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Reduction mechanisms of oxygen molecule to water molecules in the fully reduced (FR) and mixed-valence (MV) bovine
cytochrome ¢ oxidases (CcO) have been systematically examined based on the B3LYP calculations. The catalytic cycle using four
electrons and four protons has been also shown consistently. The MV CcO catalyses reduction to produce one water molecule,
while the FR CcO catalyses to produce two water molecules. One water molecule is added into vacant space between His240
and His290 in the catalytic site. This water molecule constructs the network of hydrogen bonds of Tyr244, farnesyl ethyl, and
Thr316 that is a terminal residue of the K-pathway. It plays crucial roles for the proton transfer to the dioxygen to produce the
water molecules in both MV and FR CcOs. Tyr244 functions as a relay of the proton transfer from the K-pathway to the added
water molecule, not as donors of a proton and an electron to the dioxygen. The reduction mechanisms of MV and FR CcOs
are strictly distinguished. In the FR CcO, the Cu atom at the Cug site maintains the reduced state Cu(I) during the process of
formation of first water molecule and plays an electron storage. At the final stage of formation of first water molecule, the Cu(I)
atom releases an electron to Fe-O. During the process of formation of second water molecule, the Cu atom maintains the oxidized
state Cu(Il). In contrast with experimental proposals, the K-pathway functions for formation of first water molecule, while the
D-pathway functions for second water molecule. The intermediates, Py, Pg, F, and O, obtained in this work are compared with

those proposed experimentally.

1. Introduction

Cytochrome ¢ oxidase (CcO) is known to be a terminal
oxidase of cellular respiration system and/or electron-
transportation system in aerobic organism and to be also a
metalloenzyme in inner membrane of mitochondria. It cat-
alyzes the reduction of oxygen molecule to water molecules
with the sequential four-electron transfer from cytochrome
¢ through heme a and it also moves four protons from the
matrix side (N-side) of mitochondrial membrane toward the
cytosolic side (P-side) (so-called proton pumping) [1-4].

0, +4e” + 8H" &2 2H,0 +4H" (proton pumping).
(1)

The three-dimensional structures of both fully oxidized
(FO) and fully reduced (FR) forms, which are isolated
from Paracoccus [5, 6] and bovine heart muscle [7-12],
have been determined by X-ray crystallographic studies. The
catalytic sites of O,-reduction of both FO and FR forms
are composed of heme as (Fe) and Cup (Cu) binuclear
site. The reduced state of the catalytic site, [Fe(II) Cup(I)],
catalyzes the O,-reduction, while the oxidized state, [Fe(III)
Cup(Il)], does not [1-5, 7-13], However, the geometries
of the catalytic sites in FO and FR CcOs are quite similar.
In the bovine heart enzyme, heme as has single ligand of
imidazole from histidine residue (His376), and Cug also has
three ligands of imidazoles from histidine residues (His240,
His290, and His291) [7-12]. A e-nitrogen of His240 is
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TaBLE 1: Oxidation States of Electron Sites and Number of Electrons
(Ne) Relevant to O, Reduction in FO, FR, and MV CcO.

Cup Heme a Heme a; Cug N,
FO 11 111 111 11 0
FR I 11 11 1 4
MV I 111 11 I 2

uniquely cross-linked to C6 of phenol of tyrosine (Tyr244)
with single covalent bond. The heme-copper oxidases which
have been determined by the X-ray crystallographic analyses
[7, 8, 14-16] have a common structure to the bovine CcO.
This superfamily has been classified into Al, A2, B, and
C families by amino acid sequence analyses [17, 18]. The
bovine heart CcO, which belongs to the Al family, has
two distinct proton pathways, K-pathway and D-pathway
[5, 8, 17-23]. The K-pathway begins from Lys319 and ends
at Thr316, while the D-pathway begins from Asp91 and
ends at Glu242. The K-pathway is used to transfer two
protons toward the catalytic site, while the D-pathway is
used to transfer the remaining six protons. Thus, the D-
pathway transfers both two substrate protons to reduce the
0O, molecule and four protons that are pumped across the
membrane [24, 25]. It is presumed that the branching point
is located at Glu242.

As can be seen in Table 1, the mixed-valence (MV) CcO
and FR CcO should be strictly distinguished. The FR state
has four electrons to produce two H,O molecules due to the
reduced valence state of Cuu, heme a, heme a3, and Cug,
while the MV state has only two electrons in the catalytic
site of heme a3 and Cug. Thus, the MV state has possibility
to produce only one H,O molecule. Although both MV and
FR states have two electrons in the catalytic site of heme a3
and Cusp, it is expected that the reduction mechanisms of
the O, molecule for MV and FR CcOs should be different
after the [Fe(III)-O,~ Cu(I)] intermediate was formed. The
[Fe(III)-O,~ Cu(I)] intermediate of FR CcO have possibility
to receive an electron from heme a, while an electron in Cu(I)
should be used to reduce the O, molecule in MV CcO.

The numerous mechanisms of the reduction of O,
molecule to H,O molecule have been proposed experimen-
tally [2—4, 13, 17, 19-22, 26-55]. There is now consensus
that O, molecule in the triplet state is initially bound to Fe
atom of heme a3 in the reduced state [Fe(II) Cu(I)] (R) to
yield the ferric peroxide intermediate [Fe(III)-O,~ Cu(I)]
(A), as shown in Scheme 1. The intermediate A has the
optical absorbance at 595 nm and a mode of 568 cm~! due
to the Fe-O, vibration was detected by resonance Raman
studies [2, 3]. The subsequent intermediate [Fe(IV)=0%*"
H,O Cu(I)], which includes Fe(IV)=0?" in heme a3 as
shown in Scheme 1, has also been experimentally observed
[3, 19, 20, 26-28, 31-40]. [Fe(IV)=0*" H,O Cu(Il)] is
usually designated by the symbols, Py, Pgr, and F [2, 17,
19, 33-36]. It is considered that the differences of these
intermediates are due to the protonation state of a nearby
protonable center or number of electrons in the catalytic site.
For MV CcO, a mode of 804 cm™! due to Fe=O vibration has
been observed by resonance Raman spectroscopy [31], while
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ScHEME 1: Schematic representation of pathways of O, reduction to
produce H,O at the catalytic sites of MV and FR CcOs.

for FR CcO a mode of 786 cm~! has been observed [41].
Before formation of the intermediate F, it was shown from
both optical and EPR spectroscopy that the Pr intermediate
exists and exhibits spectroscopic properties quite distinct
from F [30, 32, 42].

However, the reaction mechanism from the [Fe(III)-O, "~
Cu(D] (A) to [Fe(IV)=0?" H,O Cu(I)] (P or F) is not
conclusive yet. Although the hydrogenated/protonated Fe-
OOH, which will be considered as the intermediacy from A
to P or F has been discussed in numerous proposals based
on the experimental results, it is not beyond the region
of speculation. In addition, the geometrical and electronic
structures of [Fe(IV)=0?" H,O Cu(Il)] and Fe-OOH have
not been entirely elucidated yet. Yoshikawa and coworkers
have proposed the mechanism that the proton transfer is
induced from Tyr244 to FeOO to yield hydroperoxide and
subsequently one electron transfer from Cup is induced
to cleave O-O bond [9, 55]. [Fe(IV)=0>~ OH -Cu(Il)] is
produced with tyrosyl radical and anion for MV and FR
CcO, respectively. [Fe(IV)=0?" OH~-Cu(II)] is supported
as an intermediate at the next stage from the intermediate
A in lots of experimental examination [21, 22, 32, 43, 44].
The Cu atom plays a role for electron storage and changes
in its oxidation state [36]. It has been proposed for FR CcO
that the oxidation states of Cu and Fe atoms in heme a and
heme a3 change through the reaction without generation of
oxoferryl-tyrosine radical intermediate which was formed in
the MV CcO [21, 22]. It has been also proposed by Wikstrom
that phenol of tyrosine dose not affect the reaction [32].
In FR CcO, Fe of heme a (Fe,) is initially in the ferrous
state. From optical experiments, Fe, is oxidized at the same
time that the [Fe(III)- O,~ Cu(I)] intermediate disappeared
[45, 46]. This observation is also supported from resonance
Raman experiments and it was concluded that the electron
transfers from Fe, to binuclear center [47]. Several groups
have speculated that the crosslinked tyrosine plays roles for
a hydrogen atom donor [2, 21, 29, 31, 48] to molecular
oxygen bound to heme a3 in order to activate O-O bond.
It has been proposed from recent experimental studies that
a tyrosyl radical is formed in the [Fe(IV)=0*" H,O Cu(II)]
intermediate [1-4, 31, 49, 50]. Direct evidences are not,
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however, observed. The mutation of histidine coordinated
to Cu induced the damage of catalytic effects with retaining
the electron transfer between heme a3 and heme a [51-54].
The reaction mechanisms proposed by several groups are still
controversial and the structures of the [Fe(IV)=0*" H,O
Cu(II)] intermediates, Py, Pr, and F and the intermediacy
Fe-OOH are still unknown and their changes through O,-
reduction are also unknown.

The reaction proceeds in a stepwise manner by the
transfer of four electrons and four protons. There are K-
and D-pathways for the proton transfer [44, 56-63]. The D-
pathway that ends at Glu242 near to the catalytic site has been
experimentally and theoretically studied. The molecular
dynamic simulations have shown that the conformational
switch of Glu242 functions the proton pumping through
H,O network connecting to the D-propionate group of heme
as and transfer of two protons through H,O network con-
necting to the catalytic site [57, 58]. The FTIR measurement
has shown that the reduction of O, molecule stops at the
Pr intermediate in the Glu278GIn mutant enzyme from
paracoccus denitrificant [59]. It was also proposed that the
K-pathway is catalytic only in the last steps of the catalytic
cycle [44, 60, 61]. It was, however, proposed that the K-
pathway is used for the uptake of two substrate protons upon
reduction of catalytic site [23, 24, 60]. Recently, Lepp et al.
showed that mutations in the K-pathway of proton transfer
slowed down formation of the Py intermediate [64]. Thus,
the sequential uptakes of four substrate protons from the K-
and D-pathways are still unclear.

On the other hand, theoretical studies on the reduc-
tion mechanism and the proton pathways in CcO have
been extensively performed [65-92]. “Splitting the Water
Molecule” mechanism has been proposed based on the
hybrid density functional calculations [65-68]. The water
molecule is initially located in the vicinity of the Cug center
in their mechanism. This water molecule provides a proton
to oxy intermediate [Fe(III)- O,~ Cu(I)] and at the same
time copper atom provides an electron. The products of
this mechanism would be [Fe(IITI)-OOH HO™-Cu(II)]. The
reaction systems were calculated on the potential energy
surface of the triplet state. For MV CcO in which an
electron cannot transfer from heme a to heme as, the
density functional theory (B3LYP) has been applied to
examine O-O bond cleavage using a large model of Fe(II)-
Cu(I) binuclear site [69-71]. They have proposed that it
is necessary to add two water molecules in the catalytic
site in order to form hydrogen bonds connecting between
Fe-OO and Tyr244. It was also proposed that the proton
transfer from the K-pathway to the catalytic site enhances
the proton transfer from Tyr244 to FeOO. In recent works
[71, 72], they employed the bigger model that contains the
Cug moiety, Tyr244 and protonated lysine. It was proposed
that the protonation of the FeOO proceeds the OO bond
cleavage with higher activation energy of 18.6 kcal/mol than
the experimental value and yields the [Fe=O, HO-Cu]
intermediate where the tyrosine is a neutral radical. Namely
they showed that the additions of two electrons and single
proton to the OO bond induce the OO bond cleavage to yield
the Py intermediate.

In our previous works [76, 77], we have pointed out
the possibility of existence of single water molecule between
His290 and Tyr244 with the hydrogen bonds. For the heme-
dioxygen complex [78, 80], we have shown that the OO bond
cleavage occurs when the OO bond receives two electrons
and two protons. For the H,O formation in FR CcO [79], we
showed that the H,O molecule on the Cu atom plays crucial
roles. This H,O molecule provides a proton to Fe(IV)=02~
to yield [Fe(II[)OH HOCu(II)] with the electron transfer
from Cug to heme as, so called the proton-coupled electron
transfer. From these results, we have also speculated the
mechanism of the H,O formation for FR and MV CcO.
However, the reduction mechanism and catalytic cycle were
not studied systematically and concretely.

In this article, we propose new reduction mechanisms
from O, molecule to H,O molecules by MV and FR CcOs
from theoretical viewpoints. The intermediates, and their
electronic structures obtained by the sequential additions
of electrons and protons are thoroughly examined. The
functions of Tyr244 in our mechanism are distinguishably
different from those proposed from experiments as a proton
and an electron donor. This paper is composed of as
follows: (1) possibility of H,O coordination to Cu of the
Cug site is examined, (2) formation mechanism of single
H,0 molecule from [Fe(III)- O, Cu(I)] (A) in MV CcO is
examined, (3) formation mechanism of two H,O molecules
from [Fe(IlI)- O~ Cu(I)] (A) in FR CcO is examined,
(4) the reduction mechanisms for MV and FR CcO are
summarized. Our reaction scheme is compared with other
mechanisms proposed previously from experimental and
theoretical viewpoints.

2. Computational Details

2.1. Model of a Catalytic Site for Calculations. The model
of the catalytic site of CcO to examine the O, reduction
mechanism was constructed from geometry based on the X-
ray crystallographic study for FR CcO of bovine heart muscle
(IOCR in PDB) [9]. As shown in Figure 1, all histidine
residues, His240, His290, His291, and His376, were replaced
by imidazoles. Tyr244, which is covalently bonded to His240,
was replaced by phenol. The formyl and vinyl groups in heme
a3 were left on the porphyrin ring due to the possibility of
the m-resonance. The farnesylethyl group was replaced by
—CH,OH due to the possibility to make hydrogen bond to
phenol (Tyr244).

We added two water molecules, W; and W,, in this
model. In the X-ray crystallographic studies [10-12], single
H,0 molecule is found between —CH,OH of farnesylethyl
group and Thr316 that is a terminal residue of the K-pathway
starting from Lys319. The added W, corresponds to this
H,0 molecule. We do not examine the proton transfer from
Thr316 to —CH,OH through W, in this study. However, we
examine explicitly the intermediates where a proton attaches
on —CH,OH. Thus W, is added into the model.

Although W, is not shown in the X-ray structures, there
is a possible space that a H,O molecule fit into between
Tyr244 and His290. Particularly, it can be seen in Figure 1
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FIGURE 1: Model of catalytic site in fully reduced form of bovine

heart cytochrome ¢ oxidase (1OCR in PDB). The added two water
molecules W; and W, are detailed in text.

that W, is hydrogen-bonded to both Tyr244 and His290.
By adding this W, the network of the hydrogen bonds of
the K-pathway is expanded from Thr316 to W, through W,
farnesylethyl, and Tyr244.

2.2. Theoretical Examination. The Fe and Cu atoms have
possibilities of unpaired electron spins for the oxidation
states of Fe(III) and Cu(II) in the course of reduction of
the O, molecule, respectively. Their unpaired spins will
be ferromagnetically coupled in the high-spin (HS) state,
while they are antiferromagnetically coupled in the low-
spin (LS) state. The electronic structure of the HS state can
be well presented by a usual unrestricted molecular orbital
method. The LS states can be presented by the unrestricted
SCF solutions with the broken symmetry (BS) procedure.
The all-electron DZ basis set was employed for Fe and
Cu atoms [93]. The 6-31G™* basis set was used for key O
atoms of reacting O, molecule, phenol and H,O molecules
and the 3-21G basis set for C, H, N, and other O atoms.
Although the 3-21G basis set is tight for the transition-metal
complexes in some cases, these combined basis sets used here
reproduced reasonably the electronic structures of heme-
oxygen complexes estimated by using more flexible basis sets
[80].

Since correlation effects are important to elucidate the
transition-metal systems, the usual Hartree-Fock methods
lead to poor estimations for the binuclear systems. The
hybrid exchange-correlation functional B3LYP method [94—
97] was most widely used for the transition-metal system.
Since the B3LYP method contains the moderate static
correlation effects, it provided the suitable results for the
desired d-electron configurations in good agreement with
experiments [80, 98, 99]. Thus, we employed the B3LYP
method to estimate the electronic structures of the reaction
systems.

The dioxygen binds to Fe in heme a3 at an initial stage of
the reaction. The bound dioxygen is reduced by sequential
additions of four protons and four electrons on heme a;.
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Four electrons transfer from Cu, to the active site through
heme a. Thus the examination of the reaction mechanism
is equivalent to determining the pathway to provide the
protons to the dioxygen on heme as. The conformation of
the catalytic site in the FR CcO is similar to that in the
FO state [7-12]. Heme a3, Cu, His240, His290, His291, and
Tyr244 have same geometrical configurations for both FR
and FO CcO. The Cu atom is fixed by coordination of three
histidine residues, His240, His290 and His291. Tyr244 makes
the hydrogen bond to the farnesylethyl, group in heme as.
Tyr244 is fixed by its hydrogen bond and the cross-linked
single covalent bond with His240 that coordinates to the
Cu atom. Heme a3 is also fixed by the axial coordination
of His376 and the hydrogen bond with Tyr244. Accordingly
the essential change for the structure of the active site is
not expected in the reduction of the dioxygen on heme
as. However, the pathway of the proton transfer plays
crucial roles. The proton pathway must approach to the
dioxygen bound to heme a3 in order to provide protons. The
water molecule W; connects with the K-pathway through
the hydrogen bonds of W, Tyr244, farnesylethyl and W.
In fact, in our previous work [76], the hydronium ion
W, H", where a proton is added to W, approaches to the
dioxygen to give the proton, yielding the bond FeOOH
on the heme as. Thus it is expected that a remarkable
change is found in the proton pathway of the hydrogen bond
network. The fragments of reacting O,, H,O molecules,
and H atoms of —-CH,OH and OH in phenol, which are
directly connected with the hydrogen bond network, were
optimized. Since our optimizations were performed for
limited parameters, our discussion will be qualitative not
quantitative. We draw the potential energy surfaces along
the path of the proton transfer in a stepwise manner. It
could be confirmed form the potential energy surfaces that
the optimized intermediates are local minimums. The point
with maximum energy is assigned to the transition state
because of limited optimization. However, we believe that
our transition states are close to the fully optimized one and
the relative stabilities among the intermediates and transition
states are qualitatively reliable. All calculations were carried
out using the program package Gaussian 98 [100].

2.3. Analyses for BS Solutions. The system examined here is
composed of the open-shell chemical species, since the two
transition metals Fe and Cu have the unpaired electron spins.
The spin-unrestricted calculations are employed to describe
the electronic structures. Particularly, the broken symmetry
(BS) method is used for the LS states. It is well known that the
BS solutions are suffered by the spin contamination (§2)sc.
However, ($?)sc is related with the occupation numbers of
electron in the natural orbitals that are obtained by the
diagonalization of the first-order density matrix of the BS
solution [80, 99, 101]:

<§2>5c = <§2>Bs N <§2>pure = Z”—i”ﬂ' = Zn—in+b (2)
i=1

l1<n;<2 (3)
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FIGURE 2: Geometries optimized on the pathways of the O, reduction at the catalytic sites in MV and FR CcOs, and the reaction paths of

MYV and FR CcOs examined in this study.

Here, n_; and n,; are the occupation numbers of
the bonding natural orbitals ¢_; and antibonding ¢.;,

respectively. Nj is the number of B-electron. (:9\2)35 is the
expectation value of square of the spin angular momentum

for the BS solution, while (?)pure is one of the corresponding

pure spin state. When ¢_; is an doubly occupied orbital, it
does not contribute to the spin contamination because of
n—; = 2 and ny; = 0. For the BS solution where ¢_; and ¢,;
are coupled antiferromagnetically, the spin contamination
(§2)sc is increased by unity because of n_; =~ ny; = 1
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FIGURE 3: Optimized geometries of the Cug site in which the Cu atom is coordinated by a H,O molecule as fourth ligand. The Cu atoms are

an oxidized Cu(II) (A) and a reduced Cu(I) (B).

and n_jny; = 1. In the BS calculation of the singlet state,
if the single pair of the antiferromagnetic spin coupling
exists in the system, the (§2)Bs-value will be nearly equal
to unity with (Sé)pure = 0. For the BS calculation of the
doublet state, (?)Bs ~ 1.75 with (?)pure = 0.75. In
other word, the spin contamination (§2)SC, the deviation
of ($2)ps from (S?)pure represents the numbers of pairs of
the antiferromagnetically coupled spins (N,) in the system

under examination. Although the spin contamination (§2)SC
gives valuable information, the coupled spin-site in the
system must be identified by the spin population.

The spin contamination is a serious problem in the BS
solution. No exact procedure to remove the spin contamina-
tion is proposed at the B3LYP level. All procedures proposed
currently are approximate. In this paper, we employed the
energies for discussion without projection to the pure spin
state.

3. Results and Discussion

Figure 2 shows nineteen intermediates optimized in this
study. The reduction pathways of O, molecule at the catalytic
sites of the MV and FR CcOs are also shown to make easy
understanding our reaction scheme estimated in this study.
Their total energies, expectation values of square of spin
angular momentums, and relative energies are summarized
in Table 2. The Mulliken charge and spin populations of
atoms and groups are summarized in Tables S1-S6 in Sup-
plementary material available at doi: 10.1155/2010/182804.
The atomic distances between key atoms are also tabulated
in Table 3.

3.1. Early Stage of the O, Reduction (1-2)

3.1.1. On H,O Coordination to Cu in the Cug Site. When the
catalytic site is an oxidized state [Fe(III) Cu(II)], it was shown
that the H,O molecule coordinated to the Cu atom of the
Cug site plays a crucial role for the formation of second H,O
molecule from Fe=O of the heme a5 site [79]. However, it
is not clear whether the H,O molecule coordinates to the
Cu(I) atom in the reduced [Fe(II) Cu(I)] catalytic site at

an early stage of the reduction or not. In order to account
for possibility of coordination of H,O, the full geometry
optimizations of the Cugp site with and without H,O were
carried out. The optimized geometries with and without
H,O are shown, respectively, in Figure 3 and Supplementary
Figure S1.

It is apparent from Figure 3 that the geometry of Cu(II)
is different from that of Cu(I). For the oxidized Cu(II), the
distances between Cu and N of His290, His291, and His240
are, respectively, 1.982, 1.984, and 1.972 A, comparable with
1.957, 1.913, and 2.162 A of the reduced 10CR and 1.914,
1.920, and 2.194 A of the oxidized 10CC. The distance of
H,0 toward Cu atom is given by 2.062 A, showing that the
H,O molecule coordinates to the Cu atom as a fourth ligand.
Thus, the optimized geometry is in reasonable agreement
with the X-ray structures of the reduced 10CR and oxidized
10CC. However, the optimized geometry of the reduced
Cu(I) deviates remarkably from the X-ray structures. Three
histidines are rotated around the N—Cu bond. The distance
between Cu and N of His290 is 2.611 A, being remarkably
longer by 0.654 A than 1.957 A of 10CR. A notable distance
is 3.623 A between H,0 and Cu, being remarkably longer
than 2.062 A of the Cu(Il) geometry. However, the O atom
of H,O has the distances of 2.514 and 2.253 A toward the H
atoms of His240 and His291, respectively, indicating that the
H,0 molecule is weakly bound to His240 and His291 by the
hydrogen bonds rather than the coordination to the Cu atom.
Accordingly, it is probable that the H,O molecule is not
bound to the Cu(I) atom in the reduced catalytic site [Fe(II),
Cu(I)]. On the other hand, the optimized geometries of the
Cug site without H,O molecule are shown in Supplementary
Figure S1. Both geometries of Cu(II) and Cu(I) are almost
similar to those with the H,O molecule shown in Figure 3.
It is found that the Cug sites of the reduced and oxidized
CcOs have similar geometries to those examined here, if
they do not have any constraints such as the surrounding
peptide bonds and amino acid residues. Therefore, it can be
considered that the Cug site in the reduced 10CR observed
by the X-ray crystallographic study is energetically activated
by the steric hindrance, while the oxidized Cugp site is
energetically stable with release from the steric hindrance.
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3.1.2. FeOO in Heme as Site. It is reasonable to begin the
examination of the O;-reduction path from the reduced
catalytic site, [Fe(II) Cu(I)] shown in Scheme 1, since [Fe(II)
Cu(I)] is a common state for both MV and FR catalytic sites.
Figure 2 shows the geometry of [Fe(II) Cu(I)] (1) (same as
1 shown in Figure 1). The distances between H(W;) and
O(Tyr244), between O(W;) and H(His290), and between
H(-CH,0OH) and O(W,) are estimated to be 1.918, 2.117,
and 1.770 A, respectively, showing that W; is hydrogen-
bonded to both His290 and Tyr244, and W, is also hydrogen-
bonded to the farnesylethyl group. It is, thus, apparent that
the network of the hydrogen bonds from W, to W, through
the farnesylethyl and Tyr244 is constructed. Since the spin
density of Fe atom in heme a3 is 2.151e (Supplementary
Table S1), 1 is a triplet spin-state and has two unpaired spins
localized on the Fe atom.

Since the electronic structures of [FeOO] in the inter-
mediate 2 have been well characterized [77, 78, 102—-105],
those are briefly commented here. The intermediate 2 is a
singlet state where an O, molecule is bound to the Fe atom of
heme a3 and is 3.5 kcal/mol lower in energy than the triplet
state (Table 1). It is found from spin populations shown
in Supplementary TableS1 that the FeOO moiety has the
antiferromagnetically coupled spins localized on the Fe atom
and OO bond, consistent with the (S?) value of 0.9297 larger
than (S?) = 0.0 of the pure singlet spin-state, as shown in (2).
Two unpaired spins occupy the bonding and antibonding
orbitals of 3d on Fe and n* on OO, such as 3d,, + ﬂy* and
3dy; — my. The spin population of the Fe atom is 1.062e,
indicating that the Fe atom is oxidized from Fe(II) of 1 to
Fe(IIT) with one electron transfer from the Fe atom to the
OO bond. Therefore, at this stage of the reduction, the OO
bond receives one electron necessary to reduce the OO bond
from the reduced Fe atom.

3.2. Reduction Mechanism of MV CcO (2-7 in Figure 2). It
was shown in the previous work [80] that the cleavage of the
OO bond occurs when FeOO on porphyrin ring receives two
electrons and two protons. The OO moiety in FeOO receives
already one electron from the Fe atom to give the electronic
structure of Fe(IIT)-OO~. Accordingly, in the case of MV
CcO, the OO moiety has to receive sequentially one electron
from the Cu atom of the Cug site and two protons from the
outside of the catalytic site.

It is reasonable to suppose that the proton transfers to
OO to yield FeOOH through the hydrogen-bond network
from W, to Wy, since W, hydrogen-bonds to the terminal
Thr316 residue of the K-pathway. The intermediate 3 shown
in Figure 2 corresponds to the geometry where a proton from
the K-pathway is trapped on —CH,OH. It can be easily seen
from Tables S1 that the electronic structures of Cu and FeOO
portions do not change from those of the unprotonated state
2. Interestingly, it is found from Table 3 that W, approaches
to the proximal Op atom of FeOO with shortening the
distance of Op-O(W;) from 3.652 to 2.801 A. The distance
between the O, atom of phenol and W, is also made shorter
from 2.871 to 2.561 A, indicating that the hydrogen bond
of phenol and W; is made stronger. Thus, it is apparent
that the addition of the proton to the catalytic site from the

K-pathway induces formation of the stronger network of the
hydrogen bonds in order to open a pathway of the proton
transfer from —CH,OH to FeOO through Tyr244 and W,.

In the intermediate 4 shown in Figure 2, FeOOH is
formed. In the change from 3 to 4, protons move simulta-
neously from —CH,OH to Tyr244, from Tyr244 to W, and
from W; to FeOO. From Table 2, 4 is 33.5 kcal/mole more
stable than 3. From Supplementary Table S1, the protonated
FeOOH has negative charge of —0.561e not nearly equal to
zero, similar to —0.599¢ of the OO moiety in 3. The spin
population of OOH disappears to 0.071e from —0.959% of
OO in 3, while the spin population of the Cu atom grows
up from —0.039e to —0.507e. In the formation of 4 from 3,
the antiferromagnetic spin coupling shifts from between Fe
and OO in 3 to between Fe and Cu in 4. These indicate that
one electron transfers from the Cu atom to the OOH moiety
with changing the oxidation state of the Cu atom from Cu(I)
to Cu(II), consistent with the increase of the bond distance
of OO from 1.307 A to 1.449 A. It should be noted here that
at this stage of the reaction the OOH moiety receives two
electrons from the reduced Fe and Cu atoms and one proton
from the K-pathway.

In order to explore the formation of 4 from 3 in more
details, the H-atom on —CH,OH," moved toward the O.-
atom of Tyr244 in a stepwise manner. Supplementary Fig-
ure S2 shows the change of the relative energy, the variations
of charge and spin populations for the key atoms and OO
(OOH) moiety and the atomic distances. The relative energy
rapidly decreases from 7.4 to —14.4 kcal/mol in range of 1.4
and 1.35 A. Supplementary Figure S3 shows the geometries
3a and 4a at Roy = 1.4 and 1.35A, respectively. It is found
that the proton of Tyr244 transfers simultaneously to W, in
the geometry 3a with the proton transfer from —CH,OH
to Tyr244. At 1.35A, the proton of Tyr244 has transferred
to Wy, and simultaneously the other proton of W, has
transferred to FeOO to yield the FeOOH moiety. From
simple insight, it seems that W;H*, which is formed by
receiving a proton from Tyr244, blows off the other proton
to FeOO. However, W, H" is a transient state on the potential
energy surface [78]. With decreasing the energy without
barrier, W H" moves to approach to proximal Oy, of FeOO,
and at about 2.6 A a proton shifts from W,H* to FeOO
to give FeOOH, and remainder W, switches back to the
original position to give the state 4a. It can be seen from
the change of the spin populations that the electron transfers
from Cu to FeOOH at the same time of formation of FeFOOH.
Apparently the structural change from 1.4 to 1.35A is
continuous. Accordingly, the reaction from 3 to 4 proceeds in
mechanism of the proton-coupled electron transfer (PCET)
with the activation energy of about 7.4 kcal/mol.

The intermediate 5 corresponds to the geometry that
a proton from the K-pathway is captured on —CH,OH of
farnesylethyl group in 4. 5 is a singlet spin-state that the
antiferromagnetic spin coupling exists on Fe(III) and Cu(II).
Similar to the formation of FeOOH from 3 to 4, the H-
atom on —CH,OH," moved toward O, (Tyr244) from the
geometry of 5. A proton of Tyr244 moves simultaneously
to W;. The formed W;H' does not move toward FeOOH
to yield FeOOH, or FeO + H,O, in contrast to the case
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TaBLE 2: Total energies (au), expectation values of square of spin angular momentums (au), and relative energies (kcal/mol) of optimized
intermediates.

Intermediates (C,2S+1)* Eiotal (§%) AE,q

1 (1, 3) —5548.568706 2.1488

2 (1, 1) —5698.927805 0.9297 0.0 26.7°
(1, 3) —5698.922264 2.0241 3.5

3 (2, 1) —5699.226658 0.9388 0.0

4 (2,1) —5699.280053 1.0223 -33.5

5 (3, 1) —5699.492987 1.0247 0.0

6 (3,1) —5699.501523 1.0280 —-5.4

7 (3,1) —5699.526079 2.0580 —20.8

8 (0,2) —5699.056867 0.7749 81.0¢ 60.5¢

9 (1,2) —5699.450706 0.7843 0.0

10 (1,2) —5699.538816 0.7663 —55.3

11 (2,2) —5699.846714 0.7672 0.0

12 (2,2) —5699.870050 0.7720 —14.6

12a (2,2) —5699.866225 0.7715 —12.2

13 (2,2) —5699.906221 1.7773 —-37.3

14 (2,2) —5776.364920 1.7725

15 (1, 3) —5776.635143 2.0192

16 (2,3) —5777.019546 2.0295

17 (3,3) —5777.261791 2.0402

18 (3,3) —5624.389728 2.2087

19 (2,4) —5624.742138 3.8743

2(C, 25+1) means (total charge, spin multiplicity).
b0,-binding energy: AEy = E(2) — E(1) — E(O,).
Electron affinity of 2:AE,q = E(2) — E(8).
doz’—binding energy: AE; = E(8) — E(1) — E(O27).

TABLE 3: Interatomic distances (A) of key atoms in the optimized intermediates®.

Intermediates Fe-O, 0,-0y Op,-0 (W) O.-0O(W)) 04-0 (W) Cu-0 (W3) 0,-0 (W3)
1 2.850 2.746

2 1.879 1.301 3.652 2.871 2.744

3 1.891 1.307 2.801 2.561 2.528

4 1.856 1.449 2.953 2.743 2.716

5 1.866 1.465 2.791 2.581 2.503

6 1.887 1.479 2.528 2.558 2.677

7 1.658 2.631 2.758 2.807 2.690

8 1.941 1.328 3.073 2.891 2.745

9 1.918 1.336 2.593 2.481 2.567

10 1.827 1.443 3.090 2.745 2.744

11 1.844 1.453 2.726 2.532 2.532

12 1.908 1.484 2.506 2.650 2.712

12a 1.875 1.489 2.497 2.668 2.708

13 1.660 2.650 2.865 2.954 2.722

14 1.676 2.646 2.862 2.954 2.723 2.037 2.601
15 1.841 2.514 2.713 2.967 2.750 1.904 2.804
16 1.928 2.710 2.713 2.738 2.722 1.926 2.510
17 2.057 2.582 2.670 2.701 2.697 2.068 2.742
18 2.758 2.692 2.042

19 2.815 2.717 2.227

20xygen symbols, Oy, Oy, Oc, and Oy, are shown in Figure 2. O, and Oy, are oxygen atoms to be reduced to 2H,0, O, and Og4 are oxygen atoms of phenol
(Tyr244) and —CH,OH, respectively.
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from 3 to 4. The geometry 6 with W;H* was obtained.
The variations of energy and spin populations with moving
the proton to O, of Tyr244 is shown in Supplementary
Figure S4. The activation energy of the proton transfer is
about 9.3 kcal/mol, slightly higher by 1.9 kcal/mol than that
from 3 to 4. The geometry 6 is 5.4 kcal/mol lower than 5,
smaller than 33.5 kcal/mol from 3 to 4. From Supplementary
Table S2, the change from 5 to 6 proceeds in the proton
transfer without the electron transfer from the Cu(II) atom.

The geometry 7 corresponds to the intermediate where
the H,O molecule is formed by cleaving the OO bond
and moving the proton from W;H" to separated OH™.
The 7 is 15.4 kcal/mol lower than 6, and is a singlet spin-
state with the expectation value of the squared spin angular
momentum of 2.0580, indicating existence of two pairs
of the antiferromagnetic spin couplings in 7. The spin
population of Fe=O is given by 2.078e with two parallel
unpaired spins distributed over Fe=0, showing Fe(IV)=0%".
The molecular orbitals corresponding to Fe=0O are composed
of two antibonding orbitals of d, (Fe)-p, (O) and d,. (Fe)-
px (O), which are the same as those of the naked heme(Fe)=0
(78, 80]. The Cu atom has the spin population of —0.590e
(—1.001e for the Cug site), showing that the oxidation state
of the Cu atom does not change from Cu(Il), compared with
those of 6. However, the spin population of the porphyrin
ring decreases in negative value from —0.350 to —1.089%,
and the charge population increases from —0.729 to —0.173e.
This indicates that the porphyrin ring loses one electron and
has single unpaired electron of the antiparallel spin to the
Fe=0. Accordingly the heme a3 site is thought to be the
compound I with the radical cation of the porphyrin ring
(78, 80, 106-108], consistent with the experimental results
of the time resolved Raman spectroscopy [109, 110]. The
Fe—0, distance is estimated to be 1.658 A, comparable with
1.64—1.70 A determined by experiments [111, 112], and with
1.669 A of theoretical value [106].

In order to confirm the connection from the state 6 to
7, the O-O distance of FeOOH is increased. Supplementary
Figure S5 shows the energy change with increasing the O—
O distance from the state 6. The energy increases and has
a maximum of 4.9 kcal/mol at Roo = 1.8 A. Supplementary
Figure S6 shows the geometries at Rop = 1.6 and 1.7 A.
It is easily found that the proton moves from W;H" to
FeOOH™ to yield the H,O molecule at the early stage of the
OO-bond cleavage. After passing Roo = 1.8 A, the energy
decreases gradually and crosses to the potential energy
surface connecting to the state 7.

For MV CcO, only one water molecule was produced
by two-electron reduction of the oxygen molecule. Two
electrons are provided from the reduced Fe(II) of heme a3
and Cu(I) of the Cug site, while two protons are provided
from the network of hydrogen bonds including W, Tyr244,
—CH,0H, and W, connecting to the terminal Thr316 of
the K-pathway. When Fe(II)OOH~ (4) is formed from
Fe(II)OO~ (2) by the proton transfer, the electron transfers
from Cu(I) to Fe(III)OO~ in manner of PCET. On the
pathway from 6 to 7 where the H,O molecule is produced,
the recombination of the electronic structure occurs at the
catalytic site, in good agreement with observation that the

reduction in MV CcO is 5-6 times slower than in FR CcO
2,3, 32].

3.3. Reduction Mechanism of FR CcO

3.3.1. First H,O Formation (2, 8~13 in Figure 2). On the
contrary to MV CcO, in FR CcO, there are two more electrons
to reduce the O, molecule in the reaction system, heme a
and Cuy site. It is, thus, expected that one electron is put
into the catalytic site from heme a after the intermediate 2 is
formed. The geometry 8 in Figure 2 is a one-electron reduced
state of 2.

The 8 is 81.0kcal/mol lower than 2, indicating the
possibility that the O,-adduct 2 to heme a3 can receive easily
an electron. 8 is also the bound state with 60.5 kcal/mol lower
than the dissociation state of 1 and O, . It is found from
Supplementary Table S3 that the unpaired spin is localized
on the OO moiety with small distribution of 0.157e on the
Fe atom, showing that 8 is reduced by the addition of one
electron with changing the oxidation state from Fe(III) to
Fe(II). The charge populations on the porphyrin ring and
OO moiety are increased in negative values, showing that
the paired electrons are delocalized to the porphyrin ring and
OO moiety. These features are consistent with the results for
the reduced heme [113, 114].

It is reasonable to consider that the increases of the
electron-negative characteristic on the porphyrin ring and
OO moiety enhance the possibility of receipt of a proton.
It is expected that the proton is provided to the catalytic
site through the K pathway similar to the MV CcO. The
intermediate 9 is an optimized geometry where the proton
is trapped on —CH,OH with decreasing the energy by 0.394
au from 8, compared with 0.299 au from 2 to 3. It is found
from Table 3 that W, approaches to the proximal Oy, atom of
FeOO with shortening the distance of O,-O(W;) from 3.073
to 2.593 A. The distance of O.-O(W,) is also shortened from
2.891 to 2.481 A. These show that the hydrogen bonds are
made stronger among phenol, Wy, and Oy, of FeOO.

Similar to the variation from 3 to 4 in MV CcO, the H
atom of Tyr244 was moved toward O of W, from b. It is
found from Supplementary Figure S7 that the relative energy
is rapidly decreased in the region from 1.3 A to 1.2 A, being
similar behavior to the rapid decrease from 1.4 A to 1.3 A to
yield FeOOH (4) from FeOO (3) in the MV CcO. In this
region, the H atom of W, transfers as a proton to FeOO (9)
to give FEOOH (10). This structural change is fairly similar
to that found in MV CcO. The spin populations of Fe and
OO are rapidly increased from 0.3 to 0.95e and decreased
from 0.9 to 0.1e, respectively. On the contrary, the oxidation
state of the Cu atom maintains Cu(I). This shows that an
electron of Fe transfers to the OO moiety to make a paired
spin with an unpaired electron of OO. Namely, the proton
transfer occurs concertedly with the electron transfer from Fe
to OO, being different from the electron transfer from Cu to
OO0 in MV CcO. From the small activation energy, the proton
from K-pathway transfers to Tyr244 without the capture on
—CH,OH. The formed 10 is 55.3 kcal/mole lower than 9 and
has an unpaired spin localized on the Fe atom in 10. At this
stage of the reaction, the OOH moiety receives two electrons
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and one proton necessary for performing the reduction of
the O, molecule. (Supplementary Figure S7).

In order to yield the FeOOH (10) from FeOO (2), the
electron and proton were sequentially added. However, the
alternative path to obtain 10 can be considered, as shown in
Scheme 2. The path from 2 to 10 through 8 and 9 has been
mentioned in this section. The path from 2 to 4 through 3
was also mentioned as a path of the MV CcO in the preceding
section. The catalytic site of 4 is simply presented by [Fe(III)-
OOH™ Cu(II)]. The [Fe(III)-OOH™ Cu(I)] (10) can be easily
obtained by addition of an electron to the catalytic site of
4 from the heme a site, if the added electron occupies the
3d orbital of the Cu atom. Actually, in our calculation, the
addition of an electron to 4 gave 10 with decrease of the
energy by 0.2588 au, as found from Table 2. We would like
to discuss later which path is favorable.

The geometry 11 is an intermediate where a proton from
the K-pathway is trapped on —-CH, OH, corresponding to 5 in
formation from FeOOH to FeO + H,O. Similar to the proton
transfer from 3 to 4, the H-atom on —CH,OH," was shifted
toward O(Tyr244) from the geometry of 11. Supplementary
Figure S8 shows the change of the relative energy. In contrast
with the rapid decrease of energy from 3 to 4, the change of
energy shows the smooth curve to connect continuously to
the state 12 with the activation energy of about 6.4 kcal/mol.
The intermediate 12 is 14.6 kcal/mol lower than 11, which
is remarkably smaller than 33.5kcal/mol from 3 to 4.
(Supplementary Figure S8)

The 12 has the structure of FeOOH, where H is added
to FeOOH of 11. The charge population of the porphyrin
ring and OOH moiety changes from —0.413 to —1.032e and
from —0.583 to —0.065e, respectively. The spin populations
of the porphyrin ring and OOH moiety do no change. This
shows that the added H to FeOOH is a proton without any
electron transfer. The OO scission does not occur with the
OO distance of 1.484 A which is slightly longer than 1.453 A
in the state 11, in contrast with the OO-bond cleavage on
the naked heme by receiving two electrons and two protons
[80]. This might be due to the hydrogen bond to W; which
is hydrogen-bonded to His290 and Tyr244.

We cleave the OO bond from the geometry of 12.
Supplementary Figure S9 shows the changes of the relative
energy. The energy gradually increases with breaking the OO
bond and decreases through the maximum point at Roo =
1.9 A. On the optimization at Roo = 2.0 A using the geometry
optimized at Roo = 1.9 A, the energy was rapidly decreased.

Bioinorganic Chemistry and Applications

As can be seen in Supplementary Figure S10, the difference in
two geometries at Roo = 1.9 and 2.0 A is found in directions
of OH bond in OOH,. The OH of H,O faces to the Cug
site at Roo = 1.9 A, while the OH faces to the porphyrin
ring at Roo = 2.0A. Using the optimized geometry and
the molecular orbital at Roo = 2.0 A, we carried out again
the geometry optimization at Roo = 1.8 A. The geometry
where the OH faces to the porphyrin ring was obtained.
It possesses 5.1 kcal/mol lower in energy than the original
geometry where OH faces to the Cug site. Decreasing the OO
distance from geometry at Roo = 1.8 A, the potential energy
curve crosses with the original curve at Roo = 1.7 A and has
a maximum at Roo = 1.65 A. Finally the minimum energy
point, 12a, was obtained with the OO distance of 1.489 A,
comparable with 1.484 A of 12. The 12a is only 2.4 kcal/mol
higher than 12, showing that 12a has higher possibility to
cleave the OO bond because of lower activation energy of
2.3 kcal/mol than 7.6 kcal/mol from 12. From Tables S4, the
charge and spin populations of 12a are the same as those
of 12. The change of direction of the OH bond from 12 to
12a has small activation energy of 3 kcal/mol, showing the
possibility to easily convert from 12 to 12a before the OO
bond breaking.

On the other hand, the increase of the OO bond length
leads to the monotonous decrease of the total energy and
finally the intermediate 13 was obtained as a minimum
geometry. The 13 is 25.1 kcal/mol lower in energy than 12a.
Interestingly, it is apparent from the geometry shown in
Figure 2 that the first H,O molecule is formed with small
activation energy of 2.3 kcal/mol. The spin populations of the
FeO moiety formed are 2.081e (= 1.304e(Fe) + 0.774e(0)),
showing that the Fe=O moiety has two unpaired spins with
parallel direction. The spin populations of the Cug site grow
up from zero value to —0.711e in negative value. The spins
of Fe (§ = 1) and Cu (S = 1/2) are antiferromagnetically
coupled, in agreement with experimental proposal [32].
This shows that the oxidation state of the Cu atom alters
from Cu(I) to Cu(II) with loss of one electron, consistent
with change of the charge population of the Cugp site from
1.095e to 1.536e. Therefore, it is formally considered that
one electron of Fe(IIl) transfers to the O atom and one
electron of Cu(I) also transfers to the O atom to yield
the Fe(IV)=0?" bond. Accordingly, the heme a3 of 13 is a
compound II, even that the porphyrin ring has small spin
population.

Figure 4 summarizes schematically the energy variations
for the formation of first H,O molecule from 11 to 13.
At the early stage of the reaction from 11, the proton
transfers to FeOOH to yield 12 (FeOOH,) through the
K-pathway with the activation energy of 5.4 kcal/mol and
exothermic energy of 14.6 kcal/mol. After 12 was formed,
12 is converted to 12a with the rotation of OH in FeOOH,
in order to connect smoothly to 13. The rotation barrier
is estimated to be 3.3 kcal/mol, showing that the transition
state is extremely lower than 11. Consecutively, the OO bond
cleavage is induced to produce first H,O molecule with small
activation energy of 2.3 kcal/mole and exothermic energy
of 25.1 kcal/mol. The rate determining step of the reaction
from 11 to 13 is the first one from 11 to 12. Since 12, 12a,
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FIGURE 4: Energy diagrams for formation of first H,O molecule in
FR CcO.

and 13 are lower in energy than 11, this reaction easily
proceeds when the catalytic site captures one proton from
the K-pathway. It is probably considered that the rotation
of OH and cleavage of the OO bond occurs concertedly
without forming 12 and 12a to yield the desired H,O
molecule.

3.3.2. Second H,O Formation (14—17 in Figure 2). As men-
tioned above, three electrons from heme a, Cu, and Fe and
two protons from the K-pathway have been used to produce
a first H,O molecule. Thus, second H,O molecule should be
produced by remainder one electron and two protons. It has
been shown in a recent study [57, 58] that the D-pathway
links to the catalytic site through the hydrogen-bond network
of water molecules. The oxidation state of Cu in 13 is an
oxidized Cu(II). As discussed in Section 3.1.1, the oxidized
Cu(II) has possibility of fourth ligand of the H,O molecule.
Thus it is reasonable to consider that the D-pathway is open
for the hydrogen-bond pathway connecting to the Cu atom
in the Cug site to make coordination of H,O to Cu after the
intermediate 13 was formed.

The structure where the H,O molecule (W3) coordinates
to the Cu atom is shown as 14 in Figure 2. From charge
and spin populations shown in Supplementary Table S5, it
is found that the electronic structure of 14 is similar to that
of 13, even though the spin population on the Cu atom is
slightly enhanced. The distance between Cu and O of the
coordinating H,O (W3) is estimated to be 2.037 A, in good
agreement with 2.062 A of the Cug site model in Figure 3.
The distance between H of W3 and O, of Fe=0O, in heme a;
is estimated to be 1.592 A, longer than 1.435 A given in the
previous work [79]. However, 1.592 A is slightly shorter than
the standard hydrogen-bond distance. Thus, the added W3
coordinates to Cu in the Cug site and makes the hydrogen
bonding to Fe=O in heme as, simultaneously. The Fe=O
distance of 1.676 A is unchanged from 1.660 A in 13 upon
the addition of H,O molecule.

11

The last one electron of four electrons necessary for
the reduction of O, was added to 14 without changing
the geometry of 14. The subsequent geometry optimization
induces the proton transfer from W3 on Cu to O, of Fe=0,,
giving 15 with FeOH in heme a3. Obviously, the one-electron
reduced 14~ is a transient state on the potential energy
surface. The Fe-O and O-H distances of FeOH are given to
be 1.841 A and 0.991 A, respectively, showing formation of
a strong OH bond on Fe. The (S$?) value of 15 is found to
be 2.0192, being close to 2.0 of the pure triplet spin-state.
The spin population of Fe plus OH(Fe) is 1.047e, while that
of the Cugp site (Cug plus OH(W3)) is 1.001e, indicating
that two up-spins are localized on Fe and Cu, respectively.
Thus, the oxidation state of the Fe atom changes from
Fe(IV) of 14 to Fe(Ill) with keeping the oxidation state of
Cu(II). However, the spin population on Cu is discontinuous
because of the change from negative value of 14 to positive
one of 15, implying the spin-flip on Cu from 14 to 15. In
the 14~ state, the added electron occupies 3d orbital of the
Cu atom to change the oxidation state from Cu(II) to Cu(]),
while the Fe=O moiety keeps two parallel up-spins. With the
proton transfer from W3, an electron of the down-spin in
the Cu atom simultaneously transfers to Fe=0, yielding the
Fe(II1)-OH™~ and Cu(IT)-OH™ of 15. This concerted proton-
electron transfer gives the continuous change from the 14~
state to 15.

Two protons remain to produce a second H,O molecule
from the intermediate 15. One proton was added to OH~
on Cu in 15 under the assumption that the proton enters
the catalytic site through the D-pathway. This 15H" is also a
transient state on the potential energy surface. The geometry
optimization leads to the proton transfer from the formed
H,O (W3) to FeOH, yielding the H,O molecule on the
Fe atom as a second productive H,O, as shown in 16.
Compared the charge and the spin populations of Cu and
Fe in 15 and 16, those stay invariant through the proton
transfer, showing that the oxidation states of Cu and Fe
remain unchanged from Cu(II) and Fe(III). Accordingly,
these features show that the change from 15 to 16 is a simple
proton transfer without electron transfer, being different
from the concerted proton-electron transfer from 14~ to 15.
In the structure of 16, the distance of Fe and the formed
H,O is given by 1.928 A, showing that the formed H,O
is weakly bound to heme as. This is due to the strong
attraction of the hydrogen bond to OH™ coordinating to the
Cu atom.

At this stage of the reaction, the aimed second H,O
molecule has been produced, although the fourth proton
still remains unused for the reduction in the catalytic site.
It is reasonable to consider that the fourth proton enters
to neutralize the OH™ on Cu through the D-pathway. The
neutralized geometry is shown as 17. The second H,O
molecule is slightly separated from Fe with changing the
distance from 1.928 A in 16 to 2.057 A in 17. The Fe and Cu
atoms are oxidized with the oxidation states of Fe(IIl) and
Cu(II), compared with reduced states of Fe(II) and Cu(I) at
the starting point of 1. The state 17 is a triplet spin-state
with the ferromagnetic coupling of two unpaired spins on
Fe and Cu. At this stage of the reaction, the O, molecule is
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FIGURE 5: Schematic structures of the catalytic sites of Py, Pg, F, and
O proposed in experimental studies.

reduced to two H,O molecules by four electrons and four
protons.

3.3.3. Catalytic Cycle (17-19, 1). Both the Fe and Cu atoms
should be reduced to complete the catalytic cycle, since the Fe
and Cu atom in 17 are oxidized. At this stage of the reaction,
the formed two water molecules will be excluded from the
catalytic site. The geometry without two H,O molecules is
shown as 18 in Figure 2. The Cu-O(W3) distance does not
alter from 2.068 A of 17 to 2.042 A of 18. After exclusion
of two water molecules, it is expected that two electrons are
sequentially put into the catalytic site from heme a in order
to reduce both Fe and Cu atoms. The first electron occupies
the 3d.: orbital of the Fe atom not the 3d,, orbital, giving the
intermediate 19 with three parallel spins localized on Fe and
Cu. 19 is a quartet spin-state.

The second electron occupies 3d orbital to reduce the Cu
atom and simultaneously the W3 coordinated to the Cu atom
is released because of Cu(I), leading to the closure of the
D-pathway. Finally, the reduced catalytic site of 1 reverts to
perform the next reduction of the O, molecule. At this stage,
the catalytic cycle of FR CcO is completed.

4. Summary of Reduction Mechanism

As shown in Scheme 1, several intermediates have been
experimentally observed in the reduction of O, molecule.
Their intermediates have been assigned by R, A, and Py in
reduction by MV CcO, while R, A, Pg, E and O have been
assigned in this order through the catalytic reaction by FR
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CcO. There is consensus that the intermediate R is composed
of the reduced Fe(II) and Cu(I) and A has the structure where
the O, molecule is bound to Fe in heme as;. However, the
proposals for structures of Py, F, and O are in debate.

Summarized in Figure 5 are the schematic structures
which have been proposed by experimental studies up to
now. HOY shows a neutralized Tyr244, while ~OY and
"OY shows a deprotonated Tyr244 and a neutralized Tyr244
radical, respectively. Also shown in the parenthesis are total
charge and spin multiplicity that are estimated from the pro-
posed structure. For each of P, and E those are apparently
conflicting in the state of the Cug site including Tyr244.
These might be from speculation due to the fact that the
Cug site is silent for observations of EPR and spectroscopy
and the phenol has properties of a proton and electron
donors. Several points are, however, common for Py, Pg,
and F. The heme a3 moiety has the electronic structure of
Fe(IV)=0?" and compound II where the porphyrin ring is
neutral. In the bond of Fe(IV)=0?%", two spins are coupled
ferromagnetically.

In this work, we theoretically examined the reduction
mechanisms of O, molecule at the catalytic sites of MV and
FR CcOs. Our mechanisms are summarized in Scheme 3. The
intermediate A (2) is produced by binding O, on Fe of heme
as in the reduced state R (1). The reduced Fe atom is oxidized
and an electron of Fe transfers to dioxygen, yielding Fe(III)-
OO in the singlet biradical state.

For MV CcO, after A is formed, two protons are sequen-
tially added to the catalytic site through the K-pathway.
The first proton transfer provides the Fe(III)OOH™ (4) with
simultaneous electron transfer from Cu(I) to FeEOOH. The
activation energy for the proton transfer was estimated to
be 7.4 kcal/mol. The addition of the second proton leads to
the OO bond cleavage to produce the H,O molecule (7).
As shown in Supplementary Figure S5, the recombination of
the electronic structure occurs at the catalytic site, in good
agreement with the observation that the reduction in MV
CcO is 5-6 times slower than in FR CcO [2, 3, 32]. The heme
as is a compound I with a radical cation of the porphyrin
ring, consistent with the experimental result of the time
resolved Raman spectroscopy [109, 110].

We assign the intermediate 7 as Py, being in conflict
with Pyl [22, 32, 43, 44, 74, 83, 115] shown in Figure 5.
The intermediate Py;1 is obtained under the consideration
that the proton transfers from Tyr244 to FeOO to yield
hydroperoxide and subsequently one electron transfer from
Cug is induced to cleave O—O bond [3]. Then third electron
transfers from Tyr244 to Pe-O to yield Fe(IV)=02" and
tyrosyl radical. As shown in 4, on the pathway that the
Fe(III)OOH™ is formed, an electron certainly transfers from
Cu(I) to FeOOH. However, the cleavage of the OO bond
does not occur in 4. The OO bond breaking necessitates
the addition of one proton to Fe(III)OOH™. In our trial
calculations (not shown here), Py1 is 12.4 kcal/mol higher
than A, indicating that the reaction from A to Pyl is
endothermic. The distance between H of phenol and O,
of FeOO is estimated to be 4.697 A, which is too far to
perform the proton transfer. The reasonable distances for
the proton transfer are in the range of 1.4-1.8 A. At least
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ScHEME 3: Schematic representation of the mechanisms for O,-reduction by MV and FR CcOs.

one more H,O molecule is necessary to induce the proton
transfer between FeOO and Tyr244 [70, 71]. Even the H,O
molecule(s) are added, the endothermicity of the reaction
will not be changed. In addition, the phenoxyl radical has -
character, not o-character. The pathway interacting with the
n-orbital of the phenoxyl radical is necessary to induce the
smooth electron transfer from Tyr244 to FeO. However, it is
not expected from the structure of the catalytic site.

It can be thought in our examinations that the inter-
mediate A is a branching point to divide mechanisms of
MYV and FR. For FR CcO, before two protons transfer from
the K-pathway, an electron transfers from heme a to the
catalytic site with changing the oxidation state of the Fe atom
from Fe(III) to Fe(Il). After the state 8 was formed, two
protons sequentially transfer from the K-pathway to reduce
the dioxygen of FeOO. As discussed in Scheme 2, there is
an alternative pathway that the order of the electron and
proton transfer is reversed. The addition of an electron to
4 leads to 10. The path from 2 to 10 through 4 has the proton
acceptability (proton affinity) of 0.2989 au (Table 2) from
the K-pathway and the activation energy of 7.4 kcal/mol
for the proton transfer in the catalytic site. The addition
of an electron to the intermediate A to provide the state 8
induces decreasing the energy by 0.1291 au (positive electron

affinity). The state 8 has the higher proton acceptability of
0.3938 than 0.2989 au from A to 3. There is no activation
energy (~0.2kcal/mol) for the proton transfer to produce
the state 10. Thus, the path A-8-10 is preferable to the
path A—4-10, in agreement with the experimental proposal
that an electron transfers from heme a to heme as after the
intermediate A is formed [61, 64].

We assign the intermediate 13 as Pg, being in conflict
with Prl [32, 43, 74] and PR2 [22, 44, 56, 83, 115] except
for Fe(IV)=0?~ in compound IL In the Cug site, the 13 has
the oxidized Cu(II) without any ligand, while both Pr1 and
Pr2 have a hydroxy anion. P2 has the ~OY anion at the site
of Tyr244 and is connected by addition of one electron to
Py1. As mentioned above, these conflictions are originated
by differences of the procedure of the proton donation to
the dioxygen. HOY plays roles of the donations of a proton
and an electron to FeOO in Pl and Pr2, while it aids to
transfer a proton from the K-pathway without any electron
transfer in our Pr. When 8 changes to 9 in which the proton
was trapped on -CH, OH of heme a3, W approaches to both
FeOO and HOY to make the strong network of the hydrogen
bonds from the K-pathway to FeOO through W,, -CH,OH,
HOY, and W;. Thus, W; moves to help the transportation
of the proton from the K-pathway to the dioxygen moiety.
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In the process of formation of first H,O molecule (2, 8-
13), since W; walks around the space composed of FeOO,
HOY, and His290, W; will not be detectable in the X-ray
crystallographic measurement [7-12]. It is thought that the
first H,O molecule cannot be formed without Wy, being
consistent with the observation that the reduction does
not proceed by the mutation of His290 [51-54]. Therefore,
W, plays a crucial role for the formation of the first H,O
molecule in the reduction of O, molecule, while HOY plays
a role of a relay point for the proton transfer from the K-
pathway to the dioxygen.

The oxidation state of the Cu atom maintains the reduced
Cu(I) on the path from the intermediate A to Pg, and Cu
is oxidized to Cu(II) at the formation of the intermediate
Pr. During this process, the Fe atom receives an electron
from heme a and delivers the electron to the OO moiety.
The intermediate Py is stabilized by the release of the energy
of the steric hindrance with the change of the oxidation
state of the Cu atom from Cu(I) to Cu(Il), as can be seen
from Supplementary Figure S1. Then the Cu atom has high
potentiality of the coordination of the H,O molecule, as
shown in Figure 3. At this stage, the D-pathway is open. An
H,0 molecule coordinates to the Cu atom, giving 14. We
assign the intermediate 14 as E.

For F, F1 [32], F2 [22], F3 [19, 44, 83], and F4 [43,
74] are proposed based on the spectroscopic observation.
These proposed four structures have a common Fe(IV)=0?%,
being coincident with our E The Cup and tyrosine sites
are, however, different. F4 is a transient state that is on the
path from 14 to 15 in our reduction process. When the Cu
atom is reduced, immediately the proton transfers from the
coordinating H,O to FeO with the simultaneous electron
transfer from Cu(I) to FeO, giving 15. It is surprising that
F3 is similar to Prl. We could not make a comment which
is assigned to Pr or E. F2 is obtained by the addition of the
proton to P2 [22]. Our F has a neutralized HOY with the
total charge of two, which is different from ~OY of F2. F1
coincides with our E. We would like to consider that this is an
accidental agreement, because F1 is thought to be obtained
by addition of the proton to Prl. However, it might be
concluded that the intermediate F has the structure such as
F1 and our F. Our assigned F has the same oxidation state as
Py, in good agreement with the proposal that the Pr — F
transition is not coupled with the electron transfer [61].

Sequential additions of one electron and two protons
lead to the intermediate 17 through 15 and 16. Interestingly,
15 is the same as O2 shown in Figure 5 [44, 115]. Also 16 is
the same as O3 [43, 74, 83]. Similar to the sequential addition
of protons in the process from 8 to 10, 15 and 16 will not be
detectable. Since it could be considered that 17 is stabilized,
we assign 17 as O. For the process of the formation of the
second H,O molecule (14-17), the Cu atom is maintained
the oxidized Cu(II), in interest contrast with the process of
the formation of the first H,O molecule (8-13) that the Cu
atom is maintained the reduced Cu(I). Further, through the
formation of two water molecules, the Fe atom is always
the oxidized Fe(III) except for the intermediate 8 of Fe(II),
and the intermediates 13 and 14 of Fe(IV)=02". The 18 is
obtained by removing two produced H,O molecules from 17
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to the outside of the catalytic site. However, the possibility
that 18 is assigned as O is left.

Four electrons and four protons are used to produce two
water molecules for the reduction of the oxygen molecule
in the catalytic site of FR CcO. Two of four protons are
provided from the K-pathway to produce the first water
molecule, while the remainder two protons are from the
D-pathway to produce the second water molecule. In our
reduction mechanism, the K-pathway is ahead of the D-
pathway, in conflict with the reversed order proposed from
the experiments [44, 60, 61]. Our mechanism is, however,
consistent with the recent observation that mutations in
the K-pathway slowed down the formation of the Pg
intermediate [64].

5. Concluding Remarks

We have examined systematically the reduction mechanisms
of the oxygen molecule in the mixed-valence and fully
reduced CcOs and shown consistently the catalytic cycle
based on the theoretical calculations. The W7 added to the
catalytic site plays crucial roles for the production of the
first water molecule. However, W; is not observable for
the X-ray crystallographic measurement due to the rapid
motion in the catalytic site. The W3 coordinated to Cu also
plays crucial roles for the production of the second water
molecule. The Cu atom is an electron storage during the
formation of the first water molecule, while the Cu atom
keeps the oxidized state of Cu(II) during the formation of
the second water molecule. Some aspects of our mechanism
are in good agreement with the experimental proposals, but
some aspects are in disagreement. In our mechanism, Tyr244
plays a relay for the proton transfer from the K-pathway
to the dioxygen moiety. It is unreasonable that Tyr244 is
the proton and electron donors, since the distance between
Tyr244 and the dioxygen moiety is too long. The K-pathway
functions for the formation of the first water molecule, while
the D-pathway functions for the second molecule. This order
is reversed in the experimental proposal.

We have examined the bovine CcO which belongs to the
Al family aas [17, 18]. The Al family has the K- and D-
pathways for the proton channels, while the B family bas
has only the K-pathway. Actually, in our trial calculation for
1XME of the B family (not shown here), the proton does not
easily transfer from H,O of the Cug site to Fe=O on the way
from 14 to 15 [74]. The reduced 14~ is not a transient state
on the potential energy surface. This may indicate that the D-
pathway proposed by us is not available for the second water
molecule, consistent with characteristics in the B family. It
is probable that the reduction mechanisms of the Al and B
families are different. Thus, it can be thought that the Al
family should be at least distinguished from the B family.

Acknowledgments

This work was partially supported by Grant Aid for Scientific
Research (nos. 13440196 and 13128207) of The Japanese
Ministry of Education, Science and Culture, and CREST
(Core Research for Evolutional Science and Technology) of



Bioinorganic Chemistry and Applications

the Japan Science and Technology Corp. (JST). We greatly
thank Ayaka Nakata, Tomoya Kawakubo, Takashi Kuruma,
and Hiroko Kawai, who were graduate students of Mie
University, for several parts of calculations in this work.

References

[1] B. G. Malmstrom, “Cytochrome c oxidase as a redox-linked

proton pump,” Chemical Reviews, vol. 90, no. 7, pp. 1247—
1260, 1990.

G. T. Babcock and M. Wikstrém, “Oxygen activation and the
conservation of energy in cell respiration,” Nature, vol. 356,
no. 6367, pp. 301-309, 1992.

S. Ferguson-Miller and G. T. Babcock, “Heme/copper ter-
minal oxidases,” Chemical Reviews, vol. 96, no. 7, pp. 2889—
2907, 1996.

M. K. E Wikstrom, “Proton pump coupled to cytochrome
¢ oxidase in mitochondria,” Nature, vol. 266, no. 5599, pp.
271-273,1977.

S. Iwata, C. Ostermeier, B. Ludwig, and H. Michel, “Structure
at 2.8 A resolution of cytochrome c oxidase from Paracoccus
denitrificans,” Nature, vol. 376, no. 6542, pp. 660-669, 1995.
C. Ostermeier, A. Harrenga, U. Ermler, and H. Michel,
“Structure at 2.7 A resolution of the Paracoccus denitrificans
two-subunit cytochrome ¢ oxidase complexed with an anti-
body FV fragment,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 94, no. 20, pp.
10547-10553, 1997.

T. Tsukihara, H. Aoyama, E. Yamashita, et al., “Structures of
metal sites of oxidized bovine heart cytochrome c oxidase at
2.8 A Science, vol. 269, no. 5227, pp- 1069-1074, 1995.

T. Tsukihara, H. Aoyama, E. Yamashita, et al., “The whole
structure of the 13-subunit oxidized cytochrome c oxidase at
2.8 A Science, vol. 272, no. 5265, pp- 1136-1144, 1996.

S. Yoshikawa, K. Shinzawa-Itoh, R. Nakashima, et al,
“Redox-coupled crystal structural changes in bovine heart
cytochrome c oxidase,” Science, vol. 280, no. 5370, pp. 1723—
1729, 1998.

T. Tsukihara, K. Shimokata, Y. Katayama, et al., “The low-
spin heme of cytochrome ¢ oxidase as the driving element
of the proton-pumping process,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 100,
no. 26, pp. 15304-15309, 2003.

K. Shinzawa-Itoh, H. Aoyama, K. Muramoto, et al., “Struc-
tures and physiological roles of 13 integral lipids of bovine
heart cytochrome c oxidase,” The EMBO Journal, vol. 26, no.
6, pp. 1713-1725, 2007.

K. Muramoto, K. Hirata, K. Shinzawa-Itoh, et al., “A histidine
residue acting as a controlling site for dioxygen reduction and
proton pumping by cytochrome c oxidase,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 104, no. 19, pp. 7881-7886, 2007.

T. Kitagawa and T. Ogura, “Oxygen activation mechanism
at the binuclear site of heme-copper oxidase superfamily as
revealed by time-resolved resonance raman spectroscopy,”
Progress in Inorganic Chemistry, vol. 45, pp. 431-479, 1997.
T. Soulimane, G. Buse, G. P. Bourenkov, H. D. Bartunik,
R. Huber, and M. E. Than, “Structure and mechanism
of the aberrant ba3-cytochrome ¢ oxidase from Thermus
thermophilus,” The EMBO Journal, vol. 19, no. 8, pp. 1766—
1776, 2000.

J. Abramson, S. Riistama, G. Larsson, et al., “The structure
of the ubiquinol oxidase from Escherichia coli and its

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

(25]

(26]

(27]

(28]

15

ubiquinone binding site,” Nature Structural Biology, vol. 7,
no. 10, pp. 910-917, 2000.

M. Svensson-Ek, J. Abramson, G. Larsson, S. Térnroth, P.
Brzezinski, and S. Iwata, “The X-ray crystal structures of
wild-type and EQ(I-286) mutant cytochrome c oxidases
from Rhodobacter sphaeroides,” Journal of Molecular Biology,
vol. 321, no. 2, pp. 329-339, 2002.

M. M. Pereira, M. Santana, and M. Teixeira, “A novel sce-
nario for the evolution of haem-copper oxygen reductases,”
Biochimica et Biophysica Acta, vol. 1505, no. 2-3, pp. 185-208,
2001.

M. M. Pereira, E L. Sousa, A. E Verissimo, and M. Teixeira,
“Looking for the minimum common denominator in haem-
copper oxygen reductases: towards a unified catalytic mech-
anism,” Biochimica et Biophysica Acta, vol. 1777, no. 7-8, pp.
929-934, 2008.

H. Michel, J. Behr, A. Harrenga, and A. Kannt, “Cytochrome
¢ oxidase: structure and spectroscopy,” Annual Review of
Biophysics and Biomolecular Structure, vol. 27, pp. 329-356,
1998.

P. Nicholls, I. Fita, and P. C. Loewen, “Enzymology and
structure of catalases,” Advances in Inorganic Chemistry, vol.
51, pp. 51-106, 2000.

R. Boulatov, J. P. Collman, I. M. Shiryaeva, and C. J. Sunder-
land, “Functional analogues of the dioxygen reduction site in
cytochrome oxidase: mechanistic aspects and possible effects
of CuB,” Journal of the American Chemical Society, vol. 124,
no. 40, pp. 11923-11935, 2002.

M. Svensson-Ek, J. Abramson, G. Larsson, S. Térnroth, P.
Brzezinski, and S. Iwata, “The X-ray crystal structures of
wild-type and EQ(I-286) mutant cytochrome c oxidases
from Rhodobacter sphaeroides,” Journal of Molecular Biology,
vol. 321, no. 2, pp. 329-339, 2002.

M. Brdndén, H. Sigurdson, A. Namslauer, R. B. Gennis, P.
Adelroth, and P. Brzezinski, “On the role of the K-proton
transfer pathway in cytochrome c oxidase,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 98, no. 9, pp. 5013-5018, 2001.

P. Brzezinski and P. Adelroth, “Pathways of proton transfer
in cytochrome c¢ oxidase,” Journal of Bioenergetics and
Biomembranes, vol. 30, no. 1, pp. 99-107, 1998.

M. Wikstrom, A. Jasaitis, C. Backgren, A. Puustinen, and
M. L. Verkhovsky, “The role of the D- and K-pathways of
proton transfer in the function of the haem-copper oxidases,”
Biochimica et Biophysica Acta, vol. 1459, no. 2-3, pp. 514-520,
2000.

D. A. Proshlyakov, T. Ogura, K. Shinzawa-Itoh, S. Yoshikawa,
E. H. Appelman, and T. Kitagawa, “Selective resonance
Raman observation of the ‘607 nm’ form generated in the
reaction of oxidized cytochrome c oxidase with hydrogen
peroxide,” Journal of Biological Chemistry, vol. 269, no. 47,
pp- 29385-29388, 1994.

D. A. Proshlyakov, T. Ogura, K. Shinzawa-Itoh, S. Yoshikawa,
and T. Kitagawa, “Resonance Raman/absorption character-
ization of the oxo intermediates of cytochrome ¢ oxidase
generated in its reaction with hydrogen peroxide: pH and
H,0, concentration dependence,” Biochemistry, vol. 35, no.
26, pp. 8580-8586, 1996.

M. Aki, T. Ogura, K. Shinzawa-Itoh, S. Yoshikawa, and T.
Kitagawa, “A new measurement system for UV resonance
Raman spectra of large proteins and its application to
cytochrome ¢ oxidase,” Journal of Physical Chemistry B, vol.
104, no. 46, pp. 10765-10774, 2000.



16

(29]

(31]

»
i)

(42]

A. A. Konstantinov, “Cytochrome ¢ oxidase as a proton-
pumping peroxidase: reaction cycle and electrogenic mech-
anism,” Journal of Bioenergetics and Biomembranes, vol. 30,
no. 1, pp. 121-130, 1998.

A. Sucheta, I. Szundi, and O. Einarsdottir, “Intermediates
in the reaction of fully reduced cytochrome c oxidase with
dioxygen,” Biochemistry, vol. 37, no. 51, pp. 17905-17914,
1998.

D. A. Proshlyakov, M. A. Pressler, and G. T. Babcock,
“Dioxygen activation and bond cleavage by mixed-valence
cytochrome c oxidase,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 95, no. 14, pp.
8020-8025, 1998.

J. E. Morgan, M. I. Verkhovsky, G. Palmer, and M. Wikstrom,
“Role of the PR intermediate in the reaction of cytochrome
¢ oxidase with O,,” Biochemistry, vol. 40, no. 23, pp. 6882—
6892, 2001.

D. A. Proshlyakov, M. A. Pressler, C. DeMaso, J. E. Leykam,
D. L. DeWitt, and G. T. Babcock, “Oxygen activation
and reduction in respiration: involvement of redox-active
tyrosine 244,” Science, vol. 290, no. 5496, pp. 1588-1591,
2000.

M. Fabian, W. W. Wong, R. B. Gennis, and G. Palmer, “Mass
spectrometric determination of dioxygen bond splitting
in the “peroxy” intermediate of cytochrome ¢ oxidase,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 96, no. 23, pp. 13114-13117, 1999.

G. T. Babcock, “How oxygen is activated and reduced in
respiration,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 96, no. 23, pp. 12971—
12973, 1999.

D. Zaslavsky and R. B. Gennis, “Proton pumping by
cytochrome oxidase: progress, problems and postulates,”
Biochimica et Biophysica Acta, vol. 1458, no. 1, pp. 164-179,
2000.

J. Abramson, S. Riistama, G. Larsson, et al., “The structure
of the ubiquinol oxidase from Escherichia coli and its
ubiquinone binding site,” Nature Structural Biology, vol. 7,
no. 10, pp. 910-917, 2000.

M. Sono, M. P. Roach, E. D. Coulter, and J. H. Dawson,
“Heme-containing oxygenases,” Chemical Reviews, vol. 96,
no. 7, pp. 2841-2887, 1996.

G. H. Loew and D. L. Harris, “Role of the Heme active site
and protein environment in structure, spectra, and function
of the cytochrome P450s,” Chemical Reviews, vol. 100, no. 2,
pp. 407-419, 2000.

N. C. Veitch and A. T. Smith, “Horseradish peroxidase,”
Advances in Inorganic Chemistry, vol. 51, pp. 107-162, 2000.

S. Han, S. Takahashi, and D. L. Rousseau, “Time dependence
of the catalytic intermediates in cytochrome c¢ oxidase,”
Journal of Biological Chemistry, vol. 275, no. 3, pp. 1910-
1919, 2000.

J. E. Morgan, M. 1. Verkhovsky, and M. Wikstrom, “Obser-
vation and assignment of peroxy and ferryl intermediates in
the reduction of dioxygen to water by cytochrome ¢ oxidase,”
Biochemistry, vol. 35, no. 38, pp. 12235-12240, 1996.

S. A. Siletsky, I. Belevich, A. Jasaitis, et al., “Time-resolved
single-turnover of ba3 oxidase from Thermus thermophilus,”
Biochimica et Biophysica Acta, vol. 1767, no. 12, pp. 1383—
1392, 2007.

P. Brzezinski, “Redox-driven membrane-bound proton
pumps,” Trends in Biochemical Sciences, vol. 29, no. 7, pp.
380-387, 2004.

(45]

[46]

[47]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

(56]

(57]

(58]

Bioinorganic Chemistry and Applications

B. C. Hill, “The reaction of the electrostatic cytochrome
c-cytochrome oxidase complex with oxygen,” Journal of
Biological Chemistry, vol. 266, no. 4, pp. 2219-2226, 1991.

B. C. Hill, “Modeling the sequence of electron transfer
reactions in the single turnover of reduced, mammalian
cytochrome ¢ oxidase with oxygen,” Journal of Biological
Chemistry, vol. 269, no. 4, pp. 2419-2425, 1994.

S. Han, Y. Ching, and D. L. Rousseau, “Primary intermediate
in the reaction of oxygen with fully reduced cytochrome ¢
oxidase,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 87, no. 7, pp. 2491-2495,
1990.

H. Michel, “The mechanism of proton pumping by
cytochrome ¢ oxidase,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 95, no. 22, pp.
12819-12824, 1998.

Y.-R. Chen, M. R. Gunther, and R. P. Mason, “An electron
spin resonance spin-trapping investigation of the free radi-
cals formed by the reaction of mitochondrial cytochrome ¢
oxidase with H,O,,” Journal of Biological Chemistry, vol. 274,
no. 6, pp. 3308-3314, 1999.

F. MacMillan, A. Kannt, J. Behr, T. Prisner, and H. Michel,
“Direct evidence for a tyrosine radical in the reaction of
cytochrome c oxidase with hydrogen peroxide,” Biochemistry,
vol. 38, no. 29, pp. 9179-9184, 1999.

M. W. Calhoun, J. J. Hill, L. J. Lemieux, W. J. Ingledew, J.
O. Alben, and R. B. Gennis, “Site-directed mutants of the
cytochrome bo ubiquinol oxidase of Escherichia coli: amino
acid substitutions for two histidines that are putative Cu(B)
ligands,” Biochemistry, vol. 32, no. 43, pp. 11524-11529,
1993.

T. Mogi, T. Hirano, H. Nakamura, Y. Anraku, and Y. Orii,
“Cu(B) promotes both binding and reduction of dioxygen
at the heme-copper binuclear center in the Escherichia coli
bo-type ubiquinol oxidase,” FEBS Letters, vol. 370, no. 3, pp.
259-263, 1995.

S. Brown, J. N. Rumbley, A. J. Moody, J. W. Thomas, R.
B. Gennis, and P. R. Rich, “Flash photolysis of the carbon
monoxide compounds of wild-type and mutant variants
of cytochrome bo from Escherichia coli,” Biochimica et
Biophysica Acta, vol. 1183, no. 3, pp. 521-532, 1994.

D. D. Lemon, M. W. Calhoun, R. B. Gennis, and W. H.
Woodruff, “The gateway to the active site of heme-copper
oxidases,” Biochemistry, vol. 32, no. 45, pp. 11953-11956,
1993.

S. Yoshikawa, K. Muramoto, K. Shinzawa-Itoh, et al., “Reac-
tion mechanism of bovine heart cytochrome ¢ oxidase,”
Biochimica et Biophysica Acta, vol. 1757, no. 5-6, pp. 395-400,
2006.

I. Belevich, M. 1. Verkhovsky, and M. Wikstrém, “Proton-
coupled electron transfer drives the proton pump of
cytochrome ¢ oxidase,” Nature, vol. 440, no. 7085, pp. 829—
832, 2006.

V. R. 1. Kaila, M. Verkhovsky, G. Hummer, and M. Wikstrom,
“Prevention of leak in the proton pump of cytochrome c
oxidase,” Biochimica et Biophysica Acta, vol. 1777, no. 7-8, pp.
890-892, 2008.

V. R. L. Kaila, M. L. Verkhovsky, G. Hummer, and M.
Wikstrom, “Glutamic acid 242 is a valve in the proton
pump of cytochrome c oxidase,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 105,
no. 17, pp. 6255-6259, 2008.



Bioinorganic Chemistry and Applications

(59]

(67]

[68]

[69]

(72]

E. A. Gorbikova, I. Belevich, M. Wikstrom, and M. 1.
Verkhovsky, “The proton donor for O-O bond scission by
cytochrome c¢ oxidase,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 105, no. 31, pp.
10733-10737, 2008.

A. A. Konstantinov, S. Siletsky, D. Mitchell, A. Kaulen, and
R. B. Gennis, “The roles of the two proton input channels in
cytochrome c oxidase from Rhodobacter sphaeroides probed
by the effects of site-directed mutations on time-resolved
electrogenic intraprotein proton transfer,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 94, no. 17, pp. 9085-9090, 1997.

K. Faxén, G. Gilderson, P. Adelroth, and P. Brzezinski, “A
mechanistic principle for proton pumping by cytochrome ¢
oxidase,” Nature, vol. 437, no. 7056, pp. 286289, 2005.

H. Lepp, L. Salomonsson, J.-P. Zhu, R. B. Gennis, and
P. Brzezinski, “Impaired proton pumping in cytochrome
¢ oxidase upon structural alteration of the D pathway,”
Biochimica et Biophysica Acta, vol. 1777, no. 7-8, pp. 897-903,
2008.

L. Salomonsson, G. Brindén, and P. Brzezinski, “Deuterium
isotope effect of proton pumping in cytochrome c oxidase,”
Biochimica et Biophysica Acta, vol. 1777, no. 4, pp. 343-350,
2008.

H. Lepp, E. Svahn, K. Faxén, and P. Brzezinski, “Charge
transfer in the K proton pathway linked to electron transfer
to the catalytic site in cytochrome c oxidase,” Biochemistry,
vol. 47, no. 17, pp. 4929-4935, 2008.

P. E. M. Siegbahn and M. R. A. Blomberg, “Transition-metal
systems in biochemistry studied by high-accuracy quantum
chemical methods,” Chemical Reviews, vol. 100, no. 2, pp.
421-438, 2000.

M. R. A. Blomberg, P. E. M. Siegbahn, G. T. Babcock, and M.
Wikstrom, “O-O bond splitting mechanism in cytochrome
oxidase,” Journal of Inorganic Biochemistry, vol. 80, no. 3-4,
pp. 261-269, 2000.

M. R. A. Blomberg, P. E. M. Siegbahn, G. T. Babcock, and
M. Wikstrom, “Modeling cytochrome oxidase: a quantum
chemical study of the O-O bond cleavage mechanism,”
Journal of the American Chemical Society, vol. 122, no. 51, pp.
12848-12858, 2000.

M. R. A. Blomberg and P. E. M. Siegbahn, “A quantum
chemical approach to the study of reaction mechanisms of
redox-active metalloenzymes,” Journal of Physical Chemistry
B, vol. 105, no. 39, pp. 9375-9386, 2001.

M. R. A. Blomberg, P. E. M. Siegbahn, and M. Wikstrom,
“Metal-bridging mechanism for O-O bond cleavage in
cytochrome c oxidase,” Inorganic Chemistry, vol. 42, no. 17,
pp. 5231-5243, 2003.

M. R. A. Blomberg and P. E. M. Siegbahn, “Quantum
chemistry applied to the mechanisms of transition metal
containing enzymes—cytochrome ¢ oxidase, a particularly
challenging case,” Journal of Computational Chemistry, vol.
27,no. 12, pp. 1373-1384, 2006.

M. R. A. Blomberg and P. E. M. Siegbahn, “Different types
of biological proton transfer reactions studied by quantum
chemical methods,” Biochimica et Biophysica Acta, vol. 1757,
no. 8, pp. 969-980, 2006.

P. E. M. Siegbahn and M. R. A. Blomberg, “Energy diagrams
and mechanism for proton pumping in cytochrome c
oxidase,” Biochimica et Biophysica Acta, vol. 1767, no. 9, pp.
1143-1156, 2007.

(73]

(74]

N
wu

(76]

[77]

[79]

(80]

(83]

[84]

(86]

(87]

17

D. B. Moore and T. J. Martinez, “Ab initia study of coupled
electron transfer/proton transfer in cytochrome c oxidase,”
Journal of Physical Chemistry A, vol. 104, no. 11, pp. 2367—
2374, 2000.

J. A. Fee, D. A. Case, and L. Noodleman, “Toward a chemical
mechanism of proton pumping by the B-type cytochrome
¢ oxidases: application of density functional theory to
cytochrome ba3 of Thermus thermophilus,” Journal of the
American Chemical Society, vol. 130, no. 45, pp. 15002—
15021, 2008.

Y. Yoshioka, S. Kubo, K. Yamaguchi, and I. Saito, “An ab initio
molecular orbital study of a binuclear dioxygen complex as a
model of the binuclear active site in cytochrome ¢ oxidase,”
Chemical Physics Letters, vol. 294, no. 6, pp. 459—-467, 1998.
Y. Yoshioka, H. Kawai, and K. Yamaguchi, “Theoretical study
of role of H,O molecule on initial stage of reduction of O,
molecule in active site of cytochrome ¢ oxidase,” Chemical
Physics Letters, vol. 374, no. 1-2, pp. 45-52, 2003.

Y. Yoshioka and M. Mitani, “Theoretical study of hydrogen-
bonded network and proton transfer in the active site of
reduced cytochrome c oxidase,” Internet Electronic Journal of
Molecular Design, vol. 2, no. 11, pp. 732-740, 2003.

Y. Yoshioka, M. Mitani, and H. Satoh, “Electronic structures
of Heme(Fe)-dioxygen complex as an intermediate model
of dioxygen reduction in cytochrome ¢ oxidase,” Internet
Electronic Journal of Molecular Design, vol. 5, no. 8, pp. 447—
459, 2006.

M. Mitani, M. Inoue, and Y. Yoshioka, “A B3LYP study on
the mechanism of second H,O formation in a fully reduced
cytochrome c oxidase,” Chemical Physics Letters, vol. 440, no.
4-6, pp. 296-301, 2007.

Y. Yoshioka, H. Satoh, and M. Mitani, “Theoretical study on
electronic structures of FeOO, FeOOH, FeO(H,0), and FeO
in hemes: as intermediate models of dioxygen reduction in
cytochrome c oxidase,” Journal of Inorganic Biochemistry, vol.
101, no. 10, pp. 1410-1427, 2007.

M. Kaukonen, “Calculated reaction cycle of cytochrome ¢
oxidase,” Journal of Physical Chemistry B, vol. 111, no. 43, pp.
12543-12550, 2007.

J. Quenneville, D. M. Popovi¢, and A. A. Stuchebrukhov,
“Combined DFT and electrostatics study of the proton
pumping mechanism in cytochrome ¢ oxidase,” Biochimica
et Biophysica Acta, vol. 1757, no. 8, pp. 1035-1046, 2006.

D. M. Popovi¢ and A. A. Stuchebrukhov, “Proton pumping
mechanism and catalytic cycle of cytochrome ¢ oxidase:
coulomb pump model with kinetic gating,” FEBS Letters, vol.
566, no. 1-3, pp. 126-130, 2004.

M. P. Johansson, V. R. I. Kaila, and L. Laakkonen, “Charge
parameterization of the metal centers in cytochrome ¢
oxidase,” Journal of Computational Chemistry, vol. 29, no. 5,
pp. 753-767, 2008.

D. M. Popovi¢ and A. A. Stuchebrukhov, “Electrostatic
study of the proton pumping mechanism in bovine heart
cytochrome ¢ oxidase,” Journal of the American Chemical
Society, vol. 126, no. 6, pp. 1858-1871, 2004.

K. Kamiya, M. Boero, M. Tateno, K. Shiraishi, and A.
Oshiyama, “Possible mechanism of proton transfer through
peptide groups in the H-pathway of the bovine cytochrome
c oxidase,” Journal of the American Chemical Society, vol. 129,
no. 31, pp. 96639673, 2007.

J. Xu, M. A. Sharpe, L. Qin, S. Ferguson-Miller, and G.
A. Voth, “Storage of an excess proton in the hydrogen-
bonded network of the D-pathway of cytochrome c oxidase:
identification of a protonated water cluster,” Journal of the



18

[95]

[96]

(971

(98]

[99]

[100]

[101]

(102]

(103]

American Chemical Society, vol. 129, no. 10, pp. 2910-2913,
2007.

D. M. Popovi¢, J. Quenneville, and A. A. Stuchebrukhov,
“DFT/electrostatic calculations of pKa values in cytochrome
c oxidase,” Journal of Physical Chemistry B, vol. 109, no. 8, pp.
3616-3626, 2005.

E. Fadda, N. Chakrabarti, and R. Pomes, “Acidity of a Cu-
bound histidine in the binuclear center of cytochrome ¢
oxidase,” Journal of Physical Chemistry B, vol. 109, no. 47, pp.
22629-22640, 2005.

E. Fadda, N. Chakrabarti, and R. Pomes, “Reply to “Com-
ment on acidity of a Cu-bound histidine in the binuclear cen-
ter of cytochrome c oxidase”,” Journal of Physical Chemistry B,
vol. 110, no. 34, pp. 17288-17289, 2006.

J. Quenneville, D. M. Popovi¢, and A. A. Stuchebrukhov,
“Redox-dependent pKa of CuB histidine ligand in
cytochrome ¢ oxidase,” Journal of Physical Chemistry B,
vol. 108, no. 47, pp. 18383-18389, 2004.

D. M. Popovi¢ and A. A. Stuchebrukhov, “Proton exit
channels in bovine cytochrome c oxidase,” Journal of Physical
Chemistry B, vol. 109, no. 5, pp. 1999-2006, 2005.

A. J. H. Wachtees, “Gaussian basis set for molecular
wavefunctions containing third-row atoms,” The Journal of
Chemical Physics, vol. 52, no. 3, pp. 1033—-1036, 1970.

A. D. Becke, “A new mixing of Hartree-Fock and local
density-functional theories,” The Journal of Chemical Physics,
vol. 98, no. 2, pp. 1372-1377, 1993.

A. D. Becke, “Density-functional thermochemistry. III. The
role of exact exchange,” The Journal of Chemical Physics, vol.
98, no. 7, pp. 5648-5652, 1993.

A. D. Becke, “Density-functional exchange-energy approxi-
mation with correct asymptotic behavior,” Physical Review A,
vol. 38, no. 6, pp. 3098-3100, 1988.

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J.
Frisch, “Ab Initio calculation of vibrational absorption and
circular dichroism spectra using density functional force
fields,” Journal of Physical Chemistry, vol. 98, no. 45, pp.
11623-11627, 1994.

M. Mitani, Y. Wakamatsu, T. Katsurada, and Y. Yoshioka,
“Density functional study on geometrical features and
electronic structures of Di-p-oxo-bridged [Mn,0,(H,0),]9"
with Mn(II), Mn(IIl), and Mn(IV),” Journal of Physical
Chemistry A, vol. 110, no. 51, pp. 13895-13914, 2006.

Y. Yoshioka, H. Sano, and M. Mitani, “Theoretical study
of electronic structures of [peroxoporphinato]manganate
[Mn(P)(O,)]” anion,” Bulletin of the Chemical Society of
Japan, vol. 79, no. 8, pp. 1201-1210, 2006.

M. J. Frish, et al., GAUSSIAN 98, Revision A.6, Gaussian Inc.,
Pittsburgh, Pa, USA, 1998.

M. Shimizu, N. Katsuda, T. Katsurada, M. Mitani, and
Y. Yoshioka, “Mechanism on two-electron oxidation of
ubiquinol at the Qp site in cytochrome bcl complex: B3LYP
study with broken symmetry,” Journal of Physical Chemistry
B, vol. 112, no. 47, pp. 15116-15126, 2008.

C. Rovira, P. Ballone, and M. Parrinello, “A density functional
study of iron-porphyrin complexes,” Chemical Physics Letters,
vol. 271, no. 4-6, pp. 247-250, 1997.

C. Rovira, K. Kunc, J. Hutter, P. Ballone, and M. Parrinello,
“A comparative study of O,, CO, and NO binding to iron-
porphyrin,” International Journal of Quantum Chemistry, vol.
69, no. 1, pp. 31-35, 1998.

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Bioinorganic Chemistry and Applications

C. Rovira, K. Kunc, J. Hutter, P. Ballone, and M. Parrinello,
“Equilibrium geometries and electronic structure of iron-
porphyrin complexes: a density functional study,” Journal of
Physical Chemistry A, vol. 101, no. 47, pp. 8914-8925, 1997.
H. Nakashima, J.-Y. Hasegawa, and H. Nakatsuji, “On
the O, binding of Fe-porphyrin, Fe-porphycene, and Fe-
corrphycene complexes,” Journal of Computational Chem-
istry, vol. 27, no. 12, pp. 1363-1372, 2006.

A. Ivancich, H. M. Jouve, B. Sartor, and J. Gaillard, “EPR
investigation of-compound I in Proteus mirabilis and bovine
liver catalases: formation of porphyrin and tyrosyl radical
intermediates,” Biochemistry, vol. 36, no. 31, pp. 9356-9364,
1997.

C. Rovira and I. Fita, “The proximal hydrogen-bonded
residue controls the stability of the compound II inter-
mediate of peroxidases and catalases,” Journal of Physical
Chemistry B, vol. 107, no. 22, pp. 5300-5305, 2003.

E. Derat, S. Cohen, S. Shaik, A. Altun, and W. Thiel, “Prin-
cipal active species of horseradish peroxidase, compound I:
a hybrid quantum mechanical/molecular mechanical study,”
Journal of the American Chemical Society, vol. 127, no. 39, pp.
13611-13621, 2005.

K. Oda, T. Ogura, E. H. Appelman, and S. Yoshikawa, “The
intrinsic stability of the second intermediate following the
dioxygen-bound form in the O, reduction by cytochrome ¢
oxidase,” FEBS Letters, vol. 570, no. 1-3, pp. 161-165, 2004.
T. Takahashi, S. Kuroiwa, T. Ogura, and S. Yoshikawa,
“Probing the oxygen activation reaction in intact whole
mitochondria through analysis of molecular vibrations,”
Journal of the American Chemical Society, vol. 127, no. 28, pp.
9970-9971, 2005.

M. Chance, L. Powers, T. Poulos, and B. Chance,
“Cytochrome ¢ peroxidase compound ES is identical
with horseradish peroxidase compound I in iron-ligand
distances,” Biochemistry, vol. 25, no. 6, pp. 1266—1270, 1986.
G. L. Berglund, G. H. Carlsson, A. T. Smith, H. Szoke,
A. Henriksen, and J. Hajdu, “The catalytic pathway of
horseradish peroxidase at high resolution,” Nature, vol. 417,
no. 6887, pp. 463468, 2002.

M. P. Johansson, M. R. A. Blomberg, D. Sundholm, and
M. Wikstrom, “Change in electron and spin density upon
electron transfer to haem,” Biochimica et Biophysica Acta, vol.
1553, no. 3, pp. 183-187, 2002.

M. P. Johansson, D. Sundholm, G. Gerfen, and M. Wikstrém,
“The spin distribution in low-spin iron porphyrins,” Journal
of the American Chemical Society, vol. 124, no. 39, pp. 11771—
11780, 2002.

A. Namslauer, A. S. Pawate, R. B. Gennis, and P. Brzezinski,
“Redox-coupled proton translocation in biological systems:
proton shuttling in cytochrome ¢ oxidase,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 100, no. 26, pp. 15543—15547, 2003.



	Introduction
	Computational Details
	Model of a Catalytic Site for Calculations
	Theoretical Examination
	Analyses for BS Solutions

	Results and Discussion
	Early Stage of the O2 Reduction (1--2)
	On H2O Coordination to Cu in the CuB Site
	FeOO in Heme a3 Site

	Reduction Mechanism of MV CcO (2--7 in Figure 2)
	Reduction Mechanism of FR CcO
	First H2O Formation (2, 8--13 in Figure 2)
	Second H2O Formation (14--17 in Figure 2)
	Catalytic Cycle (17--19, 1)


	Summary of Reduction Mechanism
	Concluding Remarks
	Acknowledgments
	References

