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Abstract

Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several

plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the

dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was

less obvious and leaf growth exhibited a clear circadian oscillation.These differences were related neither to primary

metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth

was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No

rythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted
in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and

dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to

environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth

behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel

temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the

leaf growth control by internal clocks.
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Introduction

Leaf growth is controlled by a complex network of factors.

Some of these factors are endogenous regulatory mecha-

nisms that determine leaf shape (Wyrzykowska et al., 2002;

Rolland-Lagan et al., 2003), the progression of the cell cycle

(Tsukaya and Beemster, 2006), and the relationship of leaf

growth to the circadian clock (Nozue and Maloof, 2006).

Other factors can be regarded as external, such as the

recurring changes of day and night, alterations in tempera-
ture, or further physical, chemical, or biotic parameters,

which can increase or decrease growth at various time-scales

(Granier and Tardieu, 2009; Walter et al., 2009). All

growth-controlling environmental effects regulate endoge-

nous mechanisms, but to a different extent. Light quality

and quantity are sensed by the phytochrome and crypto-

chrome photoreceptors (Somers et al., 1998; Devlin and

Kay, 2000, 2001) and affect photosynthesis and plant

primary metabolism, which is partly controlled by the

circadian clock (Harmer et al., 2000). Altered carbohydrate

metabolism, in turn, leads to instantaneous and often very

specific growth reactions in leaves (Wiese et al., 2007;

Sulpice et al., 2009). Temperature changes also induce

immediate and clear responses of growth, but it is still

uncertain to what extent this is mediated via signalling
cascades (Penfield, 2008; Franklin, 2009) or mere thermo-

dynamic laws which affect the rate of all biochemical

reactions (Parent et al., 2010). It is well known that the

duration of each phase in the plant life cycle is inversely

related to temperature (Amir and Sinclair, 1991). This

knowledge is at the base of a number of models predicting

the progression of the plant life cycle in any climatic
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scenario (Keating et al., 2003; Yan et al., 2004). It also led

to the definition of thermal time: a concept that can be used

for the quantitative description of plant or even single leaf

development (Granier and Tardieu, 1998; Granier et al.,

2002). It has been proposed recently that the rates of most

developmental processes are co-ordinated in such a way

that temperature-compensated rates and durations can be

calculated (Parent et al., 2010).
While, on a long time-scale, leaf growth of different species

is tightly correlated to temperature, the response to short-

term temperature alterations seems to vary strongly when

growth reactions are investigated during a 24 h day (the diel

cycle) as indicated by Walter et al. (2009). In monocotyle-

donous species, leaf elongation rate largely follows temper-

ature alterations (Ben-Haj-Salah and Tardieu, 1995;

Pietruszka et al., 2007), whereas in dicotyledonous species,
growth patterns do not seem to be related to the daily

pattern of temperature variations. In the dicot model species

Arabidopsis thaliana, leaf growth, as well as hypocotyl

growth, seems to be controlled by the circadian clock (Dodd

et al., 2005; Nozue et al., 2007).

The aim of this study was to investigate to what extent

the 24 h pattern of leaf growth rate is linked to changes in

temperature and/or to endogenous rhythms. Hence, leaf
growth variations of several species in fluctuating tempera-

ture regimes were compared to (i) leaf growth patterns in

a stable temperature and (ii) to the pattern which would

be expected if short-term variations in leaf expansion rate

followed the response curve to temperature established over

longer periods. The involvement of the circadian clock in

these patterns was investigated by analysing leaf growth in

plants transferred from regular day–night regimes to
continuous light. Investigations were done in two mono-

cotyledons, Zea mays and Oryza sativa, and four dicoty-

ledons, Ricinus communis, Nicotiana tabacum, Arabidopsis

thaliana, and Flaveria bidentis. Two of these species are C4

(Z. mays and F. bidentis); the others are C3.

Materials and methods

Plant material, climate conditions, and experimental outline

Maize (Zea mays, hybrid Helix), flaveria (Flaveria bidentis),
tobacco (Nicotiana tabacum, ecotype Samsun), and castor bean
(Ricinus communis, ecotype Carmencita) plants were germinated
and grown in the greenhouse for 3 weeks and were then moved to
the growth chamber 1 week before experiments started. Plants
were grown in pots (0.1 l) filled with a pre-fertilized soil (ED73,
Balster Einheitserdewerk, Fröndenberg, Germany). Thale cress
(Arabidopsis thaliana, ecotype Ler), rice (Oryza sativa cv. Azucena)
and tobacco (Nicotiana tabacum, ecotype Samsun) plants were
grown for specific experiments. During all experiments, soil water
content was kept at retention capacity.
A growth chamber was set to 22 �C air temperature, 12/12 h day/

night and 60% relative humidity. Plants were given 1 week to
acclimate to those conditions before the experiments started. Unless
specified otherwise, day 1 was the last day with constant air
temperature. Between days 2 and 4, air temperature was switched
to follow an approximately sine-shaped function centred on 22 �C
with a minimum at 17 �C and a maximum at 27 �C. Minimum
temperature was reached at the end of the night and maximum

temperature at the end of the day. In experiments with A. thaliana
and O. sativa, only daylength was varied.
Light intensity measured with a quantum light sensor (LI-190SB;

Li-Cor Biosciences GmbH, Bad Homburg Germany) was 600 lmol
m�2 s�1 photosynthetically active radiation (PAR). The light was
provided by an array of high pressure sodium lamps (MASTER
SON-T PIA Agro 400W; Phillips Deutschland GmbH, Hamburg,
Germany). In experiments with A. thaliana, light intensity was
120 lmol m�2 s�1 and light was provided by fluorescent lamps
(Osram; Fluora, Munich, Germany). Air temperature and relative
humidity settings of the climate chamber were measured with
a portable data logger placed at canopy level (Testo 175-H1; Testo
AG, Lenzkirch, Germany). The experiment with rice was carried out
in the Phenodyn phenotyping platform (Sadok et al., 2007). Plants
were first grown in the greenhouse under naturally fluctuating light.
They were then transferred in a growth chamber under a continuous
light intensity of 500 lmol m�2 s�1 at leaf level, measured with
a light sensor (LI-190SB, Li-Cor Quantum PAR, Lincoln, NE
USA). The meristem temperature, measured with fine copper-
constantan thermocouples inserted in the meristematic zones of four
non-measured plants per treatment, was kept constant at 2662 �C.

Growth analysis

R. communis, N. tabacum, and F. bidentis: Investigated leaves were
fixed in a stationary position (Walter et al., 2002) by using a strip
of Parafilm (Parafilm M, Pechiney Plastic Packaging Company)
and kept flat with five nylon threads, clamped to the edge of the
leaf using shortened hair clips and fabric tape to protect the leaf.
Each of the threads was pulled with a weight (R. communis: 12 g;
N. tabacum: 1.5 g; F. bidentis: 5 g) and spun over a metal ring
surrounding the leaf (Fig. 1F), a procedure which does not affect
temporal or spatial growth patterns (Walter et al., 2002). Leaf
images were acquired with high resolution, monochrome CCD
cameras (Scorpion SCOR-20SO; Point Grey Research, Vancouver,
BC, Canada), positioned above the plants and equipped with
a standard objective lens (25 mm; Cosmicar/Pentax, The Imaging
Source, Bremen, Germany) and an infrared interference filter (880
nm; Edmund Optics, Karlsruhe, Germany). Constant illumination
throughout day and night was provided by six infrared diode
clusters (880 nm; Conrad Electronics, Hirschau, Germany). Grey
value images were taken every 180 s and saved in a multi-tiff

Fig. 1. Response curves of leaf expansion rate of Z. mays (dotted

line) and N. tabacum (solid lines). Data originate from Parent et al.

(2010) for maize and from Raper et al. (1976) for N. tabacum.

Symbols show experimental data of Raper et al. (1976). LER, leaf

elongation rate. RGR, relative growth rate. Values at 20 �C are by

convention set to 1 for normalization (see Parent et al., 2010).
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format. Image sequences were evaluated with algorithms based on
a structure tensor approach that calculates optical flow via the
brightness constancy constraint equation (BCCE) (Bigün and
Granlund, 1987; Schmundt et al., 1998). Using the structure tensor
approach, velocities of all visible and moving structures at the leaf
surface within the image sequence of a growing leaf were
calculated. Area relative growth rates (RGR) were calculated as
the divergence of the estimated velocity field by selecting an area of
interest (AOI) within the image and tracking the structure within
this AOI with time. (For more details, see Walter et al., 2002;
Schmundt et al., 1998; and Matsubara et al., 2006.)

Z. mays, O. sativa, and A. thaliana: Leaf elongation rate of maize
was measured with a rotation resistance transducer (RRT, low
torque potentiometers Novotechnik, Ostfildern, Germany). A
string was fixed to the tip of a growing leaf using shortened hair
clips and fabric tape, spun over the pulley of the RRT sensor
above the leaf and attached to a 25 g weight. Strings for the
measurement of A. thaliana leaf length growth were glued (Pattex,
Henkel, Düsseldorf, Germany) to the leaf tip of a growing
leaf with c. 1 cm length and spun over the RRT sensor attached in
length growth direction to a 1.8 g weight. RRT sensors were
interfaced using a Multifunction Data Acquisition device
(CompactDAQ National Instruments NI, Austin, Texas, USA)
connected to a laptop PC. A custom made LabView 8.5 (National
Instruments NI, Austin, Texas, USA) program allowed the wheel
rotation to be measured and recorded every 10 s. In the rice leaf,
elongation rate was continuously monitored with rotating dis-
placement transducers (RDTs, 601–1045 Full 360 Smart Position
Sensor; Spectrol Electronics, Ltd, Wiltshire, England), both in the
greenhouse and in the growth chamber. Leaf elongation was
transmitted to the sensor via a pulley attached to it, which carried
a thread attached to the leaf tip and to a 20 g counterweight
(Sadok et al., 2007). Both elongation and climatic data were stored
every 15 min in the Phenodyn database (http://bioweb.supagro
.inra.fr/phenodyn/).

Modelling the temperature response

Leaf expansion rate under fluctuating temperature was compared
to that expected from the response curves to temperature (Fig. 1).
For maize, the response curve corresponding to several develop-
mental processes was published by Parent et al. (2010). For
N. tabacum, they originate from the study of Raper et al. (1976).
All data were fitted to a Johnson et al. (1942) function, as in
Parent et al. (2010).
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where LER is leaf expansion rate, T is temperature, A is
a proportionality constant, DHz

A (kJ mol�1) is a fitted parameter
representing the enthalpy of activation of the equivalent reaction.
DHD and DSD are fitted parameters representing the enthalpy and
entropy between the catalytically active and inactive states of the
enzyme or enzymatic system. Parameters of response curves were
calculated in three steps using the R language (R_Development_-
Core_Team, 2005). Data were first smoothed by a second order
polynomial equation in a range of 5 �C at steps of 1 �C each. The
inflexion point was determined where the slope of the linear
regression on three consecutive points was maximum. This step
was omitted for the tobacco data which lacked datapoints at low
temperatures. The parameters of the numerator were determined
by linear regression on transformed variables (ln (J/T), 1/T) in the
range of temperatures lower than the inflexion point. The
parameters of the denominator of equation 1 were determined by
linearization in the range of temperatures above the inflection
point following the method presented in Parent et al. (2010). The

resulting parameters were DHA¼3.71 and 1.5, DHD¼285 and 135,
and DSD¼0.93 and 0.46, for Z. mays and N. tabacum, respectively.

Carbohydrates

In the main experiment, leaves were harvested for carbohydrate
analysis when the lamps were switched on and off (every 12 h),
respectively. For each species, two plants were sampled and from
each plant, two leaf discs (diameter 8 mm) were punched out of
growing leaves (the same position as the leaves taken for growth
analyses). Leaf discs were weighed, pooled, frozen in liquid nitrogen,
and stored at –80 �C for further extraction. Soluble carbohydrates
were extracted from frozen leaf material and glucose, fructose,
sucrose, and starch concentrations were analysed in a coupled
enzyme assay (Jones et al., 1977) using a multiplate spectrophotom-
eter (ht II; Anthos Mikrosysteme GmbH, Krefeld, Germany) as
described in Walter et al. (2002) and Wiese et al. (2007).

Gas exchange

Gas exchange of growing leaves of each investigated species was
measured using a portable, open path design, infrared gas-
exchange system (Li-6400; Li-Cor Biosciences GmbH, Bad
Homburg, Germany). The area of the leaf chamber was 6 cm2.
Light intensity and temperature inside the leaf chamber were
allowed to follow the ambient conditions of the growth chamber.
To avoid large fluctuations of the reference CO2, the air that went
to the analyser inside the growth chamber was buffered using a 50
l plastic tank linked to the greenhouse with a nozzle.

Results

Leaf expansion of dicotyledonous species did not follow
temperature variations while leaf elongation of maize did

Similar diel leaf growth patterns occurred in tobacco plants

regardless of the temperature regime (Fig. 2A–D). After

having been grown at a constant temperature of 22 �C until

the start of the experiment, plants were exposed on day 1 to

a constant daytime temperature of 27 �C, followed by

a night temperature of 17 �C. On day 2, temperature was set

to a constant value of 22 �C again and on day 3,

temperature was modulated between an afternoon peak
temperature of 27 �C and a minimum of 17 �C at the end of

the night. The average diel leaf growth pattern was almost

identical during all three days (Fig. 2E).

In a second experiment; daily leaf growth cycles of four

species were investigated with plants being exposed either to

a constant temperature of 22 �C or to a fluctuating temper-

ature regime with an afternoon maximum of 27 �C and

a night minimum of 17 �C (Fig. 3). On day 1, with constant
temperature, pronounced diel leaf growth variations were

observed with maxima in the early morning or late at night

for N. tabacum, R. communis, and F. bidentis. Despite

variations between individuals, RGR varied significantly

between the times of maximal and minimal growth activity

during the diel cycle. Between days 2 and 4, plants were

exposed to the fluctuating temperature regime. Diel growth

cycles of the dicot species still reached maximal growth at
the same time of the day, but the amplitude was damped

and differences between maxima and minima were not

significant any longer. By contrast, Zea mays leaves grew

with a constant rate throughout the day and night when

temperature was constant and developed a pronounced
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variation in the fluctuating temperature regime. On day 1,

leaf elongation rate only changed transiently when the light

was switched on or off. On day 2, leaf elongation rate

decreased sharply in the morning and increased throughout

the day, reaching a maximum value in the early hours of the
night, when temperature was still high. During the night,

leaf elongation rate declined, reaching a plateau value at the

end of the night, when temperature also reached a low

plateau value. On day 3 and day 4, these patterns were

repeated and the correlation between leaf elongation rate

and temperature became even more prominent. Maximal

leaf elongation occurred as soon as temperature reached its

maximum value, without any appreciable delay, taking into
account the temporal definition used in this experiment

(10 s). When data from the two different temperature

treatments was averaged (Fig. 3, right panels), it became

obvious that growth patterns in the two dicot species were

far less related to temperature than in Z. mays.

Fluctuations in carbohydrate availability and gas
exchange did not account for differences in diel leaf
expansion patterns between species

Gas exchange and carbohydrate analyses were performed in

Z. mays, F. bidentis, N. tabacum, and R. communis.

Assimilation rates of all the species studied were high
(20 lmol m�2 s�1 CO2 and more; Fig. 4) reflecting near

optimal growth conditions and thus a good vegetative

status. Carbohydrate analyses showed increasing contents

of starch and sucrose in all species during the day and

a decrease at night (Fig. 5). On day 1 (constant tempera-

ture) the nocturnal decrease in starch was similar in all

species. On days 2, 3, and 4 (fluctuating temperature regime)

starch fluctuations in N. tabacum and F. bidentis decreased.

Flaveria bidentis has a very low overall soluble sugar

concentration with values ranging between 0 and 1 lmol g�1

FW, which do not fluctuate strongly throughout the day. For

sucrose, the strongest fluctuations were seen in Z. mays and

R. communis. Overall, no pronounced differences in carbohy-

drate fluctuations between the two different temperature

regimes were observed for any of the species studied.

In continuous light, dicotyledonous species revealed
diel oscillations of leaf expansion that were not
observed in monocotyledonous species

To investigate the effect of the circadian clock on the

rhythmicity of leaf growth patterns, the leaf elongation

rates of the monocotyledonous species Z. mays and O.

sativa and of the dicotyledonous species R. communis and

A. thaliana were investigated in continuous light (Fig. 6).

Plants that had been exposed to fluctuating light until the

first day of analysis were transferred to constant light (LL)

for at least 3 d. In A. thaliana and R. communis, the diel leaf

growth cycle clearly continued. In R. communis, leaves from

different plants were followed over a long time period (18 d)

after transition. In A. thaliana, leaf growth was followed in
the same leaves from the day before light transition

throughout some days of LL, demonstrating a higher

period length than 24 h. By contrast, leaf growth of

Z. mays and of O. sativa did not oscillate markedly in a diel

manner until the end of the experiment.

Fig. 2. Relative growth rates (RGR) of leaves of N. tabacum grown in different temperature regimes. (A, B, C) The RGR of three replicate

plants, respectively. The temperature regime to which these plants were exposed is depicted in (D). Average values are shown in (E) with

colours coding for the three different temperature regimes to which the plants were subsequently exposed. Positioning of the leaf for

growth analysis is shown in (F).
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An addition of the effects of endogenous rhythms and
temperature accounted for experimentally observed
patterns in all studied species

Maize and Nicotiana tabacum were tested to find out to

what extent the experimental patterns observed under

fluctuating temperature (days 2–4; Fig. 3) could be

accounted for by the additive effects of endogenous

rhythms (day 1; Fig. 3) and temperature dependency of

leaf growth (presented in Fig. 1). The endogenous rhythm

was considered as flat in maize, consistent with Fig. 3

(day 1). The endogenous rhythm of N. tabacum was inferred
from the mean pattern on day 1 (Fig. 3), with a minimum

expansion rate at 12.00 h. Although maize and tobacco were

subjected to the same temperature scenarios, simulated

temporal patterns of leaf expansion rate deduced from the

response curves presented in Fig. 1 differed markedly

(Fig. 7). Because the response curve reached a plateau in

tobacco at temperatures which still caused an increase in

elongation rate of maize, the simulated pattern of tempera-

ture effect was much more pronounced in maize than in

tobacco (Fig. 7B, D).

In maize, the addition of the two effects correctly

simulated the experimental pattern, with two exceptions: (i)

Fig. 3. Leaf growth of various plants from different species in different temperature regimes. Temperature regime was switched from

constant to fluctuating at the beginning of day 2 (lower panels). For N. tabacum, R. communis, and F. bidentis, relative growth rates

(RGR) were measured, while for Z. mays, leaf elongation rate (LER) was analysed. Right panels show average values; different line

colours show different replicate plants. Asterisks indicate the significance level of growth differences in consecutive time intervals (framed

in boxes; T-test): **P <0.01, *P >0.05; n.s. not significant.

Fig. 4. Assimilation rate of growing leaves. Mean value and SD (n¼4).
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a marked peak of leaf elongation rate followed light
extinction, (ii) observed elongation rates were lower than

the simulated ones during the day, and higher during the

night. These two exceptions are probably linked to the

effect of evaporative demand which lowers maize leaf

expansion rate during the day (Sadok et al., 2007). In

tobacco, the additive effects of endogenous rhythms and

temperature also simulated the observed leaf growth pattern

correctly. Observed and simulated patterns were consistent
throughout the day, except for (i) a marked oscillation of

RGR at 12 h, as in the case of maize, when the lights were

turned off and (ii) an unexplained discrepancy 4 h after the

lights were turned on. Overall, the additive effects of

endogenous rhythms and temperature account for the

observed leaf growth patterns, but a supplementary effect

of evaporative demand was noted.

Discussion

The rhythmic variation of leaf growth in A. thaliana and

N. tabacum with a slightly extending periodicity under

continuous light (Fig. 3B) shows that this diel pattern is

controlled by the circadian clock. This confirms findings on

the overall growth performance of Arabidopsis plants

(Dodd et al., 2005) and on the circadian control of

hypocotyl elongation (Dowson-Day and Millar, 1999;
Nozue et al., 2007). From an evolutionary point of view,

a correct phasing between plant metabolism and forthcom-

ing environmental conditions represents a crucial advantage

compared with organisms with a coarser regulation (Dodd

et al., 2005; Kobayashi and Weigel, 2007; Resco et al.,

2009). Because temperature compensation is an essential
feature of the circadian clock (Harmer, 2009), the periodic-

ity and amplitude of rhythmic processes that are controlled

by the circadian clock are affected only to a minor extent by

temperature variations (Nakajima et al., 2005). When

measured leaf growth patterns are compared with patterns

calculated from the effects of temperature on leaf growth at

the longer time-scale (Fig. 4), it becomes clear that diel leaf

growth variations in all species can be considered as the
added effects of circadian-clock-controlled processes and

temperature-related processes, with an additional effect of

evaporative demand consistent with Sadok et al. (2007).

The main difference between leaf growth in monocotyle-

donous and dicotyledonous species is that, in dicotyledons,

circadian effects are much more pronounced than in

monocotyledons, where they can be neglected. In addition,

the temperature effect was lower in N. tabacum than in
maize because of its lower sensitivity to temperature in

the range considered. Although many processes throughout

the plant kingdom are controlled by the circadian clock, the

degree to which the circadian clock affects other processes

differs between tissues, organs, and species (McClung, 2006;

Hotta et al., 2007; James et al., 2008; Jones, 2009). More

precisely, the circadian system is a network of more than

one single clock inside the plant with independent
oscillators in each cell (Jones, 2009) that can elucidate

a multitude of output responses in a multicellular organism.

Hence, it comes as no surprise that in a recent DNA-

microarray study, roots were found to be much less affected

by the circadian clock than shoots (James et al., 2008).

A reason for the observed difference in the significance of

the circadian clock for leaf growth processes in monocot

Fig. 5. Carbohydrate concentrations of growing leaves. (A) Sucrose, (B) glucose, (C) fructose, and (D) starch. During day 1, plants were

exposed to constant temperature, thereafter (grey background) temperature fluctuated as shown in Fig. 2. Mean value and SD (n¼4).
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and dicot species might be found in the different organiza-

tion and architectural location of their growth zones. The
cellular organization of monocot leaf growth zones is very

similar to that of roots, which is probably related to the

similar constraints to which these tissues have been exposed

in an evolutionary context (Walter et al., 2009). In contrast

to dicotyledonous leaf growth zones, root apices and

growth zones of monocotyledonous leaves are protected

from atmospheric temperature variations by being embed-

ded in the soil or within the sheaths of older leaves,
respectively. Moreover, the growth zones of roots and

monocotyledonous leaves are not involved in photosynthe-

sis, which is itself a process strongly controlled by the

circadian clock (Harmer et al., 2000).

Primary metabolism does not differ strongly between

monocot and dicot species, which is reflected in prominent

differences between starch and sucrose concentrations in the

morning and evening in young leaves of both plant types

under both temperature regimes. The periodic fluctuations

of starch and sucrose in Z. mays in constant temperature

suggest that light–dark cycles exert a stronger effect than

available carbohydrates on growth patterns in monocotyle-

donous leaves.
The homologues of genes of the central oscillator of the

plant circadian clock are conserved in monocots (Miwa

et al., 2006). Nevertheless, our data shows that maize and

rice leaf growth proceeds constantly throughout the diel

cycle when plants are transferred from a day–night growth

regime into continuous light (Fig. 5A). The fact that leaf

growth of the C4 dicot species F. bidentis responds similarly

to temperature alterations as the investigated C3 dicot
species indicates that differences between maize and the

investigated dicot species are related to differences in the

two families (possibly their growth zone organization)

rather than to differences in photosynthetic metabolism.

This is confirmed by the growth pattern of O. sativa, which

as a C3 monocot species does not show internal growth

rhythms.
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a continuous light regime. Hatched bars represent subjective night

in the continuous light treatment. For Z. mays, replicate plants are

shown with different lines; for A. thaliana, mean value and SD

(n¼4) are shown.
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