most popular method for 
preparing a cDNA library does not provide a full-length cDNA 

 Table 2    Numbers of ESTs and unifi ed transcripts in plants 
(November 2009)  

 Species No. of ESTs 
(dbEST)

No. of 
entries 
(UniGene) 

 Physcomitrella patens 382,584 18,870 

 Picea glauca  (white spruce) 299,455 22,472 

 Picea sitchensis  (Sitka spruce) 175,662 18,838 

 Pinus taeda  (loblolly pine) 328,628 18,921 

 Aquilegia formosa  ×  Aquilegia pubescens 85,039 8,046 

 Arabidopsis thaliana  (thale cress) 1,527,298 30,579 

 Artemisia annua  (sweet wormwood) 85,402 9,462 

 Brassica napus  (rape) 643,601 26,733 

 Brassica oleracea 59,946 5,617 

 Brassica rapa  (fi eld mustard) 44,570 14,497 

 Capsicum annuum 116,541 8,868 

 Citrus clementina 118,365 9,123 

 Citrus sinensis  (Valencia orange) 208,909 15,808 

 Glycine max  (soybean) 1,422,604 33,001 

 Gossypium hirsutum  (upland cotton) 268,786 21,738 

 Gossypium raimondii 63,577 3,297 

 Helianthus annuus  (sunfl ower) 133,682 12,216 

 Lactuca sativa  (garden lettuce) 80,781 7,940 

 Lotus japonicus 195,385 14,493 

 Malus   ×   domestica  (apple) 324,308 23,731 

 Medicago truncatula  (barrel medic) 269,237 18,098 

 Nicotiana tabacum  (tobacco) 317,190 24,069 

 Populus tremula   ×   Populus tremuloides  (hybrid 
aspen)

76,160 9,652 

 Populus trichocarpa  (western balsam poplar) 89,943 14,965 

 Prunus persica  (peach) 79,203 7,620 

 Raphanus raphanistrum  (wild radish) 164,119 18,788 

 Raphanus sativus  (radish) 83,034 17,649 

 Solanum lycopersicum  (tomato) 296,848 18,228 

 Solanum tuberosum  (potato) 236,568 18,784 

 Theobroma cacao 159,320 24,958 

 Vigna unguiculata  (cowpea) 187,443 15,740 

 Vitis vinifera  (wine grape) 357,856 22,083 

 Selaginella moellendorffi i 93,806 8,810 

 Hordeum vulgare  (barley) 501,614 23,595 

 Oryza sativa  (rice) 1,249,110 40,978 

 Panicum virgatum  (switchgrass) 436,535 20,973 

 Saccharum offi cinarum  (sugarcane) 246,892 15,594 

 Sorghum bicolor  (sorghum) 209,814 13,899 

 Triticum aestivum  (wheat) 1,067,290 40,349 

 Zea mays  (maize) 2,018,798 97,123 

 Chlamydomonas reinhardtii 204,076 11,310 

 Volvox carteri 132,038 5,638 
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that includes the capped site sequence. The biotinylated cap 
trapper method, which uses trehalose-thermostabilized reverse 
transcriptase and is an effi cient method for constructing full-
length cDNA-enriched libraries, was developed by Hayashizaki’s 
group at RIKEN about 10 years ago. Full-length cDNA libraries 
and large-scale sequence data sets of clones have become 
invaluable resources for life science projects studying various 
species ( Hayashizaki 2003 ,  Imanishi et al. 2004 ,  Maeda et al. 
2006 ,  Tanaka et al. 2008 ,  Yamasaki et al. 2008a ). 

 The sequence resources derived from full-length cDNAs 
can also help substantially in identifying transcribed regions in 
completed or draft genome sequences. In Arabidopsis and rice, 
full-length cDNA sequences have been used to identify genomic 
structural features such as transcription units, transcription 
start sites (TSSs) and transcriptional variants ( Seki et al. 2002b , 
 Iida et al. 2004 ,  Itoh et al. 2007 ,  Yamamoto et al. 2009 ). In spe-
cies for which we have draft genomes, such as  Physcomitrella , 
soybean and poplar, full-length cDNA clones have been 
sequenced to help consolidate genomic infrastructure; this 
should also contribute to gene discovery ( Nanjo et al. 2007 , 
 Ralph et al. 2008a ,  Umezawa et al. 2008 ) ( Table 3 ). Full-length 
cDNAs are also useful for determining the three-dimensional 
(3D) structures of proteins by X-ray crystallography and nuclear 
magnetic resonance (NMR) spectroscopy and for functional 
biochemical analyses of expressed proteins in the molecular 
interactions of protein–ligands, protein–proteins and protein–
DNAs. Furthermore, recent advances in proteomics infrastruc-
ture require comprehensive data sets of the full-length amino 
acid sequences used to assign peptides to a protein. These 
advances also necessitate functional annotations to support 
systematic knowledge mined for proteins corresponding to 
identifi ed peptides and for residues modifi ed by, for example, 
phosphorylation, for use in combination with comparative 

analyses of modifi comic events among species. The full-length 
cDNA library has also contributed importantly to functional 
analysis by creating overexpressors used in reverse genetics. 
The advent of function-based gene discovery by systems such 
as full-length cDNA overexpressor (FOX) gene hunting, which 
use full-length cDNA transgenic plants as overexpressors, has 
provided an effective approach to high-throughput discovery 
of functional genes associated with phenotypic changes 
( Ichikawa et al. 2006 ,  Fujita et al. 2007 ,  Kondou et al. 2009 ). 

 Recently, full-length enriched cDNA libraries have been con-
structed for non-sequenced crops or forestry species, such as 
wheat ( Triticum aestivum ), barley ( Hordeum vulgare ), cassava 
( Manihot esculenta ), Japanese cedar ( Cryptomeria japonica ) 
and Sitka spruce ( Picea sitchensis ), as well as for plant species 
showing specifi c biological characters such as salt tolerance in 
salt cress ( Thellungiella halophila ) (  Table 3 ). These full-length 
cDNA libraries have been used to identify biological features 
through comparisons of target sequences with those of model 
organisms such as Arabidopsis, rice and poplar. These libraries 
also serve as primary sequence resources for designing microar-
ray probes and as clone resources for genetic engineering to 
improve crop effi ciency ( Sakurai et al. 2007 ,  Futamura et al. 
2008 ,  Ralph et al. 2008b ,  Taji et al. 2008 ). 

 Because of the various key functionalities of full-length 
cDNA resources in omic space, it is also essential to establish 
relevant information resources that provide gateways to these 
resources as well as to integrate related data sets derived from 
other omics fi elds and species ( Sakurai et al. 2005 ,  Mochida 
et al. 2009b ).   

 Ultrahigh-throughput DNA sequencing 
 During the past decade, the Sanger sequencing method has 
been used to complete sequencing of microbial and higher 

 Table 3    Large-scale collections of full-length cDNA clones in plants  

 Species Database References 

 Arabidopsis thaliana  http://rarge.gsc.riken.jp/  Seki et al. (2002b)  

 Citrus  species  Marques et al. (2009)  

 Cryptomeria japonica  Futamura et al. (2008)  

 Glycine max  http://rsoy.psc.riken.jp/  Umezawa et al. (2008)  

 Hordeum vulgare  http://www.shigen.nig.ac.jp/barley/  Sato et al. (2009)  

 Manihot esculenta  http://amber.gsc.riken.jp/cassava/  Sakurai et al. (2007)  

 Oryza rufi pogon  Lu et al. (2008)  

 Oryza sativa , ( japonica )  http://cdna01.dna.affrc.go.jp/cDNA/  Kikuchi et al. (2003)  

 Oryza sativa , ( indica )  http://www.ncgr.ac.cn/ricd  Liu et al. (2007)  

 Physcomitrella patens  http://www.brc.riken.go.jp/lab/epd/catalog/p_patens.html  Nishiyama et al. (2003)  

 Populus nigra  http://rpop.psc.riken.jp/index.pl  Nanjo et al. (2004) ;  Nanjo et al. (2007)  

 Populus trichocarpa  Ralph et al. (2008a)  

 Thellungiella halophila  Taji et al. (2008)  

 Triticum aestivum  http://trifl db.psc.riken.jp/  Kawaura et al. (2009) ;  Ogihara et al. (2004)  

 Zea mays  http://www.maizecdna.org/  Soderlund et al. (2009)  
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eukaryote genomes. In recent years, a number of alternative 
technologies, which are adaptations of methods such as 
pyrosequencing procedures, massively parallel DNA sequenc-
ing or single molecule sequencing, have become available 
( Margulies et al. 2005 ,  Ansorge 2009 ). Such new sequencing 
technologies have provided us with new opportunities to be 
addressed at the entire genome level in the fi elds of compara-
tive genomics, meta-genomics and evolutionary genomics 
( Varshney et al. 2009 ).   

 Whole-genome resequencing 
 Next-generation sequencing technology coupled with reference 
genome sequence data allows us to discover variations among 
individuals, strains and/or populations. Nucleotide polymor-
phisms are effectively identifi ed by mapping sequence frag-
ments onto a particular reference genome data set, a capability 
that is of immense importance in all genetic research. A whole-
genome resequencing project to discover whole-genome 
sequence variations in 1,001 strains (accessions) of Arabidopsis 
will result in a data set that will become a fundamental resource 
for promoting future genetics studies to identify alleles in 
association with phenotypic diversity across the entire genome 
and across the entire species range ( http://1001genomes.org/ ) 
( Weigel and Mott 2009 ). In rice, a high-throughput method for 
genotyping recombinant populations that used whole-genome 
resequencing data generated by the Illumina Genome Analyzer 
was performed ( Huang et al. 2009 ). One of the most anticipated 
innovations for next-generation sequencers is the application 
to whole-genome de novo sequencing. Although, to date, this 
approach has been realized only in bacterial genomes ( Farrer 
et al. 2009 ,  Moran et al. 2009 ), a number of attempts are being 
made to realize this advance in higher species.   

 Comprehensive discovery of small RNAs (sRNAs) 
 In plants, sRNAs, including microRNAs (miRNAs), short inter-
fering RNAs (siRNAs) and trans-acting siRNAs (ta-siRNAs), 
are also playing roles as crucial components of epigenetic 
processes and gene networks involved in development and 
homeostasis ( Ruiz-Ferrer and Voinnet 2009 ). These RNA mole-
cules are important targets that should be comprehensively 
identifi ed and their expression should be analyzed using 
next-generational genomic technologies ( Nobuta et al. 2007 , 
 Chellappan and Jin 2009 ). In maize, sRNAs in the wild type and 
in the isogenic  mop1-1  loss-of-function mutant were analyzed 
by deep sequencing using Illumina’s sequencing-by-synthesis 
(SBS) technology to characterize the complement of maize 
sRNA ( Nobuta et al. 2008 ). In poplar, expressed sRNAs from 
leaves and vegetative buds were also discovered using high-
throughput Roche 454 pyrosequencing, subsequently the 
genes of miRNA families, including the novel ones, were identi-
fi ed ( Barakat et al. 2007 ). Deep sequencing of  Brachypodium  
sRNAs at the global genome level has also been performed, 
resulting in identifi cation of miRNAs involved in the cold stress 
response (J. Zhang et al. 2009). The plant miRNA database 
(PMRD) is a useful information resource on plant miRNA and is 

available on the Web ( http://bioinformatics.cau.edu.cn/PMRD/ ) 
(Z. Zhang et al. 2009).    

 Resources for variation analysis 

 Recent innovations related to DNA sequencing technology and 
the rapid growth of genome and cDNA sequence resources 
allow us to design various types of molecular markers covering 
entire genomes ( Feltus et al. 2004 ). For high-throughput geno-
typing, a number of platforms have been developed that have 
been applied to genetic map construction, marker-assisted 
selection and QTL cloning using multiple segregation popula-
tions ( Hori et al. 2007 ). Such genotyping systems have also been 
used in post-genome sequencing projects such as genotyping 
of genetic resources, accessions to evaluate population struc-
ture and association studies to identify genetic loci involved 
in phenotypic changes of species. This recent expansion of 
analysis platforms addressing genome-wide polymorphisms 
provides an essential resource in the ‘variome’ study of plants.  

 Molecular markers 
 Accumulation and saturation of available genetic markers con-
tribute to advances in marker-assisted genetic studies and are 
important resources with a wide range of applications. Genetic 
markers designed to cover a genome extensively allow not 
only identifi cation of individual genes associated with complex 
traits by QTL analysis but also the exploration of genetic 
diversity with regard to natural variations ( Feltus et al. 2004 , 
 Varshney et al. 2005 ,  Caicedo et al. 2007 ). With the progress of 
genome sequencing and large-scale EST analysis in various 
species, these sequence data sets have become quite effi cient 
sequence resources for designing molecular markers. A number 
of attempts to design polymorphic markers from accumulated 
sequence data sets have been made for various species. Several 
genome-wide rice ( Oryza sativa ) DNA polymorphism data sets 
have been constructed based on alignment between  japonica  
and  indica  rice genomes( Han and Xue 2003 ,  Shen et al. 2004 ). 
Large-scale EST data sets are also important resources for dis-
covery of sequence polymorphisms, especially for allocating 
expressed genes onto a genetic map. Therefore, computational 
discovery of ESTbase single-nucleotide polymorphisms (SNPs) 
and/or EST-SNP markers for the purpose of identifying 
sequence-tagged site (STS) markers has progressed for numer-
ous species, including barley, wheat, maize, melon,  Brassica , 
common bean and sunfl ower ( Kota et al. 2001 ,  Kantety et al. 
2002 ,  Kota et al. 2003 ,  Torada et al. 2006 ,  Heesacker et al. 2008 , 
 Kota et al. 2008 ,  Blair et al. 2009 ,  Deleu et al. 2009 ,  Kaur et al. 
2009 ,  Li et al. 2009 ). 

 Several databases provide information on molecular mark-
ers in plant species. PlantMarkers is a genetic marker database 
that contains predicted molecular markers, such as SNP, SSR 
and conserved ortholog set (COS) markers, from various plant 
species ( Heesacker et al. 2008 ). GrainGenes is a popular site for 
Triticeae genomics; it also provides genetic markers and linkage 
map data on wheat, barley, rye and oat ( Carollo et al. 2005 ). 
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Gramene is a database for plant comparative genomics that 
provides genetic maps of various plant species ( Liang et al. 
2008 ). The Triticeae Mapped EST database (TriMEDB) provides 
information regarding mapped cDNA markers that are related 
to barley and their wheat homologs ( Mochida et al. 2008 ).   

 Platforms for variation analyses 
 High-throughput polymorphism analysis is an essential tool for 
facilitating any genetic map-based approach. So far, genome-
wide genotyping using a hybridization-based SNP typing 
method has been used to analyze representative Arabidopsis 
ecotypes and rice strains, and the data sets containing the 
calculated genome-wide variation patterns for each species 
have been released. As typifi ed by the Arabidopsis 1,001 proj-
ect, genome-wide variation study is a key analysis that should 
be performed after genome sequencing has been completed for 
a particular reference strain. Therefore, the demand for high-
throughput and cost-effective platforms for comprehensive 
variation analysis (also called variome analysis) has rapidly 
increased. 

 As we have already mentioned, whole-genome resequencing 
approaches are already being realized as a direct solution for 
variome analysis in species whose reference genome sequence 
data are available. Diversity Array Technology (DArT) is a high-
throughput genotyping system that was developed based on a 
microarray platform ( http://www.diversityarrays.com/index
.html ) ( Jaccoud et al. 2001 ,  Wenzl et al. 2007 ). In various crop 
species such as wheat, barley and sorghum, DArT markers have 
been used together with conventional molecular markers to 
construct denser genetic maps and/or to perform association 
studies ( Crossa et al. 2007 ,  Peleg et al. 2008 ,  Mace et al. 2009 ). 
In barley and wheat, Affymetrix GeneChip Arrays have been 
used to discover nucleotide polymorphisms as single-feature 
polymorphisms based on the differential hybridization of 
GeneChip probes ( Rostoks et al. 2005 ,  Bernardo et al. 2009 ). 
The Illumina GoldenGate Assay allows the simultaneous analy-
sis of up to 1,536 SNPs in 96 samples and has been used to ana-
lyze genotypes of segregation populations in order to construct 
genetic maps allocating SNP markers in crops such as barley, 
wheat and soybean ( Hyten et al. 2008 ,  Akhunov et al. 2009 , 
 Close et al. 2009 ).    

 Transcriptome resources in plants 

 Comprehensive and high-throughput analysis of gene expres-
sion, called transcriptome analysis, is also a signifi cant approach 
to screen candidate genes, predict gene function and discover 
 cis -regulatory motifs. The hybridization-based method, such as 
that used in microarrays and GeneChips, has been well estab-
lished for acquiring large-scale gene expression profi les for 
various species. The recent rapid accumulation of data sets con-
taining large-scale gene expression profi les and the ability of 
related databases to support the availability of such large repos-
itories of data has provided us with access to large amounts of 
information in the public domain. This public domain data are 

an effi cient and valuable resource for many secondary uses, 
such as co-expression and comparative analyses. Furthermore, 
as a next-generation DNA sequencing application, deep 
sequencing of short fragments of expressed RNAs, including 
sRNAs, is quickly becoming an effi cient tool for use with 
genome-sequenced species ( Harbers and Carninci 2005 , 
 de Hoon and Hayashizaki 2008 ).  

 Sequence tag-based platforms in transcriptomics 
 Large-scale sequencing of ESTs from cDNA libraries was an early 
approach for acquiring transcriptome profi les. In this approach, 
ESTs that are randomly sequenced in an unbiased cDNA 
library are classifi ed into clusters of transcript sequences using 
sequence-clustering and/or assembling methods. Then, the 
abundance of transcripts expressed in each tissue is estimated 
by counting the number of ESTs with identifi ers for each cDNA 
library and/or each sequence cluster. The same methodological 
principle has been applied in human and mouse in the form of 
a ‘body map’ to derive the transcriptome in various organs 
( Hishiki et al. 2000 ,  Kawamoto et al. 2000 ,  Ogasawara et al. 
2006 ). Moreover, this principle has also been used in the digital 
differential display (DDD) tool, which is a component of NCBI’s 
UniGene database and has been applied in large-scale cDNA 
projects for various species, including plants ( Mochida et al. 
2003 ,  Fei et al. 2004 ,  Sterky et al. 2004 ,  Zhang et al. 2004 ). 
Although this approach, coupled with cDNA clone resources, 
has facilitated gene discovery and expression profi ling, its disad-
vantages include cost and limited resolution due to large-scale 
sequencing. 

 Serial analysis of gene expression (SAGE) is a method based 
on deep sequencing of short read cDNA tags. SAGE allows 
the identifi cation of a large number of transcripts present in 
tissues and enables quantitative comparison of transcriptomes 
( Velculescu et al. 1995 ). SAGE is designed to generate a short 
specifi c tag (13–15 bp) from the 3 ′  end of each mRNA present 
in a sample, after which  > 10 tags are concatenated and cloned 
to generate a SAGE library. The sequencing of selected clones 
from the SAGE library allows effi cient collection of transcript 
tag sequences. A data set of genome sequences or large-scale 
ESTs is required to identify genes corresponding to each SAGE 
tag. Some derivatives of the original protocol (MAGE, SADE, 
microSAGE, miniSAGE, longSAGE, superSAGE, deepSAGE, 
5 ′  SAGE, etc.) have been developed to improve and expand 
the utility of SAGE ( Hashimoto et al. 2004 ,  Anisimov 2008 ). 
For example, superSAGE is an improved version of SAGE that 
produces 26 bp fragment tags from cDNAs. This method has 
been applied to simultaneous and quantitative gene expression 
profi ling of both host cells and their eukaryotic pathogens in 
rice ( Matsumura et al. 2003 ). The 26 bp superSAGE tags have 
also been used to design probes directly for oligo microarrys 
( Matsumura et al. 2008 ). 

 Another sequencing-based technology is massively parallel 
signature sequencing (MPSS). MPSS uses a unique method to 
quantify gene expression levels; it generates millions of short 
sequence tags per library by sequencing 16–20 bp from the 
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3 ′  side of cDNA using a microbead array ( Brenner et al. 2000 ). 
Databases containing MPSS data on plant species, including 
Arabidopsis, rice, grape and  Magnaporthe grisea  (the rice blast 
fungus), are available online ( http://mpss.udel.edu ) ( Nakano 
et al. 2006 ). In addition, the MPSS method has also been used 
to perform genome-scale discovery and expression profi ling of 
sRNAs in Arabidopsis and rice ( Lu et al. 2006 ,  Nobuta et al. 2007 ). 
The CT-MPSS was a method recently developed for quantitative 
analysis of the 5 ′ end of transcripts coupled with cap-trapper 
method for full-length cDNA cloning. This method has been 
applied to perform high-density mapping of TSS in Arabidopsis 
to fi gure out genome-scale instances of plant promoters 
( Yamamoto et al. 2009 ). The data set of Arabidopsis CT-MPSS 
tags is accessible from ppdb ( http://www.ppdb.gene.nagoya-u
.ac.jp ), a plant promoter database that provides promoter anno-
tation of Arabidopsis and rice ( Yamamoto and Obokata 2008 ).   

 Hybridization-based platforms in transcriptomics 
 The history of DNA microarray began with a paper from the 
P. O. Brown laboratory at Stanford University in 1995 ( Schena 
et al. 1995 ). Since then, microarray- and DNA chip-related 
technologies have advanced rapidly and their application has 
expanded to a wide variety of life sciences disciplines. The meth-
odological principle of DNA microarray or GeneChip analysis is 
to acquire a comprehensive data set of the molecular abun-
dance of each molecule in a given sample based on its simulta-
neous hybridization with large numbers of DNA molecular 
species immobilized on a glass slide or on a silicon chip used as 
a probe set. 

 DNA microarrays can be classifi ed into two major types: 
(i) the ‘spotting’ type, which was developed at Stanford University; 
and (ii) the ‘on-chip synthesis’ type based on manufactured 
probes. The spotting type was widely used during the early 
years of transcriptome research. This method entailed prepar-
ing DNA microarrays by spotting a cDNA solution onto a glass 
slide. The on-chip (in situ) oligo synthesis-based method is 
a light-directed chemical synthesis process that combines 
solid-phase chemical synthesis with photolithographic fabrica-
tion techniques. Initially, this method was employed only in 
conjunction with the Affymetrix-manufactured GeneChip 
Array system. In the Affymetrix GeneChip system, a known 
gene or potentially expressed sequence is represented on the 
chip by 11–20 unique oligomeric probes that are each 25 bases 
in length. Roche NimbleGen and Agilent Technology offer plat-
forms to manufacture high-density DNA arrays based, respec-
tively, on Roche’s proprietary Maskless Array Synthesizer (MAS) 
technology and on a non-contact industrial inkjet printing pro-
cess, both of which are also used for in situ oligo synthesis. 

 With the recent and rapid increase in the number of 
sequenced species in whole-genome and/or large-scale cDNA 
clones, a number of DNA microarrays have also been devel-
oped for transcriptome analysis in various plant species. For 
example, Seki and co-workers designed a custom DNA microar-
ray that uses 7,000 full-length cDNA clones of Arabidopsis 
as probes and then successfully screens genes in response to 

abiotic stresses using a two-color method ( Seki et al. 2002a ). 
With the recent increase in commercially available DNA 
microarrays, laboratories are able to use a particular DNA 
microarray design to obtain transcriptome data from many 
experiments in order to accumulate a more comprehensive 
resource for organism-specifi c transcriptome data. AtGenEx-
press was a multinational effort designed to uncover the 
transcriptome of  A. thaliana . The data sets collected in AtGen-
Express have been one of the most comprehensive resources 
for the Arabidopsis transcriptome to date ( Kilian et al. 2007 , 
 Goda et al. 2008 ). 

 NCBI’s Gene Expression Omnibus (GEO) and the European 
Bioinformatics Institute (EBI)’s ArrayExpress have been serving 
as the primary archives of transcriptome data in the public 
domain ( Parkinson et al. 2007 ,  Barrett et al. 2009 ). There are 
also several more focused databases that provide calculated 
transcriptome data with user-friendly interfaces and annota-
tions on probes. ATTED II ( http://atted.jp/ ) is a database that 
provides co-expression analysis data calculated from publicly 
available Arabidopsis ATH1 GeneChip data ( Obayashi et al. 
2007 ,  Obayashi et al. 2009 ). Co-expression analysis data sets 
generated from comprehensively collected transcriptome data 
sets have become an effi cient resource capable of facilitating 
the discovery of genes closely correlated in their expression 
patterns. Genevestigator ( https://www.genevestigator.com/gv/
index.jsp ), which is a reference expression database and 
meta-analysis system, also provides summary information from 
hundreds of microarray experiments on various organisms, 
including Arabidopsis, barley and soybean, with easily interpre-
table results ( Zimmermann et al. 2004 ). The electronic fl uores-
cent pictograph (eFP) browser provides gene expression 
patterns collected from Arabidopsis, poplar,  Medicago , rice and 
barley via a user-friendly interface on the Web ( http://www.bar
.utoronto.ca/ ) ( Winter et al. 2007 ). The Arabidopsis Gene 
Expression Database AREX is a database that provides data sets 
of high-resolution gene expression patterns of root tissues in 
Arabidopsis ( http://www.arexdb.org/index.jsp ) ( Birnbaum et al. 
2003 ,  Brady et al. 2007 ). The RICEATLAS is a database housing 
rice transcriptome data covering various types of tissues ( http://
bioinformatics.med.yale.edu/riceatlas/ ) ( Jiao et al. 2009 ). 

 Tiling arrays, which are high-density oligonucleotide probes 
spanning the entire genome in a particular organism, are a 
platform for analyzing expressed regions throughout a whole 
genome; it is an effective method by which to discover novel 
genes and elucidate their structure. Seki and co-workers per-
formed transcriptome analysis in Arabidopsis under abiotic 
stress conditions using a whole-genome tiling array and discov-
ered a number of antisense transcripts induced by abiotic 
stresses ( Matsui et al. 2008 ). The  A. thaliana  Tiling Array Express 
(At-TAX) is a whole-genome tiling array resource for develop-
mental expression analysis and transcript identifi cation in 
Arabidopsis ( Laubinger et al. 2008 ,  Zeller et al. 2009 ). The 
usefulness of tiling arrays has recently been extended by 
coupling this platform with the immunoprecipitation method. 
For example, the binding sites of AGAMOU-Like15, AGL15, 
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a MADS domain transcriptional regulator promoting somatic 
embryogenesis, were identifi ed using a chromatin immunopre-
cipitation (ChIP) approach coupled with the Affymetrix tiling 
array for Arabidopsis. This method found approximately 2,000 
sites ( Zheng et al. 2009 ). Using the methylcytosine immunopre-
cipitation (mCIP) method in combination with the Arabidopsis 
tiling array, a comprehensive DNA methylation map of the 
genome was constructed as an Arabidopsis methylome data set 
( Zhang et al. 2006 ). Sequencing of co-precipitated DNAs 
together with a protein using the next generation sequencer, 
‘ChIP-seq’, has also become an alternative approach ( Park 
2009 ).    

 Platforms and resources in proteomics 

 As genome sequencing projects for several organisms have been 
completed, proteome analysis, which is the detailed investiga-
tion of the functions, functional networks and 3D structures of 
proteins, has gained increasing attention. Large-scale proteome 
data sets are also an important resource for the better under-
standing of protein functions in cellular systems, which are 
controlled by the dynamic properties of proteins. These prop-
erties refl ect cell and organ states in terms of growth, develop-
ment and response to environmental changes. The primary 
objective of functional proteomics was the high-throughput 
identifi cation of all of the proteins appeared in cells and/or 
tissues. Recent, rapid technical advances in proteomics (e.g. 
protein separation and purifi cation methods, advances in mass 
spectrometry equipment and methodological developments 
in protein quantifi cation) have allowed us to progress to the 
second generation of functional proteomics, including quanti-
tative proteomics, subcellular proteomics and various modifi -
cations and protein-protein interactions ( Rossignol et al. 2006 , 
 Jorrin-Novo et al. 2009 ,  Yates et al. 2009 ). The different 
Web-accessible plant proteome-related databases are summa-
rized on the proteomics subcommittee of the Multinational 
Arabidopsis Steering Committee (MASCP) Web site ( http://
www.masc-proteomics.org/ ) under the heading of “Proteomic 
Databases and Resources”.  

 Proteome profi ling 
 The typical experimental workfl ow of protein profi ling can be 
summarized as protein sample preparation, separation and 
detection, then identifi cation. Various technical advances for 
each step of the process have greatly increased the overall 
performance of plant proteomics ( Jorrin-Novo et al. 2009 ). 

 Sample preparation is the most critical step in any proteom-
ics experiment. The method that uses trichloroacetic acid 
(TCA) and acetone is the most commonly used procedure for 
protein precipitation. A method using phenol and NH 4 OAC/
MeOH is also popular for plant tissues. Sample fractionation 
effectively improves protein detection and increases proteome 
coverage by reducing sample complexity. Sequential solubiliza-
tion is an effi cient method for fractionating protein samples 
based on solubility, molecular mass and isoelectric point. 

By using a series of different reagents to separate proteins by 
their different solubilities, sequential solubilization is also an 
effective way to reduce the complexity of proteins in each 
fraction and to enrich rare proteins ( Agrawal et al. 2005 ). 

 One-dimensional SDS–PAGE has been widely used to frac-
tionate complex proteins based on their molecular masses. For 
high-resolution separation of proteins, two-dimensional gel 
electrophoresis (2-DE), which uses isoelectric focusing (IEF) as 
the fi rst dimension and SDS–PAGE as the second dimension, is 
an effective method. Furthermore, the later development of 
the immobilized pH gradient (IPG)-IEF as the fi rst dimension 
has improved reproducibility and resolution. The 2-DE meth-
ods have been widely used in proteomics in various species 
( Islam et al. 2004 ,  Mechin et al. 2004 ,  Chen and Harmon 2006 ), 
and databases housing 2-DE information have been developed 
and released [e.g. the Swiss Institute of Bioinformatics’ Expasy 
SWISS-2DPAGE database ( http://au.expasy.org/ch2d/ ) and the 
Kazusa DNA Research Institute’s Cyano2Dbase ( http://bacteria
.kazusa.or.jp/cyano_legacy/Synechocystis/cyano2D/index
.html )]. Chromatography-based separation methods such as 
gel fi ltration chromatography, ion exchange chromatography 
and affi nity chromatography are also effective in separating 
proteins based on their physicochemical properties. 

 To identify each protein found in a prepared sample, 
peptide mass fi ngerprinting has been widely employed. 
Currently the most effi cient method available consists of two 
steps: (i) enzymatic digestion of separated proteins into pep-
tides; and (ii) accurate mass measurements of peptides using 
mass spectrometry (MS). In-gel digestion methods have been 
widely used to separate protein samples by using 2-DE. With its 
rapid technical advances, MS continues to play an important 
role in proteomics. MS equipment consists of a source to ionize 
samples and a mass spectrometer(s) to detect the ionized sam-
ples. In proteomics, usually the matrix-assisted laser desorption 
ionization (MALDI) method or the electrospray ionization (ESI) 
method is applied to ionize sample peptides. The MALDI 
method is typically used in combination with time of fl ight 
(TOF) MS as MALDI-TOF-MS while the ESI method is usually 
used in combination with quadrupole (Q) or ion trap (IT) MS. 
Recently, MS, such as Q-TOF MS, IT-TOF MS or MALDI Q-TOF 
MS, has become popular. Furthermore, ion fragmentation by 
collision-induced dissociation (CID) using tandem MS such as 
Q-TOF MS or by post-source decay (PSD) using MALDI-TOF 
MS have been applied to determine peptide amino acid 
sequences. To identify target proteins, obtained peptide mass 
fi ngerprint data are searched against a database of theoretically 
predicted masses of known amino acid sequences ( Hirano et al. 
2004 ,  Newton et al. 2004 ). 

 In addition to conventional gel electrophoresis-based sepa-
ration, the gel-free separation method is often used, particularly 
in the ‘shotgun proteomics’ approach. In the gel-free method, 
the protein mixture is directly digested into peptides and sepa-
rated by the multidimensional separation method. The multi-
dimensional separation method is a combination of different 
online separation methods including multidimensional protein 
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identifi cation technology (MudPIT). The shotgun approach is 
suitable for the analysis of proteins that are diffi cult to separate 
by 2-DE as well as for high-throughput analysis by automated 
analytical instruments ( Yates et al. 2009 ). 

 Fourier transform ion cyclotron resonance mass spectrom-
etry (FT-ICR MS) possesses high resolution, high sensitivity, 
high dynamic range and high mass measurement accuracy. 
The high resolution and precision of FT-ICR MS allows us to 
carry out ‘top-down proteomics’ in which an intact protein 
mixture is analyzed directly, without separation ( Bogdanov 
and Smith 2005 ).   

 Quantitative proteomics 
 Comprehensive quantifi cation of each protein’s abundance is 
quite important for a better understanding of the protein 
dynamics regulated in response to cellular state and environ-
mental changes. A quantitative proteome approach also plays 
a crucial role in the discovery of key proteomic changes, 
including expression, interaction and modifi cation, that are 
associated with genetic variations and/or visible phenotypic 
changes ( Gstaiger and Aebersold 2009 ). 

 Difference gel electrophoresis (DIGE) is a popular method 
for differential display of proteins for quantitative protein com-
parison. In DIGE, protein samples are labeled with different fl u-
orescent dyes before 2-D electrophoresis, enabling accurate 
analysis of differences in protein abundance between samples 
( Rossignol et al. 2006 ). This method is an effective way to 
remove gel to gel variation while signifi cantly increasing accu-
racy and reproducibility. Isotope-coded affi nity tags (ICATs), 
isobaric tags for relative and absolute quantitation (iTRAQ) 
and stable isotope labeling with amino acids in cell culture 
(SILAC) are widely used methods for protein differential display 
using stable isotope labeling ( Jorrin-Novo et al. 2009 ). Using a 
single MS/MS analysis, corresponding peptides from each 
sample are differentially detectable based on mass shift caused 
by the differential isotopes; this allows comparison of the 
relative abundance of the two samples. Recently, label-free 
quantitative techniques have been developed to facilitate 
high-throughput comparisons of proteomic expression. For 
label-free quantifi cation, the proteomes from each of two 
samples are separately analyzed using liquid chromatography 
(LC)-MS/MS. Then, each MS1 spectrum is aligned to calculate 
relative protein abundance changes based on ion intensity 
changes such as peptide peak areas or peak heights in chroma-
tography. Finally, MS/MS analysis is used to identify peptides 
( Gstaiger and Aebersold 2009 ).   

 Subcellular proteomics 
 Large-scale proteome analysis of cell organelles is essential for 
understanding the enzymatic inventory of a cell organelle; 
the compartmentalization of metabolic pathways; cellular 
logistics such as protein targeting, traffi cking and regulation; 
and proteomic dynamics at the organelle level caused by 
changes in cellular systems ( Andersen and Mann 2006 ,  Chen 
and Harmon 2006 ,  Baginsky 2009 ). A number of approaches 

have been applied to analyze the proteome of organelles or 
subcellular compartments of plant cells such as chloroplasts, 
etioplasts, amyloplasts, chromoplasts, mitochondria, vacuoles, 
plasma membranes, nucleus, peroxisomes, cytosolic ribosome 
and cell wall ( Baginsky 2009 ). Proteomic analyses of chloro-
plasts, mitochondria and further fractionations have been 
carried out to determine detailed localizations of protein in 
different suborganelle compartments. Techniques for quantita-
tive proteomics, such as the ICAT and iTRAQ methods 
described above, are also effective for acquiring quantitative 
data on proteomes in each organelle. In Arabidopsis, rice 
and alga, differential proteome profi les of plant plasma mem-
branes were monitored to identify those proteins differentially 
expressed in response to environmental factors such as cold 
acclimation, salt stress and bacterial elicitor ( Benschop et al. 
2007 ,  Katz et al. 2007 ,  Cheng et al. 2009 ,  Minami et al. 2009 ). 

 Several databases provide subcellular proteome informa-
tion. The rice proteome database ( http://gene64.dna.affrc.go
.jp/RPD/ ) is a 2-DE image database for rice that contains data 
from various tissues as well as subcellular compartments 
( Komatsu 2005 ). The Nottingham Arabidopsis Stock Centre 
(NASC) Proteomics database ( http://proteomics.arabidopsis
.info/ ) and the SUB-cellular location database for Arabidopsis 
proteins (SUBA) ( http://suba.plantenergy.uwa.edu.au/ ) provides 
subcellular proteome analysis data for Arabidopsis ( Dunkley 
et al. 2006 ). The soybean proteome database ( http://proteome
.dc.affrc.go.jp/cgi-bin/2d/2d_view_map.cgi ) also provides 2-DE 
data for various tissues as well as for subcellular compartments 
( Sakata et al. 2009 ).   

 Post-translational protein modifi cations 
 Comprehensive approaches to investigate various kinds of 
post-translational protein modifi cations also play a key role in 
the current study of proteomics. It (is also called modifi come 
research) aims to identify modifi ed proteins and to elucidate 
and coordinate the role of each protein functional modifi cation 
with its associated biological event ( Kwon et al. 2006 ). 

 Protein phosphorylation is a critical regulatory step in 
signaling networks and is a widespread protein modifi cation 
affecting most basic cellular processes in eukaryotic organisms 
( Schmelzle and White 2006 ). Advances in MS-based technolo-
gies, accompanied by phosphopeptide enrichment techniques, 
have allowed us to perform high-throughput, large-scale in vivo 
phosphorylation site mapping. So far, several plant phosphop-
roteome studies have been reported ( Nuhse et al. 2003 ,  Nuhse 
et al. 2004 ,  de la Fuente van Bentem et al. 2006 ,  Benschop et al. 
2007 ,  Nuhse et al. 2007 ,  Sugiyama et al. 2008 ). For example, 
the proteome-wide mapping of in vivo phosphorylation sites 
in Arabidopsis has recently been achieved by using comple-
mentary phosphopeptide enrichment techniques coupled 
with high-accuracy LC-MS/MS with a Finnigan LTQ-Orbitrap 
( Sugiyama et al. 2008 ). The Arabidopsis Protein Phosphorylation 
Site Database (PhosPhAt) provides information on Arabidopsis 
phosphorylation sites which were identifi ed by MS by differ-
ent research groups ( http://phosphat.mpimp-golm.mpg.de/ ). 
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The Plant Protein Phosphorylation Database (P3DB) ( http://
www.p3db.org/ ), an information resource for plant phosphop-
roteomes, provides a resource for protein phosphorylation data 
from multiple plants ( Gao et al. 2009 ). 

 Ubiquitination of protein is also one of the major post-
translational modifi cations occurring in eukaryotic cells. 
Protein ubiquitination is a key regulatory mechanism that 
controls protein abundance, localization and activity. Several 
large-scale analyses of protein ubiquitination in plants have 
been reported ( Maor et al. 2007 ,  Manzano et al. 2008 ,  Igawa 
et al. 2009 ). For example, in Arabidopsis, affi nity purifi cation 
using an anti-ubiquitin antibody and the subsequent use of 
MS/MS analysis has been performed to identify ubiquitinated 
proteins ( Igawa et al. 2009 ).   

 Platform advances in structural proteomics 
 Large-scale data sets of protein 3D structures are also crucial 
information resources for elucidating relationships between 
protein functions and structures or for analyzing molecules in 
protein complexes. The International Structural Genomics 
Organization (ISGO,  http://www.isgo.org ) was formed to facili-
tate global structural genomics research efforts ( Stevens et al. 
2001 ). The key centers for structural genomics have been the 
RIKEN Structural Genomics/Proteomics Initiative (RSGI) in 
Japan, the Protein Structure Initiative (PSI) in the USA and the 
structural genomics centers of Europe ( Yokoyama et al. 2000 ). 
International efforts to determine protein structures have 
contributed to increases in the number of solved protein struc-
tures. Thus, the number of solved protein structures appearing 
in the protein data bank, PDB ( http://www.pdb.org/pdb/home/
home.do ), which is the most popular resource for biomolecule 
structure data sets, has dramatically increased during the past 
decade ( Kouranov et al. 2006 ). 

 The PSI has promoted large-scale attempts to determine 
the 3D structure of protein folding. The PSI-1 was started as 
a pilot phase in 2000 with the aim of promoting the strategic 
development of tools and infrastructures necessary for large-
scale determination of protein structures. The PSI-1 centers 
developed a systematic workfl ow pipeline encompassing target 
selection, cloning, expression and purifi cation, followed by 
crystallization, X-ray crystallography or NMR methods to solve 
structures. The fi nal step of this pipeline consisted of structure 
deposition into a database. In 2005, the PSI shifted to its second 
phase, which was known as PSI-2. The goal of PSI-2’s ‘produc-
tion phase’ is to solve more challenging structures such as pro-
tein complexes and integral membrane proteins ( Fox et al. 
2008 ). The RIKEN SGPI has solved  > 2,700 protein structures, 
including 33 from Arabidopsis that appear in the PDB ( http://
www.rsgi.riken.go.jp/rsgi_e/index.html ). 

 Although methodological bottlenecks still exist in structural 
proteomics, some methodological advances have played an 
important role in this fi eld. One of the major bottlenecks is 
the production of soluble and folded proteins. Most centers 
for structural genomics use  Escherichia coli  cells for protein 
production in their automated pipelines as an application of 

the cell-based method. Cell-free expression systems have also 
become important as a way to address several limitations of 
cell-based methods, such as protein quality and quantity as well 
as throughput issues. The  E. coli  cell-free system has been 
applied to amino acid-selective stable isotope labeling of pro-
teins for NMR spectroscopy ( Yabuki et al. 1998 ,  Kigawa et al. 
1999 ). The wheat germ embryo cell-free system has also been 
developed as a eukaryotic cell-free system and has the advan-
tage of producing multidomain proteins ( Madin et al. 2000 , 
 Endo and Sawasaki 2003 ,  Endo and Sawasaki 2006 ). The wheat 
germ cell-free system has since been incorporated into a robotic 
automation platform (Cell-Free Sciences Co. Ltd.). A compara-
tive study of protein production from 96  Arabidopsis  open 
reading frames (ORFs) using cell-based and cell-free systems 
was reported by the Center for Eukaryotic Structural Genomics 
(CESG) group in 2005 ( Tyler et al. 2005 ). 

 The technology and platform of NMR spectroscopy has 
also played an important role in structural proteomics. The cell-
free systems of  E. coli  and wheat germ embryo in combination 
with selected amino acid labeling, as described above, have pro-
duced synergistic advances in the promotion of automated 
protein structure determination using solution NMR methods 
( Yokoyama 2003 ). Furthermore, high-resolution multidimen-
sional solid state NMR methods used in combination with cross 
polarization (CP), magic angle spinning (MAS) and dipolar 
decoupling (DD) are also becoming the methods of choice for 
structural analysis of membrane proteins by NMR platforms 
( Castellani et al. 2002 ,  McDermott 2009 ). Furthermore, recent 
hardware improvements in NMR probes, including the cryo-
probe for improved sensitivity, the micro-coil probe for sample 
mitigation and the fl ow-probe designed to shorten preparation 
time, provide us with the opportunity to use NMR methods to 
screen ligands that bind to a particular protein. 

 X-ray crystallography has been used to determine the pro-
tein structures of almost 90 %  of the protein entries in the PDB 
( http://www.rcsb.org/pdb/static.do?p=general_information/
pdb_statistics/index.html ). In particular, the beamlines of third-
generation X-ray synchrotrons have become an essential infra-
structure for macromolecular crystallography (MX), which is 
used to determine the 3D structures of macromolecules (such 
as large proteins and protein complexes) ( Samatey et al. 2001 ). 
For example, the synchrotron SPring-8 of RIKEN in Japan is used 
to determine the structures of important membrane proteins 
and protein complex supermolecules such as Ca 2 +  -ATPase, rho-
dopsin and fl agellin ( Palczewski et al. 2000 ,  Samatey et al. 2001 , 
 Toyoshima et al. 2003 ). 

 By using existing analytical platforms for structural proteom-
ics, the structures of many representative DNA-binding domains 
(DBDs), namely AP2/ERF, NAC, WRKY, B3 and SBP, of plant-
specifi c transcription factor (TF) families have thus far been 
determined ( Yamasaki et al. 2004 ,  Yamasaki et al. 2008b ).   

 Information resources in structural proteomics 
 Bioinformatics and related databases are also essential tools for 
advancing the study of structural proteomics. The methods of 
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computational prediction of protein 3D structure are mainly 
classifi ed into two methods: template-based modeling (TBM) 
and free modeling (FM) ( Zhang 2008 ,  Zhang 2009b ). Free mod-
eling, which is also called ‘ab initio’ or ‘de novo’ modeling, is 
used to predict the 3D structure of proteins, without any 
information on previously solved structures. A number of Web 
server and computational tools for free and/or template-based 
modeling have recently been made available; for example, the 
I-TASSER internet service, which is used in Critical Assessment 
of Techniques for Protein Structure Prediction (CASP), was 
released ( Zhang 2009a ). Template-based modeling method is 
a comparative method for matching proteins using evolution-
arily related proteins of known structure as a template. 
There are many Web services and tools (e.g. Swiss Institute of 
Bioinformatics’ SWISS-MODEL server) to support template-
based modeling ( Schwede et al. 2003 ). Databases housing 
previously predicted structures from amino acid sequences 
by template-based modeling for a wide range of species 
also exist: the Genomes TO Protein structures and functions 
(GTOP) database ( http://spock.genes.nig.ac.jp/~genome/gtop
.html ) provides information on protein structures and func-
tions obtained through the application of various computa-
tional tools for structure prediction and annotation from 
the amino acid sequences deduced from annotated genes in  
sequenced genomes ( Fukuchi et al. 2009 ). 

 The database for structure-based protein classifi cation, 
as typifi ed by CATH ( http://www.cathdb.info/ ) and the 
Structural Classifi cation of Proteins (SCOP) database ( http://
scop.mrc-lmb.cam.ac.uk/scop/ ), has provided important clues 
to the relationships between protein structures, protein func-
tions and protein evolution ( Greene et al. 2007 ,  Andreeva et al. 
2008 ). Databases of protein families based on conserved pro-
tein domains, such as Pfam, Superfamily and Protein ANalysis 
THrough Evolutionary Relationships (PANTHER), are impor-
tant resources for classifying proteins into families. These types 
of databases are often used for the functional prediction and 
classifi cation of proteins; for example, such resources are used 
in genome-wide identifi cation of genes putatively encoding 
specifi c TFs ( Mi et al. 2005 ,  Wilson et al. 2007 ,  Finn et al. 2008 ). 
Many of these protein family databases can be simultaneously 
searched using the EBI’s Interpro ( Mulder and Apweiler 2008 , 
 Hunter et al. 2009 ).    

 Platforms and resources in metabolomics 

 Metabolomics aims to understand metabolic systems based 
on comprehensive and integrated approaches by taking advan-
tage of various measurement instruments to characterize 
metabolites. Metabolomic approaches allow us to conduct 
parallel assessments of multiple metabolites and to undertake 
quantitative analysis of particular metabolites in ways that 
provide major advantages over chemical-level phenotyping 
and diagnostic analysis. It is notable that the plant metabolome 
represents an enormous chemical diversity due to the 
complex set of metabolites produced in each plant species 

( Bino et al. 2004 ,  von Roepenack-Lahaye et al. 2004 ). Therefore, 
plant metabolomics is not only a great analytical challenge, but 
is also quite important. In its ability to elucidate plant cellular 
systems, metabolomics permits us to engineer molecular breed-
ing to improve the productivity and functionality of plants in 
areas such as stress tolerance, pharmaceutical production, 
functional foods, biomaterials and energy ( Trethewey 2004 , 
 Oksman-Caldentey and Saito 2005 ,  Fernie and Schauer 2009 ). 
In this section, we introduce metabolomic analytical platforms 
for plants, metabolic profi ling, and their applications in combi-
nation with other omics. We also describe plant metabolomics-
related computational tools and databases.  

 Instruments for metabolomics 
 Many remarkable technological advances have recently 
been made in instrumentation related to metabolomics. 
Metabolomics experiments start with the acquisition of 
metabolic fi ngerprints using various analytical instruments 
such as GC-MS, LC-MS, FT-MS, FT-IR and NMR ( Fiehn et al. 
2000 ,  Roessner et al. 2001 ,  Fernie et al. 2004 ). 

 Methods for sample separation, such as gas chromatography 
(GC), high-performance or ultraperformance LC and capillary 
electrophoresis (CE), are typically used in conjunction with 
various types of MS, as detailed below. CE-MS is an especially 
effective, high-sensitivity method for separating and analyzing 
polarized molecules in samples ( Ramautar et al. 2009 ). QMS 
and TOF MS are also well regarded for use in metabolomics. 
Triple Q (QqQ) MS (a tandem-type MS) and Q-TOF (a hybrid-
type MS) are also used. Methods that do not involve pre-sepa-
ration of samples, e.g. FT-ICR MS, are also being used, allowing 
for MSn analysis ( Werner et al. 2008 ). 

 NMR-based methods are also used in metabolomic 
analysis ( Dixon et al. 2006 ,  Schripsema 2009 ). These methods 
can be broadly classifi ed into solution NMR and insoluble 
or solid-state NMR, according to sample solubility. Using 
high-resolution (hr)-MAS techniques, it is possible to acquire 
metabolic fi ngerprints from insoluble samples and solid-state 
samples ( Bertocchi and Paci 2008 ). In one-dimensional NMR, 
protons ( 1 H) are usually observed ( 1 H-NMR) due to the sensi-
tivity and common occurrence of this magnetic nucleus. 
More detailed analyses, such as metabolite identifi cation or 
fl ux analysis, can be obtained with other nuclei, particularly  13 C 
and  15 N that are coupled with  1 H nuclei in two-dimensional or 
multidimensional NMR analysis ( Kikuchi et al. 2004 ,  Sekiyama 
and Kikuchi 2007 ). 

 The resulting fi ngerprints, MS or NMR spectra, are pre-
processed, including background noise suppression, peak 
alignment and peak picking. Pre-processed data sets are subse-
quently used to identify metabolites corresponding to each 
spectrum signal by searching against compound databases. 
In non-target analyses, spectrum data sets that include spectra 
of unknown compounds are subjected to statistical analyses, 
such as multivariate analysis, to mine the data for biological 
signifi cance ( Tikunov et al. 2005 ). In target analyses, spectrum 
data sets that are associated with particular compounds are 
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used as metabolic profi les for each compound in further 
analyses. 

 Data analysis is important in the determination of biological 
signifi cance in metabolomics. Statistical analyses using multi-
variate analysis, such as principal component analysis (PCA), 
hierarchical clustering analysis (HCA) and self-organization 
mapping (SOM), are typically used to classify samples and/or 
metabolites ( Kose et al. 2001 ,  Hirai et al. 2004 ,  Jonsson et al. 
2004 ,  Matsuda et al. 2009 ). The visualization of metabolic 
profi les on metabolic pathway maps is also often used and is 
combined with other omics methods, including gene expres-
sion profi les of genes encoding enzymes involved in particular 
pathways ( Thimm et al. 2004 ,  Tokimatsu et al. 2005 ).   

 Metabolite profi ling in plants 
 The systematic collection of metabolite profi les is the initial 
step in metabolomics. This step can be performed with various 
instruments capable of high throughput and simultaneous 
measurement, as we mentioned above. Comprehensive meta-
bolic profi le data sets can contribute to the understanding of 
the cellular system in response to changes in intracellular and 
extracellular environments. Furthermore, the changes in meta-
bolic profi les associated with genetic variations can be evalu-
ated as chemical phenotypes to identify genes involved in 
particular metabolic pathways. 

 A number of studies of metabolic profi ling in plant species 
have been performed that have resulted in the publication of 
related databases. For example, in the case of Arabidopsis, an 
NSF-funded multi-institutional project aimed at development 
of the metabolomics database, Plantmetabolomics, has recently 
been undertaken ( http://lab.bcb.iastate.edu/sandbox/pbais05/
alpha/plantmetabolomics_trimmed/index.php ). Several data-
bases for Solanaceae species are already available. The Metabo-
lome Tomato Database (MoTo DB) was developed as an 
LC-MS-based metabolome database ( http://appliedbioinfor
matics.wur.nl/moto/ ) ( Moco et al. 2006 ). The KOMICS 
(Kazusa-omics) database collects annotations of metabolite 
peaks detected by LC-FT-ICR-MS and contains a representative 
metabolome data set for the tomato cultivar, Micro-tom ( Iijima 
et al. 2008 ). The Armec Repository Project provides metabo-
lome data on the potato and serves as a data repository for 
metabolite peaks detected by ESI-MS ( http://www.armec.org/
MetaboliteLibrary/index.jsp ). The Golm Metabolome Database 
(GMD) provides public access to custom mass spectra libraries 
and metabolite profi ling experiments as well as to additional 
information and related tools ( http://csbdb.mpimp-golm.mpg
.de/csbdb/gmd/gmd.html ) ( Kopka et al. 2005 ). The MS/MS 
spectral tag (MS2T) libraries at the Platform for Riken Metabo-
lomics (PRIMe) website provides access to libraries of phy-
tochemical LC-MS2 spectra obtained from various plant species 
by using an automatic MS2 acquisition function of LC-ESI-Q-
TOF/MS ( http://prime.psc.riken.jp/lcms/ms2tview/ms2tview
.html ) ( Matsuda et al. 2009 ). These databases play crucial roles 
as information resources and repositories of large-scale data 
sets and also serve as tools for further integration of metabolic 

profi les containing comprehensive data acquired from other 
omics research ( Akiyama et al. 2008 ).   

 Combinatorial approaches in metabolomics and 
other omics resources 
 Metabolome approaches also support the understanding of 
global relationships among cellular metabolic systems in com-
bination with other omics instances such as profi les of the tran-
scriptome and proteome, and also genetic variations. So far, 
these combinatorial approaches have been successfully dem-
onstrated in the well-studied Arabidopsis by taking advantage 
of the many other omics resources that currently exist, includ-
ing the whole-genome sequence with mature annotations, 
large-scale transcriptome data sets and related co-expression 
data, and bioresources such as collections of mutants and 
full-length cDNA clones. A conceptual scheme for systematic 
elucidation of gene-to-metabolites molecular networks through 
a combinatorial approach using transcriptome and metabo-
lome resources has been demonstrated by Saito's group in the 
RIKEN Plant Science Center ( Saito et al. 2008 ). Data sets con-
taining transcriptome and metabolome changes of Arabidopsis 
under stress conditions induced by defi ciency of sulfur and 
nitrogen were analyzed using a batch-learning, self-organizing 
map (BL-SOM) analysis, enabling identifi cation of genes involved 
in glucosinolate biosynthesis ( Hirai et al. 2004 ). An integrated 
approach that comprised metabolome and transcriptome analy-
sis was conducted for investigation of an activation-tagged 
mutant and overexpressors of an MYB TF, PAP1 gene in order to 
identify genes involved in anthocyanin biosynthesis in Arabidop-
sis ( Tohge et al. 2005 ). Co-expression data of the Arabidopsis 
transcriptome provided by the ATTED-II database have been 
applied to the investigation of key genes involved in specifi c 
metabolic pathways and then to the confi guration of a metabo-
lome analysis coupled with mutant lines of the targeted genes 
( Obayashi et al. 2009 ). The ATTED-II database was used to iden-
tify novel genes involved in lipid metabolism, leading to identifi -
cation of a novel gene,  UDP-glucose pyrophosphorylase3  ( UGP3 ) 
that is required for the fi rst step of sulfolipid biosynthesis 
( Okazaki et al. 2009 ). Co-expression analysis was also used to 
identify all of the genes related to fl avonoid biosynthesis, which 
led to further detailed analysis of two fl avonoid pathway genes 
 UGT78D3  and  RHM1  ( Yonekura-Sakakibara et al. 2008 ). 

 Approaches that integrated metabolome and transcriptome 
data have also elucidated regulatory networks that act in 
response to environmental stresses in plants. The metabolic 
pathways that act in response to cold and dehydration condi-
tions in Arabidopsis were investigated by metabolome analysis 
using various types of MS coupled with microarray analysis of 
overexpressors of genes encoding two TFs, DREB1A/CBF3 and 
DREB2A ( Maruyama et al. 2009 ). Metabolomic profi ling was 
also used to investigate chemical phenotypic changes between 
wild-type Arabidopsis and a knockout mutant of the  NCED3  
gene under dehydration stress conditions. The metabolic data 
were then integrated with transcriptome data to reveal ABA-
dependent regulatory networks ( Urano et al. 2009 ). 
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 Metabolome profi ling has also been used to evaluate 
chemical phenotypes of natural variations and/or segregation 
populations simultaneously. A comprehensive exploration of 
the association between metabolic and genomic diversity will 
enable the discovery of key genes involved in metabolic changes 
and would also aid in the identifi cation of genetic associations 
between metabolic and/or visible phenotypes ( Schauer et al. 
2008 ,  Fu et al. 2009 ). Metabolite QTL (mQTL) analysis using 
segregated populations has been applied to various plant 
species such as Arabidopsis, poplar and tomato in a popular 
forward genetics approach ( Morreel et al. 2006 ,  Schauer et al. 
2006 ,  Lisec et al. 2008 ,  Rowe et al. 2008 ;  Schauer et al. 2008 ). 
Furthermore, along with the recent availability of data sets of 
genome-wide variation acquired by high-throughput genotyp-
ing methods including resequencing, interest in the discovery 
of the genetic association between nucleotide variation and 
phenotypic changes has also increased, especially with regard 
to the identifi cation of key genes that play signifi cant roles in 
evolutionary histories. The attempts to mine correlative pat-
terns between metabolic and genomic diversities have recently 
been applied to sesame and rice using seed stocks of natural 
variations ( Laurentin et al. 2008 ,  Mochida et al. 2009a ).   

 Information resources for metabolomics 
 Various information resources related to metabolomics have 
played crucial roles not only in metabolome research but also in 
synergistic integration with other omics data. The Web site of 
metabolome resources at TAIR ( http://www.arabidopsis.org/
portals/metabolome/index.jsp ) provides a summarized list of 
Web hyperlinks to resources that facilitate metabolome 
research. In addition, a data set of biological pathway maps is 
available via the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) by using a popular database for information on life 
sciences called the KEGG PATHWAY Database ( http://www
.genome.jp/kegg/pathway.html ) ( Kanehisa and Goto 2000 , 
 Kanehisa et al. 2008 ). The Plant Metabolic Network (PMN) is 
a collaborative project that aims to build plant metabolic path-
way databases ( http://www.plantcyc.org/ ). One of its main 
components, PlantCyc, is a comprehensive plant biochemical 
pathway database that contains curated information from the 
literature and from computational analyses of genes, enzymes, 
compounds, reactions and pathways involved in primary and 
secondary plant metabolism ( http://www.plantcyc.org:1555/
PLANT/server.html ) that can be visualized using a pathway 
tool ( http://bioinformatics.ai.sri.com/ptools/ ). AraCyc and 
PoplarCyc are also available at the PMN Web site and provide 
manually curated or reviewed information about metabolic 
pathways in Arabidopsis and poplar, respectively ( Mueller 
et al. 2003 ). There are also metabolic pathway databases for 
several other plant species generated by PMN collaborators. 
MapMan is a tool to project omics datasets including gene 
expression data onto diagrams of metabolic pathways or other 
processes ( http://mapman.gabipd.org/web/guest ) ( Thimm 
et al. 2004 ). KaPPA-View is another Web-based analysis tool that 
can be used to superimpose transcriptome and metabolome 

data onto plant metabolic pathway maps ( http://kpv.kazusa
.or.jp/kappa-view/ ) ( Tokimatsu et al. 2005 ). PRIMe is a Web-
based service that provides data sets of metabolites measured 
by multidimensional NMR spectroscopy, GC-MS, LC-MS and 
CE-MS together with analytical tools to promote integrated 
approaches using comprehensive data sets within the metabo-
lome and transcriptome ( http://prime.psc.riken.jp/ ) ( Akiyama 
et al. 2008 ).    

 Mutant resources for phenome analysis 

 Analysis of mutants is an effective approach for investigation of 
gene function ( Springer 2000 ,  Stanford et al. 2001 ). Compre-
hensive collections of mutant lines are also essential biore-
sources for radically accelerating forward and reverse genetics. 
The available mutant resources for phenome analysis in 
plant species have been well described in a recent review by 
 Kuromori et al. (2009) . As described above, various analytical 
platforms have rapidly evolved, allowing us to discover genes 
involved in particular phenotypic changes. Along with these 
analysis platforms, the demands for comprehensive collections 
of mutants and related information resources have dramati-
cally increased, encouraging high-throughput and genome-wide 
phenome analysis in plant species ( Alonso and Ecker 2006 ).  

 Insertion mutant 
 With the completion of genome sequencing in plants, insertion 
mutant resources with index data that document the inserted 
genomic position have become extremely benefi cial resources 
by which to promote functional analysis of annotated genes 
that are disrupted by a reverse genetics approach. Transferred 
DNA-tagged (T-DNA-tagged) lines and transposon-tagged lines 
have become popular resources for the investigation of inser-
tion mutants in plants. T-DNA-tagged lines have emerged as a 
popular mutant resource due to the rapid generation of large-
scale populations in Arabidopsis ( Krysan et al. 1999 ). The two-
component maize transposon,  Activator  ( Ac ) /  Dissociation  ( Ds ), 
is a popular system for inducing transposon-based insertion 
that enables the generation of mutants with a high proportion 
of single-copy insertions ( Long et al. 1993 ). In rice, the endoge-
nous retrotransposon  Tos17 , which is activated in particular 
conditions, is also available for the study of the insertion mutant 
lines of a  japonica  rice cultivar, Nipponbare ( Miyao et al. 2003 , 
 Miyao et al. 2007 ), and the Web resource that provides 
information on the rice  Tos17  mutant panel with fl anking 
sequences of insertion is available at  http://tos.nias.affrc.go.jp/
index.html.en . Additionally, the maize  Enhancer/Suppressor 

Mutator  ( En/Spm ) element has also been used as an effective 
tool for the study of functional genomics in plants ( Kumar et al. 
2005 ). The enhancer trap (ET) and the gene trap (GT) con-
structs have been coupled with T-DNA and  Ac/Ds  transposons, 
which additionally facilitates entrapment of genes in monitor-
ing of adjacent promoter or enhancer activity ( Sundaresan et al. 
1995 ,  An et al. 2005 ). OryGenesDB ( http://orygenesdb.cirad.fr/ ) 
is a database that integrates information of available insertion 
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mutant resources in rice ( Droc et al. 2009 ). There are a number 
of resources for insertion mutant populations with insertion 
site index-tagged data available for various plant species 
( Kuromori et al. 2009 )   

 Activation tagging 
 Activation tagging (AT) is a popular method for generating 
gain-of-function mutant populations. The method uses T-DNA 
or a transposable element containing caulifl ower mosaic virus 
35S enhancer multimers ( Weigel et al. 2000 ). With transcrip-
tional activation of genes near the insertion, novel phenotypes 
are expected to appear that will identify genes that are redun-
dant or essential for survival. Mutant resources have then been 
used to isolate genes from Arabidopsis, rice, petunia and tomato 
( Kakimoto 1996 ,  Zubko et al. 2002 ,  Mathews et al. 2003 ,  Mori 
et al. 2007 ). Recently, AT systems using a transposon of maize 
 En / Spm  or  Ac/Ds  have been developed in Arabidopsis and rice, 
respectively ( Schneider et al. 2005 ,  Qu et al. 2008 ). A number of 
AT projects have been performed in various plant species such 
as Arabidopsis, rice and soybean ( Weigel et al. 2000 ,  An et al. 
2005 ,  Kuromori et al. 2009 ).   

 The FOX hunting system 
 The FOX gene hunting system is a recently developed novel 
gain-of-function system that combines a transformation algo-
rithm with large-scale resources for full-length cDNA clones 
( Ichikawa et al. 2006 ). A normalized full-length cDNA library of 
Arabidopsis was fi rst used to generate the Arabidopsis FOX 
lines, which are available at  http://nazunafox.psc.database.
riken.jp . The system was also used to screen salt stress-resistant 
lines in the T 1  generation produced by the transformation of 
43 focused stress-inducible TFs of Arabidopsis ( Fujita et al. 
2007 ). Then, the system was applied to a set of full-length rice 
cDNA clones aiming for in planta high-throughput screening of 
rice functional genes, with Arabidopsis as the host species 
( http://ricefox.psc.riken.jp ) ( Kondou et al. 2009 ). The FOX lines 
with rice full-length cDNA transformed into rice plants has 
been also generated as a gain-of-function mutant resource of 
rice ( Nakamura et al. 2007 ). A similar technique (in terms of 
overexpressors using cDNA libraries) has also been carried out 
in tobacco ( Lein et al. 2008 ).   

 Chemical and physical mutagenesis 
 Chemical mutagenic agents, such as ethyl methanesulfonate 
(EMS), sodium azide and methylnitrosourea (MNU), and physi-
cal mutagens, such as fast-neutrons, gamma rays and ion-beam 
irradiation, have been used to generate mutant populations 
for many years for forward genetics in various plant species. 
Targeting induced local lesions in genomes (TILLING) was 
developed as a general reverse-genetic strategy that provides 
an allelic series of induced point mutations in genes of interest 
( Till et al. 2004 ,  Till et al. 2006 ). Because high-throughput 
TILLING permits the rapid and low-cost discovery of induced 
point mutations in populations of chemically mutagenized 
individuals, the method has been applied to various animal and 

plant species. The TILLING technology can also be used to 
explore allelic variations that are appeared in natural variation; 
this technology is called EcoTILLING ( Comai et al. 2004 ,  Wang 
et al. 2006 ). Several laboratory sites have established TILLING 
and/or EcoTILLING centers for communities of users as a public 
service ( Barkley and Wang 2008 ). TILLING projects in rice, 
tomato and Arabidopsis have been performed at the University 
of California Davis Genome Center ( http://tilling.ucdavis.edu/
index.php/Main_Page ). A soybean mutation database provides 
soybean mutagenized lines together with data on TILLed genes 
and their phenotypes ( http://www.soybeantilling.org/index.jsp ). 
RevGenUK at the John Innes Center provides TILLING service 
for TILLING populations of  Medicago truncatula ,  Lotus japonicus  
and  Brassica rapa  ( http://revgenuk.jic.ac.uk/about.htm ). 
UTILLdb of INRA is another database for TILLING populations 
of pea and tomato that provides an interface to search for 
TILLed lines based on phenotypes ( http://urgv.evry.inra.fr/
UTILLdb ).   

 Gene silencing technologies 
 Although insertion mutagenesis is an effective method for gener-
ating loss-of-function mutants, it also has limitations in the case of 
redundant genes and lethal mutants. To overcome these limita-
tions, methods to interrupt gene expression have been developed 
and applied to the functional analysis of plant genes. 

 RNA interference (RNAi) is a popular method for RNA-
mediated gene silencing by sequence-specifi c degradation of 
homologous mRNA triggered by double-stranded RNA (dsRNA), 
which is also known as post-transcriptional gene silencing 
(PTGS) ( Waterhouse et al. 1998 ,  Chuang and Meyerowitz 
2000 ). Constitutive expression of an intron-containing self-
complementary hairpin RNA (ihpRNA) has been an effective 
method for silencing target genes in plants. With demands for 
conditional silencing of target genes (the silencing of which 
results in prevention of plant regeneration or embryonic 
lethality), conditional RNAi systems using a chemical-inducible 
Cre/loxP recombination system or a promoter of heat shock-
inducible genes have been recently developed ( Guo et al. 2003 , 
 Masclaux et al. 2004 ). In Arabidopsis, the Complete Arabidopsis 
Transcriptome MicroArray (CATMA) project has been started 
to design and produce high-quality gene-specifi c sequence 
tags (GSTs) covering most Arabidopsis genes ( http://www
.catma.org/ ). Using the GST data set of the CATMA project, 
the Arabidopsis Genomic RNAi Knock-out Line Analysis 
(AGRIKOLA) project has also been started with the goal of 
systematically analyzing Arabidopsis genes by RNAi-based 
technology ( http://www.agrikola.org/index.php?o=/agrikola/
html/index ) ( Hilson et al. 2003 ). The  M. truncatula  RNAi Data-
base is also available on the Web as an information resource 
for RNAi-based gene silencing ( https://mtrnai.msi.umn.edu/ ). 
Virus-induced gene silencing (VIGS) is a derivative method that 
takes advantage of the plant RNAi-mediated antiviral defense 
mechanism. The VIGS system was used to assess the function of 
almost 5000 random  Nicotiana benthamiana  cDNAs in disease 
resistance ( Lu et al. 2003a ,  Lu et al. 2003b ). 
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 The chimeric repressor silencing technology (CRES-T) system 
was developed as a novel method for gene silencing; it takes 
advantage of the fact that TFs fused to the EAR motif, a plant-
specifi c repression domain, act as dominant repressors in trans-
genic plants and therefore suppress the expression of target 
genes ( Hiratsu et al. 2003 ). The CRES-T system has been applied 
to the TFs annotated for Arabidopsis in order to analyze their 
biological function and to obtain transgenic plants with agro-
nomically preferable traits. An associated database, FioreDB, is 
available at  http://www.cres-t.org/fi ore/public_db/index.shtml  
( Mitsuda and Ohme-Takagi 2009 ).    

 Plant comparative genomics and databases 

 The recent accumulation of nucleotide sequences for agricul-
tural species, including crops and domestic animals, now allows 
us to perform genome-wide comparative analyses of model 
organisms with the goal of discovering key genes involved in 
phenotypic characteristics ( Sato and Tabata 2006 ,  Itoh et al. 
2007 ,  Neale and Ingvarsson 2008 ). The integration of genomic 
resources derived from various related species, such as large-
scale collections of cDNAs and data from whole-genome 
sequencing projects, should facilitate sharing of information 
about gene function between models and applied organisms. 
This will also accelerate molecular elucidation of cellular sys-
tems related to agronomically important traits. A number of 
information resources for plant genomics accessible on the 

Web have appeared, along with appropriate analytical tools. 
Here we highlight integrative databases promoting plant com-
parative genomics that we have not described previously. The 
URLs of each integrative database in plant genomics are shown 
in   Table 4 .  

 Portal information resources in plants 
 TAIR is one of the most popular and integrated information 
resource in plant science, and it plays an essential role as a 
portal site in Arabidopsis research ( http://www.arabidopsis
.org/ ) ( Swarbreck et al. 2008 ). The Salk Institute Genomic 
Analysis Laboratory (SIGnAL) is also an information resource 
that integrates various data sets of signifi cant omics results 
mainly related to Arabidopsis ( http://signal.salk.edu/ ). The 
RIKEN Arabidopsis Genome Encyclopedia (RARGE) provides 
information on various genomic resources built at RIKEN for 
Arabidopsis research ( http://rarge.gsc.riken.jp/db_home.pl ) 
( Sakurai et al. 2005 ). Such portal sites have provided 
gateways for access to comprehensive omics data and/or 
bioresources. These sites also house cross-referenced data 
sets built between each annotated gene and its associated 
instances, such as gene–full-length cDNA clones, gene–
mutants, gene–expression patterns and gene–homologous 
genes. Therefore, to visualize an annotated gene along with 
genome sequences and associated information, genome 
browsers such as Gbrowse have been implemented on Web 
sites ( Donlin 2007 ). 

 Table 4    Integrative databases in plants  

 Database name Species URL 

TAIR Arabidopsis  http://www.arabidopsis.org/  

SIGnAL Arabidopsis  http://signal.salk.edu/  

RARGE Arabidopsis  http://rarge.psc.riken.jp/  

Rice Genome Annotation Project Rice  http://rice.plantbiology.msu.edu/  

RAP-DB Rice  http://rapdb.dna.affrc.go.jp/  

SOL genomics network Solanaceae  http://solgenomics.net/  

Gramene Gramineae  http://www.gramene.org/  

GrainGenes Triticeae and Avena  http://wheat.pw.usda.gov/GG2/index.shtml  

SoyBase Soybean  http://www.soybase.org/  

MazieGDB Maize  http://www.maizegdb.org/  

CyanoBase Cyanobacteria  http://genome.kazusa.or.jp/cyanobase/  

GDR (Genome Database for Rosaceae) Rosaceae  http://www.bioinfo.wsu.edu/gdr/  

Brassica Genome Gateway Brassica  http://brassica.bbsrc.ac.uk/  

Cucurbit Genomics Database Cucurbitaceae  http://www.icugi.org/  

Phytozome Plant species (whole genome data available)  http://www.phytozome.net/  

PlantGDB Plant species (whole genome and/or large-scale EST data available)  http://www.plantgdb.org/  

EnsemblPlants Plant species (whole genome data available)  http://plants.ensembl.org/index.html  

ChloroplastDB Plant species (Chloroplast genome data available)  http://chloroplast.cbio.psu.edu/  

KEGG PLANT Plant species (whole genome and/or large-scale EST data available)  http://www.genome.jp/kegg/plant/  
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 Gramene is a popular portal site that is not only an inte-
grated rice information resource but also a portal for promot-
ing plant comparative genomics ( http://www.gramene.org/ ). 
Gramene offers integrated genome-oriented data including 
gene annotation and molecular markers, and also a QTL data-
base mainly for Gramineae species ( Liang et al. 2008 ). 

 Along with the launch of genome sequencing projects, 
portal sites to share the progression of outcomes and to inte-
grate related resources have appeared for various species. The 
Sol genomics network is a portal site for Solanaceae genome 
resources that includes information on the tomato genome 
sequencing project ( http://solgenomics.net/ ) ( Mueller et al. 
2005 ). SoyBase is a resource portal site for genomic soybean 
research, and it includes released whole-genome sequence 
data ( http://soybase.org/ ). The MaizeGDB is the community 
database for biological information about  Zea mays , and 
includes genetic and genomic data sets and related information 
( http://www.maizegdb.org/ ) ( Lawrence et al. 2004 ).   

 Genome-wide comparisons among plants species 
 With the completion of genome sequencing in a number of plant 
species, genome-scale comparative analyses can be used to pro-
duce and publish data sets that facilitate identifi cation of con-
served and/or characteristic properties among plant species. 

 Using modeled proteome data sets deduced from sequenced 
genomes in plants, several efforts have been completed to con-
struct comprehensive gene families with the aim of establishing 
platforms to verify gene content and elucidating the process of 
gene duplication and functional diversifi cation among species 
( Sterck et al. 2007 ). Comprehensive gene family data sets are 
usually produced by computational procedures including a 
step that conducts an all-against-all sequence similarity search 
and then a step for building clusters of protein families by 
methods such as Markov Clustering (MCL) or consideration of 
protein domain structures ( Hulsen et al. 2006 ). The results of 

such studies can themselves yield databases that are useful for 
further phylogenetic studies ( Horan et al. 2005 ,  Conte et al. 
2008 ,  Wall et al. 2008 ). 

 Correlated gene arrangements among taxa along with 
chromosomal allocation, also known as synteny and collinear-
ity, have become valuable frameworks for inference of shared 
ancestry of genes and for transfer of knowledge from a species 
to another related species ( Tang et al. 2008a ). The plant 
genome duplication database (PGDD) provides a data set of 
intragenome or cross-genome syntenic relationships identifi ed 
throughout genome-sequenced plant species ( http://chibba
.agtec.uga.edu/duplication/ ) ( Tang et al. 2008b ).   

 Focused database for plant genomics 
 Databases housing focused data sets together with rich annota-
tions and well interrelated cross-references are also quite useful 
for the better understanding of focused issues in particular gene 
families and/or particular cellular processes. 

 Sequence-specifi c DNA-binding TFs are key molecular 
switches that control or infl uence many biological processes, 
such as development or responses to environmental changes. 
In plants, the genome-wide identifi cation of repertories of genes 
encoding TFs of the Arabidopsis genome was reported fi rst, and 
comparisons with other organisms revealed the properties of 
plant-specifi c TFs ( Riechmann et al. 2000 ). In the past decade, 
with the availability of complete genome sequences, we have 
been able to compile catalogs describing the function and orga-
nization of TF regulatory systems in a number of organisms. 
There are many databases that provide data sets of genes puta-
tively encoding TFs in many plant species; these are usually pre-
dictions based on computational methods such as sequence 
similarity search and/or hidden Markov model search of con-
served DNA-binding domains (  Table 5 ). Recently, further inte-
gration of data sets of TF-encoding genes has been performed, 
thus establishing an integrative, knowledge-based resource of 

 Table 5    Transcription factor database in plants  

 Database URL Species References 

RARTF  http://rarge.gsc.riken.jp/rartf/ Arabidopsis  Iida et al. (2005)  

AGRIS, AtTFDB  http://arabidopsis.med.ohio-state.edu/AtTFDB/ Arabidopsis  Palaniswamy et al. (2006)  

DATF  http://datf.cbi.pku.edu.cn/ Arabidopsis  Guo et al. (2005)  

DRTF  http://drtf.cbi.pku.edu.cn/ Rice  Gao et al. (2006)  

DPTF  http://dptf.cbi.pku.edu.cn/ Poplar  Zhu et al. (2007)  

TOBFAC  http://compsysbio.achs.virginia.edu/tobfac/ Tobacco  Rushton et al. (2008)  

SoybeanTFDB  http://soybeantfdb.psc.riken.jp/ Soybean  Mochida et al. (2009c)  

PlantTFDB  http://planttfdb.cbi.pku.edu.cn/ 22 plant species  Guo et al. (2008)  

PlnTFDB  http://plntfdb.bio.uni-potsdam.de/v3.0/ 20 plant species  Riano-Pachon et al. (2007)  

GRASSIUS, 
GrassTFDB

 http://grassius.org/grasstfdb.html Maize, rice, sorghum, sugarcane  Yilmaz et al. (2009)  

LegumeTFDB  http://legumetfdb.psc.riken.jp/ Soybean,  Lotus japonicus ,  Medicago truncatula  Mochida et al. (2010)  

DBD  http://dbd.mrc-lmb.cam.ac.uk/DBD/index.cgi?Home  > 700 species  Wilson et al. (2008)  
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TFs across related plant species in terms of comparative genom-
ics of transcriptional regulatory networks. GRASSIUS provides 
the fi rst step toward building a comprehensive platform for 
integration of information, tools and resources for comparative 
regulatory genomics across the grass species ( Yilmaz et al. 2009 ). 
The Grass Transcription Factor Database (GrassTFDB) of 
GRASSIUS houses integrated information on MaizeTFDB, 
RiceTFDB, SorghumTFDB and CaneTFDB ( http://grassius.org/
grasstfdb.html ). The LegumeTFDB provides predicted TF-
encoding genes annotated in the genome sequences of three 
major legume species: soybean,  L. japonicus  and  M. truncatula  
( http://legumetfdb.psc.riken.jp/ ). This database is an extended 
version of the SoybeanTFDB ( http://soybeantfdb.psc.riken.jp/ ) 
and is aimed at integrating knowledge on legume TFs and 
providing a public resource for comparative genomics of the 
TFs of legumes, non-legume plants and other organisms 
( Mochida et al. 2009c ,  Mochida et al. 2010 ).      
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