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Abstract

Small RNAs (smRNAs) including miRNAs and siRNAs are critical for gene regulation and plant development. Among

the highly diverse siRNAs, trans-acting siRNAs (ta-siRNAs) have been shown to be plant-specific. In Arabidopsis,
eight TAS loci belonging to four families (TAS1, TAS2, TAS3, and TAS4) have been identified, and bioinformatics

analysis reveals that the sequence of TAS3 is highly conserved in plants. In this study, the function of TAS3 ta-siRNA

(tasiR-ARF) has been revealed in rice (Oryza sativa L.) on polarity establishment and stage transition from vegetative

to reproductive development by over-expressing Osta-siR2141. Osta-siR2141 replaced miR390 in the miR390

backbone for ectopic expression in rice, and overexpression of Osta-siR2141 caused disturbed vascular bundle

development and adaxialization in polarity establishment. Transgenic lines also displayed abnormal shoot apical

meristems (SAMs) and retarded growth at the vegetative stage. Molecular analysis revealed that overexpression of

Osta-siR2141 resulted in the down-regulation of miR166 and the up-regulation of class III homeodomain-leucine
zipper genes (HD-ZIPIIIs) in the vegetative stage but not in the reproductive stage. Moreover, overexpression of

Osta-siR2141 in Arabidopsis disturbed polarity establishment and retarded stage transition, suggesting that tasiR-

ARF was functionally conserved in rice and Arabidopsis.
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Introduction

SmRNAs are a large class of non-coding RNAs ranging

from 20–30 nucleotides in length (Aravin et al., 2003).

Through association with the RNA-induced silencing com-

plex (RISC), smRNAs identify mRNA based on anti-sense

complementarity and result in mRNA cleavage, translation

repression, chromatin modification, and even influence

genome integrity (Allshire, 2002; Mochizuki and Gorovsky,
2004; Zamore and Haley, 2005; Vaucheret, 2006; Liu, 2008;

Mosher et al., 2008). MiRNAs and siRNAs are the two

broad categories of smRNAs, and the machinery of

smRNA regulation exists in a wide variety of organisms

(Chapman and Carrington, 2007; Molnar et al., 2007; Zhao

et al., 2007; Xie and Qi, 2008). SiRNAs were first identified

because of their association with the post-transcriptional

gene silencing (PTGS) in plants (Hamilton and Baulcombe,

1999). Besides mediating gene-specific silencing, siRNAs

may also take part in DNA methylation and transcriptional

silencing (Carrington and Ambros, 2003; Kidner and

Martienssen, 2005). In fact, miRNAs and siRNAs are

functionally related and act in the common pathway
interchangeably, depending on the degree of complementar-

ity with their targets (Aravin et al., 2003; Carrington and

Ambros, 2003; Bartel, 2005). And activity of them might

differ according to their biogenesis (Tretter et al., 2008).

Sets of siRNAs prove to be highly diverse, and new

members are constantly being identified in various organisms

Abbreviations: smRNA, small regulatory RNA; ta-siRNA, trans-acting siRNA; tasiR-ARF, TAS3 ta-siRNA; CVS, ceased at vegetative stage; non-CVS, not ceased at
vegetative stage; RISC, RNA-induced silencing complex; dsRNA, double-stranded RNA; HD-ZIPIII, class III homeodomain-leucine zipper gene; ARF, auxin responsive
factor; ZH11, Japonica rice Zhonghua No. 11; SEM, scanning electron microscope; SAM, shoot apical meristem; DAP, days after pollination; MS, Murashige and
Skoog medium; SD, short day.
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which adds further depth and complexity to the siRNA

world (Hamilton et al., 2002; Lippman and Martienssen,

2004; Borsani et al., 2005; Katiyar-Agarwal et al., 2006,

2007; Kasschau et al., 2007). Trans-acting siRNA (ta-siRNA)

is a kind of siRNA specific to plants. Ta-siRNAs originate

from defined genetic loci (named TAS loci) in the genome

through a miRNA-dependent pathway (Allen et al., 2005;

Axtell et al., 2006). Generally, a TAS locus produces a non-
protein-coding transcript, a portion of which is then

converted into double stranded-RNA (dsRNA), a process

that is triggered by cleavage of the original transcript by the

corresponding miRNA; then the dsRNA is cleaved into

siRNAs of 21 nucleotides, among which are the mature ta-

siRNAs (Fahlgren et al., 2006). Most TAS loci have miRNA

complementary sites at which miRNA-directed cleavage

defines one end of the dsRNA intermediate, and thereby sets
the register of phased ta-siRNA production (Allen et al.,

2005; Axtell et al., 2006). Due to the dependence of ta-

siRNAs on miRNA cleavage, factors needed in the bio-

genesis of miRNAs are also required by ta-siRNAs (Peragine

et al., 2004; Vazquez et al., 2004). Ta-siRNAs negatively

regulate mRNAs with no sequence relevance with the TAS

loci (Peragine et al., 2004; Allen et al., 2005; Yoshikawa

et al., 2005; Axtell et al., 2006; Vaucheret, 2006).
Until now, eight TAS loci belonging to four families

(TAS1, TAS2, TAS3, and TAS4) have been identified in

Arabidopsis (Allen et al., 2005; Yoshikawa et al., 2005;

Rajagopalan et al., 2006). MiRNA cleavages of TAS1,

TAS2, and TAS4 transcripts occur at the 5# sides of ta-

siRNA generating regions, while that of TAS3 occurs at the

3# sides, although the TAS3 transcript is flanked by dual

miR390 sites. The biogenesis of TAS3 ta-siRNAs (tasiR-
ARFs) is in tight association with the AGO7 protein, while

that of TAS1 and TAS2 ta-siRNAs is not (Axtell et al., 2006;

Howell et al., 2007; Montgomery et al., 2008). tasiR-ARFs

have been proved to influence various aspects of leaf

morphology, leaf polarity, developmental timing, and pat-

terning by targeting Auxin Responsive Factor 3 (ARF3) and

ARF4 (Adenot et al., 2006; Fahlgren et al., 2006; Garcia

et al., 2006; Montgomery et al., 2008). TAS3 is highly
conserved in plants (Allen et al., 2005; Axtell et al., 2006,

2007). In maize (Zea mays), tasiR-ARFs were found to

function in the maintenance of leaf polarity along with

miR166, which establishes the abaxial character through the

negative regulation of the class III homeodomain zipper (HD-

ZIPIII) transcription factor genes (Nogueira et al., 2007).

The biogenesis and function of tasiR-ARF have been

studied in Arabidopsis; in monocotyledons, and especially
in rice, only a preliminary study has been carried out

(Yoshikawa et al., 2005; Adenot et al., 2006; Fahlgren et al.,

2006; Garcia et al., 2006; Nogueira et al., 2007; Montgomery

et al., 2008). To reveal the function of tasiR-ARF in rice,

Osta-siR2141 was over-expressed through the miR390 back-

bone. Overexpression of Osta-siR2141 caused various de-

velopmental changes, such as a disturbance in vascular

bundle development and adaxialization in polarity establish-
ment, abnormal shoot apical meristems (SAMs), and growth

retardation at the vegetative stage etc. In addition, ectopic

expression of Osta-siR2141 down-regulated the expression of

miR166 and up-regulated that of HD-ZIPIIIs; however, at the

reproductive stage, HD-ZIPIII genes were not up-regulated,

implying that the transition from vegetative to reproductive

growth might be sensitive to the level of HD-ZIPIII

expression. Moreover, the conserved role of Osta-siR2141 was

revealed by over-expressing it in Arabidopsis.

Materials and methods

Plant materials

Oryza sativa L. subsp. japonica cv. Zhonghua No. 11 (abbreviated
as ZH11) was used as the wild type. Transformants that had
ceased at the vegetative stage (CVS) were kept in tubes by tissue
culture. ZH11 and non-CVS transformants were planted in the
greenhouse, with 16/8 h light/dark, with a planting management
that accorded with standard greenhouse practice.

The study of Arabidopsis thaliana, Columbia ecotype was used as
the wild type. Seeds were sown on MS medium, cold-treated for 3
d at 4 �C, and then transferred to controlled environment cabinets
under SD (8/16 h light/dark) conditions with a fluence rate of 120
lmol m�2 s�1 of white light at 22 �C.

Construction of OsmiR-ARF(390)

Firstly miR390 backbone of 176 base pairs was cloned into
pCAMBIA1301 (kindly provided by Professor Richard Jefferson) by
PCR amplification, using primers miR390F and miR390R, and
resulting in the construct p1301(390). Then the mature miR390-
producing DNA region in p1301(390) was substituted by Osta-
siR2141 using overlapping PCR (Schwab et al., 2006) with the
combination of primers siARFF, siARFR, miR390F, and miR390R,
resulting in OsmiR-ARF(390). In this study, Osta-siR2141 from
OsTAS3a was used in OsmiR-ARF(390), and three nucleotide
mismatches between ta-siR2141 and ta-siR2141* were introduced
(Fig. 1C). The whole process of OsmiR-ARF(390) construction is
outlined in Supplementary Fig. S1 at JXB online. Primer sequences
are listed in Supplementary Table S1 at JXB online.

Genetic transformation of rice and Arabidopsis

Rice was transformed using Agrobacterium-mediated transforma-
tion (Hiei et al., 1994). Arabidopsis was also transformed using
Agrobacterium-mediated transformation (Clough and Bent, 1998).

Small RNA Northern blot analysis

Total RNAs from rice and Arabidopsis tissues were extracted using
the Trizol reagent (Invitrogen, Carlsbad, CA), and the concentra-
tion was measured using a Thermo Scientific NanoDrop*1000
Spectrophotometer. Northern blot analysis was carried out as
follows: at least 20 lg of total RNA was loaded for SDS-PAGE
(19% concentration) electrophoresis, and then transferred onto
nylon membrane (Amersham Hybond N+) by electrophoretic
transfer; prehybridization was carried out for 2 h at 35 �C. The
probes anti-sense Osta-siR2141 and anti-sense OsmiR166a were
radioactively labelled using the terminal labelling method, and
hybridization was carried out at 41 �C overnight.

RT-PCR analysis

In the reverse transcription process, about 1 lg of the DNaseI-
treated total RNA template and oligod(T) primer were used in
synthesis of the first strand of cDNA, using M-MLV RTase
(Toyobo, Japan). All the molecular manipulation followed the
routine protocols. Gene-specific primers are listed in Supplemen-
tary Table S1 at JXB online.
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Scanning electron microscope (SEM) analysis

Shoot apical meristems (SAMs) were decorticated under a light
microscope and leaves were cut using a sharp knife. All samples were
fixed quickly in 50% FAA at 4 �C overnight after vacuuming and then
dehydrated through a graded alcohol series of 70%, 85%, and 90%
ethanol once, and 100% ethanol twice, each for 10 min. Samples were
critical point dried using liquid carbon dioxide and mounted on SEM
stubs, then sputter coated with gold and palladium (4:1) and examined
using a SEM (Hitachi S-2460, Japan) and pictures were taken.

Anatomical analysis

Leaves and roots were cut using a sharp knife and fixed in 50%
FAA at 4 �C overnight after vacuuming. After serial dehydration
in several concentrations of ethanol, samples were embedded in

epoxide resin and cut into slices 2–3 lm thick; strips of these slices
were spread at 42 �C on a hot platform overnight, stained using
0.5% toluidine blue O, and sealed for observation under the
microscope (Olympus BX51 plus DP70).

In situ hybridization

SAM regions were fixed in 4% (w/v) paraformaldehyde and 0.25%
glutaraldehyde in 0.1 M sodium phosphate buffer (pH 7.4)
overnight at 4 �C, dehydrated through a graded ethanol and
xylene series, and embedded in Paraplast Plus (Sigma). Microtome
sections (8 lm thick) were applied to glass slides treated with
polylysine. For RNA synthesis and labelling, an OsHB3 cDNA
fragment was cloned into the pBluescript II KS vector using
primers OsHB3IF and OsHB3IR (sequences listed in Supplemen-
tary Table S1 at JXB online). In situ hybridization of digoxigenin-

Fig. 1. Analysis of the TAS3 gene and tasiR-ARF in rice. (A) OsTAS3a on chromosome 3 and OsTAS3b on chromosome 5, as marked in

red; OsTAS3a-phased tasiR-ARFs were from the 5#D6(+) and 5#D7(+) positions and OsTAS3b-phased from the 5#D7(+) and 5#D8(+)

positions. (B) Alignment of tasiR-ARFs in rice and Arabidopsis, shaded nucleotides indicating mismatches. (C) Complementarity of

tasiR-ARF and OsARF3s. In OsmiR-ARF(390), Osta-siR2141 from OsTAS3a was used, three red asterisks between ta-siR2141* and

ta-siR2141 indicating the introduced mismatches; red asterisks between the OsTAS3a ta-siR2141 and OsARF3-1 site A indicating

matching of OstasiR-ARF and OsARF3s.
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labelled sense/anti-sense RNA was conducted as described by
Coen et al. (1990).

Results

Analysis of OsTAS3 and tasiR-ARF in rice

In rice, there are two homologous TAS3 gene loci,

OsTAS3a on chromosome 3 and OsTAS3b on chromosome

5; each locus bearing two miR390 complementary sites at

the 3# and 5# sides, respectively (Fig. 1A). In-phase 21-

nucleotide positions on the 5# side of the miR390 cleavage

site were coded as 5#D1(+), 5#D2(+), 5#D3(+), and so on

(Fig. 1A). OsTAS3a-phased tasiR-ARFs were from the
5#D6(+) and 5#D7(+) positions, and OsTAS3b-phased from

the 5#D7(+) and 5#D8(+) positions (Fig. 1A). Compared

with those from Arabidopsis, tasiR-ARFs produced by

OsTAS3a showed two nucleotide mismatches within the ta-

siR2141 sequence and one nucleotide mismatch within the

ta-siR2142 sequence; tasiR-ARFs produced by OsTAS3b

showed one nucleotide mismatch within the ta-siR2141

sequence and two nucleotide mismatches within the ta-
siR2142 sequence (Fig. 1B), suggesting a high degree of

sequence conservation between rice and Arabidopsis.

There are four ARF3 gene homologies in rice, i.e.

Os05g48870, Os05g43920, Os01g48060, and Os01g54990.

They were tentatively named as OsARF3-1, OsARF3-2,

OsARF3-3, and OsARF3-4 respectively. Each of the

OsARF3s contained two tandem OstasiR-ARF complemen-

tary sites (site A and site B in Fig. 1C). OstasiR-ARFs

showed a nearly perfect match with their targets (red

asterisks between ta-siR2141 and OsARF3-1 in Fig. 1C).

No ARF4 gene homology was found in rice; while, in

Arabidopsis, both ARF3 and ARF4 genes were proved to be
the targets of tasiR-ARFs (Fahlgren et al., 2006).

Construction of OsmiR-ARF(390) and phenotypes of
the transformants

To study the function of tasiR-ARF in rice, a vector,

OsmiR-ARF(390), to over-express Osta-siR2141 was con-

structed first. A genomic fragment of the miR390 backbone

was amplified from the rice genome and cloned into

pCAMBIA1301 between the ubi promoter and the nos

terminator. The mature miR390 region was substituted by

Osta-siR2141 using overlapping PCR (Schwab et al., 2006).

In OsmiR-ARF(390), ta-siR2141 from OsTAS3a was used,
and three nucleotide mismatches between ta-siR2141 and

ta-siR2141* were introduced (Fig. 1C).

More than 800 transgenic lines were obtained; about 99%

of them displayed growth that had terminated at the

Fig. 2. Phenotypes of the transformants. (A) CVS transformants were about 3 cm; there was a ruler on left; (B) Roots of the CVS

transformants (left) and transformants from a void vector (right). (C) Thread-like leaves (red arrows) in one CVS transformant. (D)

Abnormal phyllotaxy in one CVS transformant. (E) A non-CVS transformant showing twisted leaves and abnormal phyllotaxy. (F)

Alternative phyllotaxy in ZH11. (G) Seeds of ZH11. (H) Seeds of the non-CVS transformant. Seeds in (G) and (H) were of 1, 3, 5, and 10

DAPs, respectively (left to right). Bars in (A), (C), and (D) were 0.5 cm, in (B), (E), and (F) were 1 cm, in (G) and (H) were 1 mm.
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vegetative stage (CVS transformants) with a seedling height

of about 3 cm (Fig. 2A). These CVS transformants showed

thick and rough sheaths (Fig. 2A, B, C, D), and seriously

deformed leaves which rolled adaxially (Fig. 2A, B, left). In

some cases, leaves were thread-like (Fig. 2C, red arrow);

also, in rare cases, there was no production of leaves (data

not shown). The leaf-sheath structures was disordered (Fig.

2D), suggesting an abnormal leaf initiation and phyllotaxy.
Roots seemed normal in appearance (Fig. 2B). About 1% of

the transformants could continue development until the

reproductive stage (non-CVS transformants) with distorted

leaves and abnormal phyllotaxy (Fig. 2E). Non-CVS trans-

formants could develop flowers, but the seeds became

crimped and began to die at about 10 days after pollination

(DAP) (Fig. 2H).

CVS transformants showed adaxialization in polarity
establishment

To characterize the cellular changes in the transformants,

SEM analysis was performed. Since leaves of the CVS lines

rolled up tightly, only the abaxial surface could be observed

by SEM. In the wild-type, the adaxial epidermis was
characterized by thorns (Fig. 3A, red arrowheads) and hairs

(Fig. 3A, white arrowheads), and the abaxial epidermis was

distinguished by water pores (Fig. 3B, red arrows). In the

CVS transformants, fewer water pores on the abaxial

epidermis were observed; while many thorns appreared

(Fig. 3D), suggesting that some adaxial characters were

converted to the abaxial side. On the sheath of the CVS

lines, thorns and hairs seemed to be loosely connected to

the surface (Fig. 3E); vascular bundles were confused and

irregularly enlarged (Fig. 3E, ‘VS’), suggesting disturbance
in vascular bundle development.

In addition, anatomical analyses of the leaves, sheaths,

and roots were carried out. In the CVS transformants, the

boundary of the leaf was relaxed, and the cells within were

irregular and non-compact (Fig. 4B). Abaxial epidermal

cells were exaggerated (Fig. 4B, white arrowhead). Bulli-

form cells, which are thin-walled cells specifically situated

between two vascular bundles on the adaxial surface (black
arrowhead with ‘Bc’ in Fig. 4A, B), were extraordinarily

plump (Fig. 4B). Furthermore, there were bulliform-like

cells on the abaxial surface (black arrowhead in Fig. 4B),

suggesting an over-development of the adaxial character-

istics. Vascular bundles in the wild type had already

differentiated into phloem on the abaxial side and xylem on

the adaxial side (Fig. 4A, red arrowhead), while those in the

CVS transformants seemed to be radicalized, and increased
in number (Fig. 4B), indicating abnormal vascular bundle

development and polarity establishment. In addition,

sheaths of the transformants also showed a rough bound-

ary, undifferentiated and irregular vascular bundles, and

irregular air cavities (Fig. 4D). Although the roots seemed

normal in appearance, the vascular bundles within were

devoid of sclerenchymatous cells (darker area in the central

region), suggesting a reduction of the abaxial characters in
the CVS tranformants (Fig. 4F).

SAM is the centre for polarity establishment and plant

development. SEM observation indicated that wild-type

SAM at the five-leaf-stage was a regular orbicular tightly

enwrapped by the newly formed leaf primordia (P1)

(Fig. 5A). However, the CVS transformants displayed an

elliptical SAM with detached leaf primordial (P1) (Fig. 5B).

And wild-type SAM was smooth; while the transgenic SAM
was coarse with a less-defined cell boundary (compare Fig.

5D with C). In addition, the non-CVS transformants also

displayed abnormal polarity and vascular bundle develop-

ment (Fig. 4H, I). These results indicated that over-

expression of Osta-siR2141 resulted in over-development of

the adaxial characteristics in polarity establishment.

Overexpression of Osta-siR2141 caused down-
regulation of OsARF3s

Molecular analysis revealed that, in the CVS transformants,

tasiR-ARF was over-expressed in both the shoots and

roots, and expression of all four OsARF3 genes was down-
regulated simultaneously (Fig. 6A). In the non-CVS trans-

formants, OsARF3s were also down-regulated, and no

difference in degree was observed in the two kinds of

transformants (Fig. 6B). Overexpression of Osta-siR2141

was closely associated with down-regulation of the

Fig. 3. SEM analyses of leaves and sheaths of the CVS trans-

formants. (A) Adaxial surface of a ZH11 leaf, white arrowheads

indicating hairs and red arrowheads thorns. (B) Abaxial surface of

a ZH11 leaf, red arrows showing water pores. (C) Outer surface of

a ZH11 sheath, white arrowheads indicating the vascular bundles.

(D) Abaxial surface of the CVS transformant leaf. (E) Outer surface

of the CVS transformant sheath, ‘VS’ indicating the vascular

bundles. ZH11 was at the five-leaf-stage.
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OsARF3s, proving that OsARF3s were the functional

targets of tasiR-ARF and, furthermore, the OsmiR-

ARF(390) vector could work well to over-express siRNAs.

HD-ZIPIII genes in SAMs of the CVS transformants
were up-regulated

HD-ZIPIII genes have been proved to be pivotal in

polarity establishment (Juarez et al., 2004). In rice, HD-

ZIPIIIs contain five members, i.e. OsHB1 to OsHB5

(Zhong and Ye, 2004; Itoh et al., 2008). In the CVS trans-

formants, HD-ZIPIII genes were greatly up-regulated

(Fig. 6C) and miR166 down-regulated (Fig. 6E), while in

the non-CVS transformants, expression of HD-ZIPIIIs

showed no difference from that of the wild type (Fig. 6D)

despite miR166 being similarly down-regulated (Fig. 6E).

Furthermore, expression of OsHB3 was examined in the
CVS transformants using in situ hybridization. In the wild

type, OsHB3 was observed to be expressed mainly on the

adaxial side of the leaf primordia, and the joint of the leaf

primordia and the SAM (Fig. 6F1). However, in the CVS

transformants, OsHB3 expression was greatly extended

from the adaxial side to the abaxial region, and on the

apex of the SAM (Fig. 6F2). These results indicated that

the two kinds of transformants displayed over-expression

Fig. 5. SEM analyses of SAMs of the CVS transformants. (A) SAM

of ZH11; (B) SAM of one CVS transformant; M in (A) and (B)

indicate shoot apical meristem, P1 in (A) and (B) is the leaf

primordia. (C) Enlargement of the P1 region in (A). (D) Enlargement

of the P1 region in (B). ZH11 was at the five-leaf-stage.
Fig. 4. Transverse sections of the leaves, sheaths, and roots of

the transformants. (A) Half leaf of ZH11; (B) leaf of the CVS

transformant, with a white arrowhead indicating the exaggerated

epidermial cells, black arrowheads with ‘Bc’ in (A) and (B)

indicating the bulliform cells, a black arrowhead indicating bulli-

form-like cells on the abaxial surface, and red arrowheads in (A)

and (B) indicating vascular bundles. (C) ZH11 sheath; (D) sheath of

the CVS transformant, with ‘AC’ in (C) and (D) indicating the air

cavity. (E) ZH11 root; (F) root of the CVS transformants. (G) ZH11

leaves, left: half leaf blade without midrib, right: midrib with part of

leaf blade. (H) Leaf of the non-CVS transformants with red arrows

indicating bulliform-like cells on the abaxial surface, a black

arrowhead indicating the ectopically formed vascular bundles. (I)

Enlarged view of the rectangle in (H). Bars in (A)–(I) were 100 lm.

ZH11 in (A), (C), (E) was at the five-leaf-stage, in (G) was at the

booting stage.
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Fig. 6. Molecular analyses of the rice and Arabidopsis transformants. (A) Osta-siR2141 Northern blot and RT-PCR analysis of the

OsARF3s. (1, 2) leaves of the CVS transformants and ZH11, respectively; (3, 4) roots of the CVS transformants and ZH11, respectively;

ZH11 was at the five-leaf-stage and the PCR was processed for 30 cycles for OsARF3s and 25 cycles for actin. (B) OsARF3s were

down-regulated in leaves of the CVS and non-CVS transformants. (1, 2) Leaves of two respective CVS transformants, (3, 4) leaves of two

respective non-CVS transformants, (5) leaves of the five-leaf-stage ZH11, (6) leaves of booting stage ZH11. Materials for PCR were

sampled three times. PCRs were processed for 30 cycles for OsARF3s and 25 cycles for actin. (C) RT-PCR analysis of HD-ZIPIIIs in

SAMs of the CVS transformants: (1) five-leaf-stage ZH11, (2) the CVS transformants. (D) RT-PCR analysis of HD-ZIPIIIs in IMs of the non-

CVS transformants. (1) IMs of booting stage ZH11, (2) IMs of the non-CVS transformants; IMs were about 0.5 cm and materials for

PCR were sampled three times. PCR was processed for 30 cycles for HD-ZIPIIIs and 25 cycles for actin. (E) Northern blot analysis of

miR166 in SAMs/IMs of the transformants and anti-sense miR166a was used as probe. (1) SAMs of the CVS transformants, (2) SAMs of
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of Osta-siR2141 and down-regulation of OsARF3s and

miR166; while HD-ZIPIIIs were up-regulated in the CVS

transformants but not in the non-CVS transformants.

The non-CVS transformants displayed arrested seed
development

In the non-CVS transformants, most of the seeds developed

until 10 DAP, but then began to shrink until death (Fig.

2H). Since starch synthesis is an important process during

late development of the seed, and the Waxy (Wx) gene

played a pivotal role in starch synthesis (Wang et al., 1990;

Zhu et al., 2003), expression of the Wx gene was examined.
In wild-type seeds, the Wx gene began to be expressed after

3 DAP and reached a climax at about 5 DAP which was

maintained (Fig. 6H); but in the non-CVS transformants,

expression of the Wx gene was hardly detectable at any

DAPs (Fig. 6H), indicating the absence of starch synthesis.

Similarly, four OsARF3s were down-regulated in the non-

CVS lines (Fig. 6H). Expression of the OsVP1 gene, a B3

domain transcriptional factor important in seed develop-
ment, was checked further (Hoecker et al., 1995; Fan et al.,

2007). In the wild type, expression of the OsVP1 gene was

low until 4 DAP and from 4–6 DAP it showed an obvious

pyramiding; while in the non-CVS transformants, this

pyramiding was not detected. Although OsVP1 expression

could reach a similar level at 10 DAP, the timing was lost,

so that abnormal OsVP1 gene expression might contribute

to the failure in seed development, and if so, the timing of
pyramiding at 4–6 DAP might be pivotal.

Osta-siR2141 overexpression in Arabidopsis revealed
some function conservation

Alvarez et al. proved that synthesized miR-ARF could

effectively targeting ARF2, ARF3 and ARF4 in Arabidopsis

(Alvarez et al., 2006). In this study, OsmiR-ARF(390) was

also transformed into Arabidopsis. The transformants de-

veloped various phenotypes, such as lotus leaves (Fig. 7B),

indicating a possible polarity change. Judging from the leaf

shape (Hunter et al., 2003), the transition from infancy to

youth was seriously delayed (Fig. 7C), a process that was

advanced in ago7 (Hunter et al., 2003), which functions in the

biogenesis of tasiR-ARF (Adenot et al., 2006). Distortion
appeared on some leaves (Fig. 7D), perhaps as a result of

interference in vascular bundle development. Some petioles

were fused (Fig. 7F). Some transformants were dwarf and

clustered (Fig. 7H). Phyllotaxy in some transformants was

opposite (Fig. 7G); the sequence of some siliques on the stalk

was abnormal (Fig. 7L, M). In the reproductive stage, petals

and the gynoecium were increased (Fig. 7J, P), the gynoecium

swelled (Fig. 7O), and some pollen was infertile (Fig. 7L, R).

Molecular analysis verified Osta-siR2141 over-expression and

revealed the down-regulation of the ARF3 gene but not the

ARF4 gene (Fig. 6G).

Discussion

miRNA is a efficient vehicle for RNAi study

The functional knock-down of genes is the traditional way

to study gene function and efficient methods were continu-

ally being developed to interfere with gene expression. Since

its discovery, miRNA has been developed for the study of
gene RNAi, mostly because the miRNA vector could

produce siRNA more efficiently–specifically through its

stem-loop structure. Since, in the process of ta-siRNA

biogenesis, many unstable siRNAs were produced at the

same time, the TAS gene itself was unsuitable for RNAi

vector engineering; by contrast, the structure of pri-miRNA

was stable. So, in this study, the miR390 backbone was used

and successfully over-expressed Osta-siR2141 with four
target genes being down-regulated simultaneously. The

function of other ta-siRNAs or siRNAs could be studied

through the miR390 backbone, and it is reasonable to

suppose that other miRNAs could also be developed for use.

Conservation of tasiR-ARF in rice and Arabidopsis

Polarity is one of the basic events to be established in the

leaf primordia, and the abaxial/adaxial polarity is of

primary importance among the three polar axes (abaxial/

adaxial, proximodistal, and mediolateral). Once established,

abaxial/adaxial polarity is maintained throughout the de-

velopment process to co-ordinate the proper growth and
patterning of the leaf (McConnell and Barton, 1998). The

sequence of tasiR-ARF has been found in various eudicots,

monocots, and even gymnosperm (Axtell et al., 2006); in

this study, overexpression of Osta-siR2141 in both rice and

Arabidopsis disturbed vascular bundle development and

polarity establishment, and retarded growth stage transi-

tion. The CVS transformants were kept at a young stage,

and, in Arabidopsis transformants, the transition from
juvenile to adult was seriously delayed. However, it seemed

that rice was more sensitive to the level of tasiR-ARF

during the vegetative stage, since most of the transformants

could not develop into the reproductive stage; while most of

the Arabidopsis transformants could. At the reproductive

the five-leaf-stage ZH11, (3) IMs of the non-CVS transformants, (4) IMs of booting stage ZH11; IMs in (3) and (4) were about 0.5 cm.

(F) In situ hybridization of the OsHB3 gene in SAMs of the CVS transformants. (1) ZH11, anti-sense probe; (2) the CVS transformants, anti-

sense probe; (3) ZH11, sense probe; (4) the CVS transformants, sense probe. Bars in 1–4 were 100 lm. (G) Molecular analyses of the

Arabidopsis transformants. (1) Seedling of Columbia; (2, 3) seedlings of two respective transformants; antisense Osta-siR2141 was used as

the probe in the Northern blot; RT-PCR was processed for 36 cycles for ARF3 and ARF4, and for 24 cycles for actin (Ar). (H) Expression of

Wx and OsVP1 genes in seeds of the non-CVS transformants. (1, 2, 3, 4) Seeds of ZH11 at about 1–2, 3–4, 5–6, >10 DAP, respectively;

(5, 6, 7, 8) seeds of the non-CVS transformants at about 1–2, 3–4, 5–6, >10 DAP, respectively; Materials for PCRs were sampled three

times. PCR was processed for 32 cycles for OsVP1, 29 cycles for Wx, 30 cycles for OsARF3s, and 25 cycles for actin.
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stage, the influence of tasiR-ARF on Arabidopsis was
much more diverse, such as an increased number of floral

organs (petals and gynoecium), infertile pollen, and the

disorder of silique growth, etc (Fig. 7). In conclusion,

although some divergence might occur during evolution,

the function of tasiR-ARF was highly conserved between

rice and Arabidopsis: tasiR-ARF and miR166/HD-ZIPIIIs

function co-operatively in both dicotyledonous and mono-

cotyledonous plants to co-ordinate polarity establishment.

The transition from vegetative to reproductive stage
might be sensitive to the expressional level of HD-ZIPIII
genes

The transition from vegetative to reproductive growth needs

the co-ordination of many independently regulated processes

to transform the SAMs from the indeterminate to the

determinate state. In animals, homeobox genes control a vast

array of developmental decisions and act as the molecular

Fig. 7. Phenotypes of the Arabidopsis transformants. (A) Leaf of Columbia. (B) Lotus leaf of the transformants. (C) Top and bottom:

leaves of Columbia and one transformant arranged in a growth sequence, respectively. (D) Leaf curling and distortion in one

transformant. (E) Columbia, showing leaf shape and phyllotaxy. (F) Fused-petiole in one transformant. (G) Opposite phyllotaxy in one

transformant. (H) Transformant showing dwarf and cluster. (I) Flower of Columbia. (J) Five-petal flower in one transformant. (K) Silique in

Columbia. (L) Infertile silique in one transformant. (M) Disordered silique of one transformant. (N) Gynoecium of Columbia. (O) Gynoecium

in one transformant exaggerated. (P) Increased gynoecia in one transformant. (Q, R) SEM analysis of pollen in Columbia and one

transformant, showing fertile pollen in (Q) and infertile pollen in (R). Bars in (A), (B), (C), (K), (L), (M), (N), (O), and (P) were 0.5 cm; in (D),

(E), (F), (G), and (H) were 1 cm; in (I) and (J) were 1 mm.

An overall study of tasiR-ARF function in rice | 1893



switch (Hayashi and Scott, 1990). In plants, HD-ZIPIII genes

belong to a family of homeobox genes that has been proved to

be a central regulator of crucial aspects of plant development,

especially in leaf polarity and vascular development, SAM

initiation, and embryo patterning (Nagasaki et al., 2007; Itoh

et al., 2008). TasiR-ARF and miR165/166 negatively regulate

ARF3 and HD-ZIPIII genes, respectively. In maize, tasiR-

ARF and miR166 defined the opposing polarity of the
abaxial/adaxial pattern (Nogueira et al., 2007). In rice, the

possible relationship of tasiR-ARF/ARF3s and miR166/HD-

ZIPIIIs had been discussed (Nagasaki et al., 2007). In this

study, it was solidly proved that tasiR-ARF influenced leaf

polarity establishment, vascular bundle and SAM develop-

ment, and growth stage transition through co-operation with

HD-ZIPIIIs. Furthermore, HD-ZIPIIIs were up-regulated in

the CVS transformants but not in the non-CVS transform-
ants, although miR166 was down-regulated similarly, so that

HD-ZIPIII genes might act as a molecular switch in the

transition from the vegetative to the reproductive stage in rice.

If so, HD-ZIPIII genes should be modulated under a certain

level and, if this level is breached, the transition could not be

accomplished as in the CVS transformants. In the transition

from the vegetative to the reproductive stage and during the

reproductive growth, other important regulatory factors might
be recruited to modulate HD-ZIPIIIs. A recent study showed

that competitive inhibitors regulated HD-ZIPIII genes in

SAM development in Arabidopsis. In mutant zpr3, no obvious

abnormality could be observed during the vegetative stage,

while in the reproductive stage, SAM was influenced and

discrepancy occurred (Kim et al., 2008). This added a powerful

possibility for our hypothesis.

Supplementary data

Supplementary data are available at JXB online.

Supplementary Fig. S1. Sketch map of plasmid OsmiR-

ARF(390) construction.

Supplementary Table S1. Sequence of primers used in this

study.
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