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Cancers are traditionally viewed as genetic disorder. However 
it has become increasingly evident that aberrant epigenetic 
modifications also play major roles in the tumorigenic process. 
Epigenetic defines heritable and reversible modifications of gene 
expression without changes in the nucleotidic sequence. The 
three most studied epigenetic phenomena are (1) DNA methyla-
tion, (2) chromatin modifications (including post-translational 
modifications of histones and chromatin modifying complexes) 
and (3) non-coding RNAs mediated regulations. Epigenetic pro-
cesses are finely tuned, undergo many regulations in response to 
environment and involve all the signaling pathways described 
so far. Epigenetic plays a crucial role in the control of nuclear 
architecture and gene activity and constitute one of the basis of 
the biological diversity. In this review, we focus on the growing 
number of publications describing the huge aberration of the epi-
genetic landscape in lung cancer cells (Table 1). Additionally, we 
outline advances in the potential use of these epigenetic events for 
cancer diagnostic, prognostic and targeted epigenetic therapy.
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DNA Methylation and Lung Cancer

DNA methylation is the best known and the most widely stud-
ied epigenetic modification. Methylation is the only covalent 
DNA modification described in mammals and is restricted to 
cytosines which are followed by guanines residues, a motif called 
CpG dinucleotide.1 While CpG dinucleotides seem depleted 
from the vast majority of the genome, they are found enriched 
in regions known as “CpG islands.” Typically, CpG islands are 
genomic regions of at least 200 bp and up to several Kb in length 
characterized by a high GC percentage. CpG islands are mainly 
found near or at the transcription start site within the promoter 
of ∼40% of mammalian genes. CpG islands play a major role in 
the process of transcriptional regulation, the unmethylated sta-
tus of a CpG-island correlating with the ability of a gene to be 
transcribed in the presence of the required co-regulators. Most 
CpG islands are usually unmethylated in normal cells allowing 
gene transcription. In contrast, CpG sites are usually methylated 
throughout the genome. Methylation is a normal physiologi-
cal function in the cell, involved in embryonic development,2 
genomic imprinting3 and chromosome-X inactivation.4 In can-
cer, frequent alterations in DNA methylation are observed and 
include: (1) locus-specific hypermethylation (at CpG island) 
which often occurs at tumor suppressor gene loci and leads to 
the loss of their expression, (2) genome-wide hypomethyla-
tion mainly found in the body of genes and in DNA repetitive 
sequences leading to genomic instability, and (3) altered DNA 
methyltransferases (DNMTs) expression.

In human lung cancer, promoter DNA hypermethylation is 
involved in the silencing of various tumor suppressor genes. The 
best studied example is the case of the CDKi p16INK4a (CDKN2A), 
which promoter hypermethylation prevents the negative control 
exerted by p16INK4a on RB phosphorylation thereby promoting 
cell cycle progression. p16INK4a hypermethylation is considered 
as one of the earliest event in lung tumorigenesis and increases 
constantly with disease progression.5,6 Other examples include 
H-CADHERIN (CDH13),7 14-3-3σ,8 DEATH ASSOCIATED 
PROTEIN KINASE 1 (DAPK1),9 RAS ASSOCIATION 
DOMAIN FAMILY 1 gene (RASSF1A),10 CASPASE-8,11 
RETINOIC ACID RECEPTOR β-2 (RAR-β), TISSUE 
INHIBITOR of METALLOPROTEINASE 3 (TIMP3), 

Epigenetic is the study of heritable changes in gene 
expression that occur without changes in DNA sequence. 
This process is important for gene expression and genome 
stability and its disruption is now thought to play a key role 
in the onset and progression of numerous tumor types. 
The most studied epigenetic phenomena includes post-
translational modifications in DNA and histone proteins as 
well as microRNAs expression. As epigenetic aberrations 
are potentially reversible, their correction has emerged as 
a potential strategy for the treatment of cancer. This review 
highlights the roles of chromatin epigenetic modifications and 
of microRNAs expression in lung tumorigenesis and discusses 
the emerging epigenetic therapies which are being developed 
for the treatment of lung cancer.
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in lung cancer.13 Overexpression of DNA methyltranferases 
DNMT1, DNMT3A and DNMT3B has been described in 
NSCLC especially among smoker patients, and correlates with 
hypermethylation of tumor suppressor gene such as p16INK4a, 
FHIT and RARβ.17,18 Furthermore, polymorphisms that influ-
ence expression of the DNMT3B gene have been connected 
with risk of lung cancer.19,20 Genome wide hypomethylation 
may also have a role in the onset and development of lung can-
cer. Global DNA hypomethylation is highly associated with 
the progression of lung tumors and is already detected in the  
normal part of the lung from cancer patient as compared to a nor-
mal individual.21 Hypomethylation status within exons 5–8 of 
p53 from peripheral blood DNA has been reported as a relevant 
predictor of lung cancer among male smokers.22 Furthermore, 

O6-METHYLGUANINE DNA METHYLTRANSFERASE 
(MGMT), E-CADHERIN (ECAD) and GLUTHATIONE 
S-TRANSFERASE P1 (GSTP1).12 As those genes are involved 
in a broad range of biological processes, promoter DNA hyper-
methylation appears as a key event in lung carcinogenesis. 
Consistently, genome wide analyses have pointed to the fact 
that the extend of promoter DNA hypermethylation is prob-
ably under-appreciated.13-16 By using a high-throughput global 
expression profiling approach, Shames et al. recently identi-
fied 132 genes that are methylated with high penetrance in 
lung cancer cells.16 More strikingly, the analysis performed 
by Brena et al. supports the notion that 4.8% of all CpG 
island promoters might be aberrantly methylated, suggesting 
that the expression of about 1,400 genes might be disturbed 

Table 1. Major epigenetic changes in lung cancer

Epigenetic changes Targets Cancer type Ref Proposed or effective therapy

DNA methylation

CpG islands hypermethylation p16INK4a NSCLC 5, 6, 36, 37–39

CDH13 NSCLC 7, 39

14-3-3s SCLC, NSCLC 8 Demethylating agents (41)

DAPK1 SCLC, NSCLC 5, 9, 38

RASSF1A SCLC, NSCLC 10, 39 DNA methyltranferase inhibitors

Caspase8 SCLC, NSCLC 11

RAR-b NSCLC 12 Demethylated agents in combination with 
HDACiTIMP3 NSCLC 12

MGMT NSCLC 12, 36, 37

ECAD NSCLC 12 Demethylated agents in combination with 
chemotherapyGSTP1 NSCLC 12

APC NSCLC 38, 39

FHIT NSCLC 38

Genome wide hypomethylation NSCLC 21–24

Chromatin modifications

Histone modification

Acetylation H2AK5ac NSCLC 54 HDACi (56, 60)

H3K9ac NSCLC 54

H3K18ac NSCLC 42 HDACi in combination with ionizing radiation 
(57)H4K5ac NSCLC 44

H4K8ac NSCLC 44

H4K12ac NSCLC 44 HDACi in combination with Chemotherapy or 
radiotherapy (56, 58–60)K4K16ac NSCLC 44

Methylation H3K4me2 NSCLC 42, 54

H4K20me3 NCSLC 44

Chromatin remodelling complexes

BRG1 NSCLC 63–67

Micro-RNAs

Reduced expression Let7 NSCLC 72
Chromatin modifying drugs (HDACi…..)

miR-128b NSCLC 75

Overexpression miR-17-92 NSCLC 70, 76 synthetic oligonucleotides

miR-155 NSCLC 71
anti-miRNA oligonucleotides (antagomirs)

miR-21 NSCLC 92
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These modifications can either favor (e.g., acetylation, methyla-
tion) or inhibit (e.g., methylation) the access to the chromatin 
and are involved in all DNA-based processes described so far. 
Clearly, global alterations of histone modification patterns have 
the potential to affect the structure and integrity of the genome 
and to disrupt normal patterns of gene expression. Several pro-
tein complexes involved in transcription regulation function by 
modifying histones or altering chromatin structure. They are 
mainly represented by Histones AcetylTransferases (HATs)/
Histones Deacetylases (HDACs) and Histones methyltrans-
ferases (HMTs)/Histones Demethylases (DHMTs) complexes 
that determine the level of acetylation and methylation respec-
tively of the amino-terminal domains of nucleosomal histones 
associated with them, and by ATP-dependent complexes such as 
SWI/SNF which use the energy of ATP hydrolysis to locally dis-
rupt or alter the association of histones with DNA. The last years 
have supported the notion that histones modifications may con-
tribute to tumorigenesis42,43 and have shown an altered expression 
pattern of histone and chromatin modifying enzymes in human 
tumors.

Histones modifications. Recently, we demonstrated the 
existence of a global post-translational modifications profile of 
histone H4 in a comprehensive panel of normal lung tissue and 
primary lung tumors. In this study, cancer cells exhibited a gain 
of H4K5ac and H4K8ac and a loss of H4K12ac, H4K16ac and 
H4K20me3.44 Interestingly, loss of H4K20me3 already occurs in 
early precursors lesions of squamous cell carcinoma and increases 
with disease progression. The finding that these changes occurs 
so soon in the course of lung tumorigenesis indicate that they 
might be relevant steps in the transformation process. Some clues 
as to how these cancer specific histone modifications arise are 
emerging. The demonstration that loss of H4K20me3 correlates 
with decreased expression of the histone methyltransferase SUV4-
20H2,44 fits well with a recent study showing that Suv4-20 h-dou-
ble-null mice have lost nearly all H4K20me3 and H4K20me2 
states.45 Similarly, reduced mRNA levels of the MYST Tip60 
HAT46 could explain the hypoacetylation of Histone H4K16, 
as this enzyme mediates the H4K16 acetylation.47,48 Aberrant 
expression of other histone modifying enzymes has also been 
reported to discriminate lung tumor samples from their normal 
counterparts. For instance, mutations and deletions of the CBP 
HAT gene,49 variable levels of HDAC1-1050,51 or overexpression 
of the MAPJD and JMJD2C HDMs have been described.52,53 
Whether such aberrant expression patterns could correlate with 
specific histone modifications remains to be determined.

Analysis of histone modifications is able to cluster the tumor 
samples according to their histological type suggesting that post-
translational modifications of histones could be a nice alterna-
tive for the diagnosis of lung cancer.44 Changes in global level of 
individual histone modifications also influence prognosis. Loss 
of H4K20me3 correlates with reduced survival in patients with 
stage I adenocarcinoma.44 The epigenetic pattern of H3K4me2, 
H2AK5ac and H3K9ac influences the clinical outcome of 
NSCLC patients, especially in early-stage tumors.54 The cellular 
levels of H3K4me2 and H3K18ac have also been reported as inde-
pendent predictors of clinical outcome in lung adenocarcinoma, 

extensive DNA hypomethylation at repetitive sequences has also 
been observed in lung tumors.23,24

Accumulating evidence argues that epigenetic gene silenc-
ing through DNA hypermethylation can actually predispose 
to mutational events.25 Because of its spontaneous hydrolytic 
deamination under physiological conditions, methylated cyto-
sine is considered as a potent endogenous mutagen. Whereas 
methylated cytosine represents only 1% of the bases in the mam-
malian genome, it is estimated that it might be at the origin of 
as much as 30% of all transition mutations found in human 
disease such as cancers.26,27 Methylation of CpG sites has been 
reported to facilitate the binding for benzo[a]pyrene found in 
cigarette smoke, leading to the formation of major DNA damage 
hotspots in human lung cancer.28,29 This has been particularly 
well-illustrated for the occurrence of some hotspot mutations of 
the p53 tumor suppressor gene in lung tumors.30,31 Other studies 
have shown that silencing through promoter hypermethylation of 
DNA repair genes such as MGMT may predispose to mutation 
of key genes such as p53 and K-RAS.32-34 Although this has not 
been demonstrated in lung cancer it can be envisaged that such 
mechanism could exist as silencing of MGMT has been associ-
ated with p53 mutation in these tumors.35

The development of squamous cell carcinoma can be predicted 
by p16INK4a and MGMT promoter methylation up to three years 
before clinical diagnosis36,37 and DNA methylation may serve as 
a marker for the early detection of lung cancer when detected in 
the sputum of the patient.5,38 In a multivariate model, Brock et al.  
have recently shown that promoter methylation of CDKN2A, 
CDH13, RASSF1A and APC is associated with early recurrence 
in patients with stage I NSCLC.39 Altogether, theses studies high-
light promoter methylation as a promisive epigenetic approach 
for early detection and prognosis of NSCLC. In addition, dem-
ethylating drugs have a great and promising clinical potential as 
their use restores the expression of epigenetic silenced genes and 
inhibits tumor cell growth.40 They induce manageable short-term 
side effects at doses showing therapeutic efficacy40 although their 
long-term effects remain to be fully evaluated. The 5-aza-2'-de-
oxycytidine demethylating agent has been reported to increase 
the survival of NSCLC patients in the absence of prior chemo-
therapy, up to 6 years in some cases.41 Current investigations are 
aimed at combining epigenetic therapies (i.e., hypomethylating 
agents with histone deacetylase inhibitors) and at attempting to 
integrate epigenetic therapy with more standart therapy.

Chromatin Modifications in Lung Cancer

The fundamental unit of chromatin is called the nucleosome. 
This specialized regulatory structure consists of 147 bp of 
genomic DNA wrapped around an histone octamere composed 
of two copies of each of the core histones H2A, H2B, H3 and 
H4. Each of these core histone possesses a globular domain as 
well as an amino-terminal tail which protrudes outside of the 
nucleosome and in that way is accessible to numerous nuclear reg-
ulators. Amino-terminal tails of histone proteins are subjected to 
wide variety of post-translational covalent modifications such as 
acetylation, methylation, phosphorylation and ubiquitinylation. 
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overexpressed and downregulated miRNAs. Therefore, miRNAs 
may function either as tumor suppressors or oncogenes and the 
genomic abnormalities found to influence their activity are the 
same as those described for protein-coding genes. To date, both 
“in vivo” and “in vitro” studies demonstrate a deregulation of 
miRNA expression in lung cancer and highlight them as useful 
diagnostic, pronostic and therapeutic tools.

A growing number of miRNAs has been found aberrantly 
expressed in lung cancer and our understanding of miRNAs 
expression patterns and function in normal and lung cancer cells 
is just starting to emerge. One of the first miRNAs identified is 
Let7 which appears to be important in lung cancer. Indeed, over-
expression of let-7 inhibits Ras protein expression73 and represses 
proliferation of lung cancer cells both “in vitro” and “in vivo,”74 
identifying let-7 as a tumor suppressor. This is confirmed by clini-
cal data as reduced expression of Let-7 miRNA is observed in 
primary lung tumors.72 Other miRNAs with tumor suppressor 
function include miR-128b which is a direct negative regula-
tor of the EGFR oncogene and which expression is lost in lung 
tumors.75 As an example of oncogenic miRNAs is the miR-17-92 
cluster which upregulation is observed in lung cancer cells.70,76 
Overexpression of miR-17-92 positively stimulates cell prolifera-
tion76,77 inhibits differentiation of lung epithelial progenitor cells 
in transgenic mice.78 Expression of the E2F1 transcription factor 
is negatively regulated by miR-17-92,79 suggesting that its differ-
ential pattern in lung tumors80 could rely on aberrant expression 
of miR-17-92. Predicted regulatory targets of the miR-17-92 clus-
ter also include the PTEN and RB2 tumor suppressors81 that are 
known to play important roles in lung cancer. More fundamen-
tally, abrogation of global miRNA processing through targeted 
silencing of components of the miRNA machinery promotes 
lung tumorigenesis82 suggesting that global decrease of miRNA 
expression causally contributes to the transformed phenotype. 
Mice exposed to cigarette smoke exhibit variations in miRNA 
profiles expression (including let-7 and the p53 tumor suppres-
sor responsive miRNA miR-34) especially during the weaning 
period.83,84 These results demonstrate that miRNA alterations 
occur as an early response to environmental carcinogens “in 
vivo”, before the onset of cancer. The precise mechanisms regu-
lating miRNA expression in lung tumors is largely unknown but 
the few existing studies suggest that genetic and epigenetic altera-
tion might affect miRNA status. MicroRNA-128b is located on 
chromosome 3p, which allelic loss is the most frequent and earli-
est genetic event in lung carcinogenesis. The cluster miR-17-92 
is located at chromosome 13q31 in a region amplified in lung 
cancer. Expression of miRNA-124a is epigenetically silenced by 
DNA hypermethylation85 and DNMTi restores miRNA-124a 
expression. Abnormalities in miRNA-processing genes might 
also be involved in aberrant miRNA pattern as decreased levels 
of Dicer expression are observed in lung tumors with a significant 
prognostic impact on the survival of surgically treated patients.86

It is becoming apparent that miRNA expression profiles con-
fer important clues for clinical diagnosis and prognosis of human 
lung cancer. MicroRNA microarray analyses have identified sta-
tistical profiles which could discriminate lung cancers from non-
cancerous lung tissues, as well as molecular signatures that differ 

and may be general predictors of clinical outcome in adenocarci-
nomas of different tissue origins.42,55 Further studies are needed 
to analyze whether distinct combinations of histone modifica-
tions might define “tumor signature profiles” that could be used 
as complementary diagnostic tools, prognostic factors and pre-
dictors of responses to treatment. Inhibitors of HDAC (HDACi) 
have emerged as novel and promising anticancer agents56 and sev-
eral molecules have been shown to increase the cytotoxic effects 
of radiation in NSCLC by decreasing DNA repair efficiency 
and promoting cell death.57 HDACi also display benefits when 
used in combination with standard NSCLC chemotherapeutic 
agents and are likely to be a novel approach for the treatment 
of NSCLC because of an anti-growth activity against NSCLC 
cells.58,59 Phases I and II clinical trials with HDACi in the treat-
ment of advanced NSCLC have been completed56 and ongoing 
clinical trials are exploring the use of many new HDACi singly 
or as part of a combination with others therapeutic modalities 
such as chemotherapy or radiotherapy.60 Clearly, HDACi have a 
specific antitumor effect and thorough studies analyzing the full 
potential and mechanism of these drugs with regards to opti-
mal dose, schedule, patient selection and combination strategies 
would allow the development of molecules with more effective 
therapeutic effect.

Alteration of chromatin-remodeling complexes. BRG1 is a 
catalytic component of the SWI/SNF chromatin-remodeling 
complex and regulates gene expression by disrupting DNA-
histone interactions at the nucleosomes in an ATP-dependent 
manner.61 This protein has been proposed to be a tumor sup-
pressor and mice studies support a role for BRG1 loss in lung 
cancer development. Indeed, inactivation of BRG1 enhances the 
tumorigenic effect of carcinogens and induces the development 
of lung adenomas.62 In human lung cancer, loss of heterozygos-
ity surrounding the BRG1 loci and somatic point mutations of 
BRG1 have been described.63,64 As a result, loss of BRG1 pro-
tein is observed in some NSCLC65 and correlates with reduced 
survival.66,67

Micro-RNAs for Major Biological Insights  
in Lung Cancer

Micro-RNAs are small non-coding RNAs initially transcribed 
as large RNA precursor (called pri-miRNA) which are processed 
into a ∼70 nucleotide pre-miRNA and exported to the cytoplasm 
to undergo final processing steps to obtain a mature miRNA of 
∼22 nucleotides length.68 Depending on the degree of homology 
to their 3'UTR target sequence, miRNAs induce translational 
repression or degradation of mRNAs. It is estimated that 1,000 
miRNAs are transcribed and that 30% of the human genome 
is under miRNA regulation, one miRNA being able to modu-
late post-transcriptionally hundreds of downstream genes. In 
this regard, miRNAs control a wide range of biological processes 
including apoptosis, development, proliferation and differentia-
tion.69 High-throughput analyses have highlighted aberrant miR-
NAs expression profiles in an increasing range of human cancer 
types70-72 and all these studies support the same view: the altera-
tions seen in cancer cells that express miRNAs consist of both 
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Concluding Remarks

It is becoming increasingly clear that disruption of epigenetic 
processes promotes lung tumor development and growth, and 
evidence is accumulating that epigenetic changes may account 
for some of the heritable effects of cigarette smoking. The man-
agement of aberrant epigenetic states as a way to target early 
tumor development as well as tumor progression is therefore a 
logical therapeutic approach. In the future, developing new strat-
egies to avoid the pleiotropic properties of anti-cancer drugs, such 
as DNMTi or HDACi, will be of particular interest. Indeed, the 
side effects of these both compounds could have unscheduled 
consequences in term of genes expression, in that they may dis-
play growth-promoting effects on tumor cells. Otherwise, as the 
number of miRNAs increases constantly and the expression of 
many of them is reduced in lung cancer cells, targeting miRNA 
is also a promising strategy in term of cancer treatment and fur-
ther studies are required to uncover the potential usefulness of 
chromatin modifying drugs in restoring the loss of expression 
of tumor suppressor miRNAs. In this context, administration 
of synthetic oligonucleotides that mimic endogenous miRNAs, 
might also be used to treat specific tumor types. Conversely, tar-
geting oncogenic miRNAs through administration of anti-sense 
oligonucleotides, called AMO (anti-miRNA oligonucleotides) 
will become into focus, given that the use of antagomirs, which 
are AMOs conjugated with cholesterol, has recently emerged as 
an efficient approach to inhibit miRNA activity.96 In the com-
ing years, a more complete dissection of the cellular and molecu-
lar pathways controlled by epigenetic process will undoubtedly 
provide novel insights into tumor related mechanisms and will 
highlight promising fields for the development of novel therapies 
to fight lung cancer.
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according to tumor histology.71,87 Also interesting is the recent 
identification of Has-miR-205 as a highly specific marker for 
squamous carcinoma88 suggesting that a clinical diagnostic assay 
based on miR-205 expression levels could aid for differential diag-
nosis of NSCLCs. Aberrant miRNA expression can be used as a 
marker for the diagnosis of NSCLC in sputum specimen89 and 
detection of miRNA expression in peripheral blood or in serum 
is a good indicator of its expression in the tumor sample.90,91 As 
miRNAs are more stable than mRNA and more tissue specific 
than DNA, their measurement could provide a novel promising 
non invasive approach to discriminate between normal and can-
cer patient samples. Several miRNAs are reported to be associated 
with the clinical outcome of lung cancer. Reduced Let-7 expression  
correlates with shorter survival in both univariate an multivariate 
analyses71,72 and is an independent prognostic factor for the stage 
of the disease.72 Overexpression of miR-155 correlates with a poor 
prognosis when all clinical variables are considered together.71 
Overexpression of miR-21 is an independent negative prognos-
tic factor for overall survival in NSCLC patients.92 Importantly, 
a five-miRNA signature (let-7a, miR-221, miR-137, miR-372 and 
miR-182) has been recently associated with survival and cancer 
recurrence in NSCLC patients.93 Remarkably, this signature is 
valuable even after patients stratification by stage or histology.

The potential for using miRNAs in lung cancer therapy is now 
being explored. Let-7 overexpression confers radio-sensitivity to 
lung cancer cells “in vitro.”94 miR-128b LOH, a direct regulator 
of EGFR, correlates with clinical response and survival follow-
ing gefitinib treatment.75 miR-221, miR-222 and miR-17-92 alter 
the phenotype of lung cancer cells and sensitize them to cyto-
toxic agents.76,77,95 Such results offer the experimental bases for 
the use of miRNAs as therapeutic targets. Further experiments 
are needed to uncover the emerging power of small non-coding 
RNAs to improve lung cancer therapeutics, and would have sig-
nificant consequences for cancer patients in the clinical area.
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