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I. Introduction
Arterial biomineralization processes have been afflicting humans for at least 5 millenia, as
realized in 2003 via the computed tomographic imaging of Ötzi, the intriguing “Ice Mummy”
discovered in the Tyrolean Alps1. Patchy abdominal atherosclerotic calcification was readily
detected in the post mortem of this 40-ish year old hunter of the early Copper Age – by 2000
years a predecessor of King Tutankhamen1. Today, an epidemic of vascular calcification is
emerging within our aging and dysmetabolic populace2, 3. Although vascular calcification was
once considered only a passive process of dead and dying cells, work from laboratories
worldwide has now highlighted that arterial biomineralization is an actively regulated form of
calcified tissue metabolism4, 5. Moreover, as in skeletal development – where unique biology
controls matrix mineralization in membranous bone, endochondral bone, dentin, and
enamel6, 7 -- mechanistic diversity exists in the pathobiology of vascular calcium deposition
2, 4, 5, 8. Five common forms of vascular calcification -- each possessing unique histoanatomic
characteristics and clinical settings with overlapping yet distinct molecular mechanisms -- have
been described to date4, 5, 9 (Table 1). Although we touch upon the subject, the reader is referred
to other contemporary reviews for in-depth consideration of pathogenic differences2, 4, 5.

In this brief review and perspective, we recount recent data that emphasize inflammation and
oxidative stress signaling as key contributors to the pathogenesis of vascular mineral
deposition10. Furthermore, we highlight differences between the low density lipoprotein
receptor (LDLR)-deficient and apolipoprotein E (apoE)-deficient murine models (Table 2) that
help articulate the multifaceted contributions of dyslipidemia, diabetes, and uremia to arterial
calcium deposition2, 4, 11. We end by summarizing the importance of considering these disease
stage- and context-specific contributions arterial mineralization when crafting therapeutic
strategies to address the disease burden of vascular calcification that increasingly afflicts our
patients5, 12.
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II. Inflammatory cytokines in the initiation and progression of arterial
calcification: Lessons learned from LDLR-/- and apoE-/- mice

Some degree of vascular inflammation is a frequent concomitant of most forms of arterial
calcification13, 14 Sites of inflammation relevant to disease biology may not only include the
atherosclerotic intima and media, but also the tunica adventitia15-18. Of note, calcification of
the elastic lamina with elastinolysis in the absence of overt histologic inflammation has been
reported,19-23 and intimal CD68+ macrophage accumulation is more commonly associated
with atherosclerotic vs. medial calcification24. However, because calcium phosphate mineral
deposition itself elicits inflammatory responses25 -- including tumor necrosis factor (TNF)
production by macrophages26, 27 -- a primary role for inflammation in the pathogenesis of
clinically relevant vascular calcification was unproven until very recently28-32. In this section,
we review this new data -- and also highlight distinctions between the LDLR-/- and apoE-/-
murine disease models33 (Table 2) that provide insights into the mechanistic complexities of
inflammation-dependent arterial calcium accumulation.

II.A.1 RANKL/OPG signaling and atherosclerotic calcification
The first robust evidence for the primary contributions of inflammatory cytokine signaling to
pathogenesis of vascular calcification arose from the generation and evaluation of the
osteoprotegerin (OPG)-/- mouse34. OPG-deficient mice develop severe medial and intimal
arterial calcification in conjunction with high-turnover osteoporosis driven by excessive
osteoclast formation34. OPG was first shown to function as an antagonistic “faux receptor” of
RANKL (receptor activator of NFκB ligand), the TNF superfamily member that signals via its
receptor RANK on monocyte/macrophage progenitors to promote the formation of bone-
resorbing osteoclasts7, 35. In bone, the antagonist OPG is expressed alongside RANKL in the
osteoblast lineage, However, OPG is also expressed in vascular smooth muscle cells and
endothelial cells of large arteries – a venue where RANKL is normally absent but induced with
inflammation35. RANKL expression is readily detected in T-cells and macrophages near
atherosclerotic lesions, and within cytokine-stimulated endothelium35. Intriguingly, RANKL
has been recently shown to promote osteochondrogenic mineralization of VSMCs (vascular
smooth muscle cells) 36 and aortic VICs (valve interstitial cells)37 in vitro. Via the RANK
expressed in VSMCs, RANKL upregulates BMP4 (bone morphogenetic protein 4) expression,
thus providing an autocrine stimulus for osteogenic differentiation (see also section IV below)
36. These dual and disparate actions of RANKL upon the skeletal monocyte/macrophage
lineage vs. VSMCs likely explain the intriguing phenotype of OPG-null mice34. Of note,
although the vascular calcification of OPG deficiency occurs in the complete absence of
atheroma formation34, calcified lesions begin to form in arteries only in the post-partum period
with copious CD3+ T-cell infiltrates, a few F4/80+ macrophages, and cathepsin K+ osteoclast-
like cells 34, 38. This suggests that, in vivo, inflammatory signals absent in utero are necessary
for vascular disease initiation and progression in OPG-/- animals. Additionally, as first
observed in the diabetic LDLR-/- mouse39, serum levels of OPG are higher in patients with
diabetes40, 41. Since OPG is expressed in VSMCs42, such increases in the setting of type II
diabetes presumably reflect a vascular defense that helps prevents excessive RANKL signaling
via negative feedback regulation28.

II.A.2 Perturbations in RANKL/OPG signaling and the pathobiology of arteriosclerosis
Although compelling, the “spontaneous” vascular calcification observed in response to the
genetic lesioning in OPG deficient mice did not ensure contributions to the pathobiology of
arteriosclerosis34; however, this caveat has been recently addressed.28 Inhibition of RANKL
via administration of recombinant OPG has been evaluated in two very different murine models
of vascular disease33 -- the LDLR-/-mouse28 and the apoE-/- mouse43. It is important to
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highlight that, while both models encompass impaired cholesterol metabolism and atherosis
on the C56Bl/6 background, the arteriosclerotic disease processes exhibited by these two
preclinical models are very distinct (Table 2)33. As LeBoeuf first showed, while both models
develop atheroma in response to cholesterol-containing fatty diets, the apoE-null mouse never
develops the clinically relevant contributions of insulin-resistant diabetes and obesity33.
However, the male LDLR-/- mouse develops both of these relevant characteristics alongside
arterial calcification in response to challenge with fatty diet possessing compositions typical
of Westernized societies33, 44 – a clinically important stimulus for vascular disease45, 46. Early
medial artery calcification is followed by progressively severe atherosclerotic disease in this
model (see below)29. Furthermore, the diet- induced systemic low-grade inflammation --
characterized by low but measurable levels of circulating TNF in obese LDLR-/- mice29, 47

and diabetic humans48-50 -- is not seen and apparently does not contribute to vascular
inflammation in the apoE-/- model43, 51 even when streptozotocin is administered to induce
diabetes52. However, in response to other stimuli such as lipopolysaccharide administration or
Klebsiella infection, apoE-/-mice exhibit exaggerated TNF induction and increased
mortality53. Finally, in the apoE-null mouse, vascular calcification quickly evolves upon the
backdrop of VSMC chondroid metaplasia8 that is observed over time even on mouse chow –
i.e., in the absence of cholesterol-rich dietary challenge54. By comparison, evolution of arterial
calcification in the LDLR-/- mouse is more protracted and elicited by the clinically relevant
Western diet (42% of calories from fat, 0.15% cholesterol), accruing vascular mineral
deposition via sequentially distinct mechanisms28, 29. At early stages, vascular calcification
can be histologically detected by Alizarin red staining within the tunica media of major conduit
arteries of diabetic, male LDLR-/- mice -- biochemically quantifiable following acid extraction.
29 Atheromata are not uniformly present at this early stage, and if present do not stain for
calcium. As with atherosclerosis, the initial calcium deposition within the tunica media may
be elastin organized phospholipid vesicles55, 56, since very little inorganic phosphate staining
is evident by von Kossa at this stage29. Similar observations have been described in human
specimens57. With progression, however, massive aortic sinus and subintimal cholesterol
deposits accrue, with atherosclerotic calcification visualized within the cholesterol clefts and
degenerating atheromata29. During this second phase, chondroid metaplasia clearly contributes
to vascular calcium accrual in male LDLR-/- mice28 as observed in apoE-/- mice8. The extent
of medial calcium is thus increased upon Alizarin red staining29, 57, and the von Kossa method
for visualizing inorganic phosphate now reveals massive medial and atherosclerotic calcium
phosphate deposition in male LDLR-/- mice fed fatty diets28, 29. Thus, when place on high fat
westernized diets, the male LDLR-/- mouse sequentially elaborates an early arterial medial
calcification program (Table 1) that with disease progression is augmented by processes of
atherosclerotic intimal calcification (Table 1; see also Table 2).

II.A.3 Inhibition of RANKL signaling as a therapeutic approach to arteriosclerotic calcification
As noted above, OPG is an endogenous inhibitor of RANKL signaling that limits arterial
calcium accumulation during development. Recently, the impact of pharmacologic inhibition
of RANKL by OPG has been evaluated in the above preclinical models of atherosclerosis and
arterial calcification. Interestingly, very distinct responses are observed with OPG
administration in LDLR-/- and apoE-/- mice28, 43. Demer and colleagues first evaluated the
male LDLR-/- mouse, the dynamics of endogenous RANKL/OPG signaling during disease
initiation and progression, and the impact of exogenous OPG administration28. Serum RANKL
measurements demonstrated that progression of vascular disease over 5 months of dietary
cholesterol challenge closely tracks the progressive recovery of circulating RANKL following
an early phase of diet-induced suppression 28. Early diet-induced increases in OPG – a
presumed adaptive mechanism to protect against untoward RANKL signaling36 – exhibited
no dynamic change with progression28. As predicted from studies of OPG-/-mice34, male
LDLR-/- mice treated with exogenous OPG exhibit reduced arterial calcification and
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diminished aortic osteochondrogenic differentiation28. However, no change in atherosis – i.e.
the size of arterial atheroma – was observed28. Intriguingly, three sources of vascular RANKL
production were identified in this LDLR-/- model: (i) the F4/80+ monocyte-macrophage
population in closest proximity to lesions undergoing chondroid metaplasia; (ii) the endothelial
cells overlying atheroma; and (iii) the CD3+ T-cells at the adventitial-medial junction28.
Whether any one source of RANKL production represents the lynchpin for the OPG-dependent
inhibition of progressive vascular mineral accrual in this model remains to be determined.

In apoE-/- mice, as in LDLR-/- mice, OPG administration apparently does not affect atheroma
lesion size43. However, OPG significantly increases fibrous cap size and thickness and reduces
MMP12 levels, potentially stabilizing the lesion but not directly assessed43 (see below). Non-
significant, tantalizing trends for reductions in numbers of macrophages and T-cells were also
observed in response to OPG administration. Unlike male LDLR-/- mice -- where diet-induced
obesity increases circulating TNF levels29 -- basal TNF levels are below the limits of detection
in apoE-/- animals and thus not measurably changed by OPG administration 43. Calcification
was, unfortunately, not scored in this recent study43. However, Bennett and colleagues have
applied murine genetics to carefully detail the important role for endogenous OPG in the
calcification of advanced atherosclerotic lesions of apoE-/- mice by generating and evaluating
OPG-/-;apoE-/- mice31. In this model, congenitally deficient OPG-/-;apoE-/- mice exhibit
atherosclerotic lesions of increased size in the innominate artery, with significantly increased
areas of calcification and aortic calcium accumulation measured during disease
progression31. Plaque stability was not assessed in OPG-/-;apoE-/- mice, but OPG was shown
to increase MMP9 (matrix metalloproteinase 9) activity in vitro31, and MMP9 promotes
intraplaque hemorrhage in vivo in advanced atherosclerotic lesions of apoE-null animals58,
59. However, congenitally deficient MMP9-/-;apoE-/- mice exhibit increased lesion size
following disease initiation vs. MMP9-replete siblings60, suggesting that stage-specific roles
of MMP9 exist in atherosis and sclerosis58. As a modulator of MMP9, OPG could potentially
exert adverse as well as beneficial arteriosclerotic actions during pharmacological
manipulation of RANKL signaling 31. Thus, as in the LDLR-/- mouse, OPG limits arterial
calcium accumulation in the apoE – null mouse. OPG may regulate plaque stability -- but the
differential responses of pharmacologic vs. genetic manipulation of OPG on vascular
histopathology in apoE-/- mice highlight the need for more a detailed assessment of impact
upon plaque formation, stability, and regression.

In summary, antagonism of RANKL signaling cascades holds much promise for modulation
of atherosclerotic calcification61. Of note, a humanized antibody that antagonizes human
RANKL has been developed for prevention of fractures in osteoporosis62; based upon
preclinical studies of Hofbauer et al using a “humanized RANKL” murine model32, this same
reagent might be useful in treatment of cardiovascular calcification. However, the net impact
on vascular physiology – vascular compliance, Windkessel-dependent conduit function, distal
tissue perfusion, arterial remodeling and plaque stability – has yet to be determined.

II.B.1. Medial artery calcification, arteriosclerosis, and lower extremity amputation risk in
T2DM

The relationship between arteriosclerotic medial artery calcification (AMC; Table 1) and the
risk of lower extremity amputation in T2DM has been appreciated for 2 decades63, 64. The
earliest studies were reported for Pima Indians, a native American population with increased
risk for T2DM63, 64. Subsequent studies from Finland identified that radiographic femoral
medial artery calcification – not atherosclerotic calcification – was the single best predictor of
lower extremity amputation in T2DM65. Why, then, does increased arterial stiffness
(arteriosclerosis) in T2DM -- arising from AMC without peripheral atherosclerosis --
contribute to the increased risk for lower extremity amputation?66 Conduit vessel stiffening
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from any cause67 compromises normal arterial Windkessel physiology67, 68, thus impairing
uniform distal tissue perfusion throughout the cardiac cycle69, 70.

At this point, however, it should be re-emphasized that critical limb ischemia (CLI) arising
from atherosclerotic plaque formation and arterial stenosis in the femoropopliteal bed is a well-
recognized contributor to lower extremity amputation risk; moreover, atherosclerotic
calcification also contributes to conduit vessel stiffness71-74. Medical strategies such as statins
that reduce atherosclerotic disease burden also improve outcomes in patients with peripheral
arterial disease (PAD)71, 75. Reductions in ankle-brachial indices (ABIs) provide a clinically
useful tool for identifying symptomatic individuals at risk72, 73. Increased mobility, reduced
claudication, limb salvage, and improved ABIs can often be achieved by surgical or
percutaneous vascular interventions71 -- more successfully so in stenosed distal
femoropopliteal segments76, 77 than proximal segments78, and less successfully so in patients
with diabetes79-81. However, in the setting of T2DM, PAD arises with contributions from both
medial artery calcification and atherosclerosis74. Furthermore, in T2DM, ABIs are frequently
elevated82 – not reduced – due to medial calcific sclerosis74, 82. While elevated ABIs do not
necessarily convey increased risk for atherosclerotic disease83, an ABI ≥ 1.3 does indicate the
presence of arteriosclerosis – i.e., arterial stiffening -- and concomitantly portends lower
extremity amputation84. In summary, the clinical evaluation of PAD in patients with T2DM
requires special consideration, including assessment of toe-brachial indices in lieu of ABIs82.

II.B.2. Mechanisms of medial artery calcification in T2DM: Clues from the field of bone biology
and the LDLR-/- mouse

During skeletal mineralization, bone formation can occur via either endochondral (preceding
cartilage template required) or membranous (non-endochondral; no cartilage required)
processes7. Osteo/chondrocytic transcription factors such as Sox9, Runx2/Cbfa1, Msx2, Msx1,
and Osx play critical roles in promoting either endochondral (Sox9, Runx2, Osx) or
membranous (Msx2, Msx1, Runx2 and Osx) bone formation7. In bone, polypeptide
morphogens such at BMPs (bone morphogenetic proteins) and Wnts (wingless/mouse
mammary tumor virus integration site family) induce these osteoblast DNA binding proteins
along with β-catenin, a transcription co-adapter indispensible for bone formation7, 85. A
common feature of active osteogenic mineralization is induction of AKP2, the “bone” alkaline
phosphatase that degrades the plentiful and endogenous mineralization inhibitor, inorganic
pyrophosphate (PPi) (Figure 1)7. Of note, Sox9, Runx2, Msx2, and AKP2 have all been
described as being expressed in calcifying human arterial segments86, and are upregulated by
stimuli that promote arterial calcification (Figure 1).

The molecular mechanisms controlling initiation and progression of medial artery calcification
in T2DM have recently been studied in detail in the male LDLR-/- mouse (Table 2) – a model
in which obesity, diabetes, and osteogenic arterial calcification programs are induced in
response to high fat diets possessing compositions characteristic of westernized societies 2,
29, 39, 44, 87. Importantly, diet-induced disease in male LDLR-/- mice2, 29, 44, 87 closely tracks
molecular and physiological characteristics of T2DM patients afflicted with valve88, 89 and
arterial86, 90 calcification. A critical clue to the pathogenesis of AMC in this setting arose from
recognition that T2DM induces a low grade systemic inflammatory state, programmed in part
by adipokines – i.e., fat-derived cytokines48-50 91, 92. TNF is the prototypic inflammatory
cytokine, elaborated not only by adipocytes but also by adipose tissue macrophages (ATM)
that infiltrate fat with “diabesity.”48, 93, 94. Demer et al first identified that TNF and a
macrophage-derived signal stimulated the mineralization of aortic calcifying vascular cells
(CVCs) in vitro95. Subsequently, we demonstrated that infliximab-mediated inhibition of TNF
signaling in vivo in the LDLR-/- mouse down-regulated osteogenic Msx2-Wnt gene regulatory
program in aortas of diabetic LDLR-/- mice29. Concomitant reductions in early vascular
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calcium load was also observed with infliximab29. While diet-induced abnormalities in fasting
glucose and lipid profiles were not improved, dosing with infliximab did decrease serum 8-F-
isoprostane levels, an oxylipid and marker of oxidative stress in T2DM29. Conversely, local
augmentation of TNF tone in the aortic wall with a SM22-TNF transgene activated aortic
Msx2-Wnt signaling in the absence of diet-induced disease, demonstrating the important role
of TNF in the initiation of macrovascular disease in T2DM29. Others have now also confirmed
the important role for Msx2 in TNF-dependent induction of AKP2 and mineralization in
VSMCs (Figure 1)96. Koleganova highlighted the significance of these preclinical studies to
human disease biology in those afflicted with arterial calcification of renal failure90; TNF,
Msx2, and BMP2 expression were correlated with osteogenic differentiation in both calcified
and non-calcified vessel segments of patients with CKD5 (chronic kidney disease)90.

Thus, in summary, these data90 and others86, 88, 89 confirm the clinical relevance of the
osteogenic relationships established in the LDLR-/- murine model of calcific vasculopathy
(Figure 1). Obligatory diet-induced “diabesity” in the LDLR-/- model is an important feature
of this model that is highly relevant to the burgeoning disease burden of westernized societies.
As in diseased humans vessels, osteogenic transcription factors (Msx2, Runx2, Osx, Sox9) are
ectopically induced in the arteries and valves of diabetic LDLR-/- mice. Mechanistic insights
possible via preclinical studies point to both (a) trans-differentiation of VSMCs; and (b)
osteochondrogenic lineage allocation of multipotent mesenchymal progenitors by these
osteogenic transcription factors4, 97. Since streptozotocin drug-induced diabetes also
accelerates osteochondral metaplasia in the apoE-/- mouse98, further evaluation of this model
may help elucidate the pathobiological mechanisms whereby hyperglycemia promotes arterial
mineralization.

II.C. Inflammation, fetuin, and matrix vesicle metabolism: Novel insights into the calcific
vasculopathy of chronic kidney disease (CKD)

CKD, particularly CKD5, represents a “perfect storm” of calcific vasculopathy (Table 1)11.
Antecedent diabetes, hypertension, and dyslipidemia intersect with phosphate retention, low
turnover bone disease, and dialysis-induced systemic inflammation and VSMC apoptosis
synergize to drive ferocious arterial calcium accrual (Figure 1)11. Arterial calcification of
CKD5 and in calcific uremic arteriolopathy (also called calciphylaxis; Table 1) have been
reviewed in detail, and the reader is referred to these excellent manuscripts11, 99, 100. However,
fetuin biology as relevant to the arterial calcification in CKD5 is worthy of special
consideration, particularly within the context of inflammation-mediated vascular disease.

Fetuin - a.k.a. fetuin A, alpha-2-Heremans-Schmid glycoprotein, AHSG -- is a serum protein
synthesized by the liver99. As first demonstrated by Jahnen-Dechent, fetuin avidly binds
amorphous calcium phosphate, and maintains the solubility of supersaturated serum calcium
phosphate101 via the formation of calciprotein particles that inhibit insoluble calcium
phosphate crystal aggregate formation (Figure 1) 102-106. Consistent with these observations,
Jahnen-Dechent, Ketteler, and colleagues demonstrated widespread soft tissue calcification in
fetuin-deficient mice106. Shanahan recently identified that fetuin also plays a critical role in
VSMC-mediated removal of pro-calcific matrix vesicles107, 108. In response to hypercalcemia
and hyperphosphatemia – common stimuli in dialysis patients101 – VSMCs elaborate matrix
vesicle and apoptotic bodies that not only can nucleate extracellular matrix deposition but might
also help facilitate clearance of vascular calciprotein particles107, 108. Serum-derived fetuin
and matrix vesicle-associated matrix Gla protein (MGP) are required for VSMC-mediated
uptake and clearance of vesicles (Figure 1)107, 108. Importantly, fetuin is an “inverse” acute
phase reactant, decreased by inflammation via inhibition of the CCAAT/enhancer binding
protein-DNA interactions that support fetuin gene transcription in hepatocytes109, 110. In
ESRD, fetuin levels are inversely related to extent of coronary calcification, providing yet
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another link between inflammation, oxidative stress, and arterial calcium accumulation111,
112. Similar results have been noted in patients with calcific aortic stenosis113.

In summary, the cumulative evidence overwhelmingly points to an important role of fetuin in
limiting arterial calcium deposition. It remains to be determined if normalization or
augmentation of serum fetuin reduces vascular calcification in a model of inflammation-
induced vascular disease. Of note, increased patient mortality in CKD5 – an outcome related
to the extent of vascular calcification114 – is associated with reductions in fetuin but is
significant only in the setting of inflammation115. This suggests that other signals elaborated
by inflammation independent of fetuin suppression – such as reactive oxygen species – must
play an important pathophysiological role. Finally, the reader is referred to outstanding recent
reviews highlighting the critical contributions of hyperphosphatemia11, 116, VSMC BMP2-
dependent phosphate transport117, and BMP7-corrected hyperphosphatemia118, 119 to the
pathobiology of vascular calcification in the setting of CKD.

III. Oxidative stress signaling and vascular calcification: Peroxide paves an
osteogenic path

As noted above, when coupled with the clinical setting, histoanatomic and molecular
characteristics distinguish aortic valve calcification, atherosclerotic calcification, diabetic
medial artery calcification, vascular calcification of ESRD, and calcific uremic arteriolopathy
(Table 1)120. However, over the past two years multiple groups have newly identified the
important role of oxidative stress signaling in vascular activation of osteogenic gene regulatory
programs88, 121. Chen first demonstrated that the osteochondrocytic transcription factor
Runx2/Cbfa1 is activated by hydrogen peroxide (H202) and supports bone alkaline phosphatase
(AKP2) expression and matrix mineralization in cultured vascular smooth muscle cells (Figure
1)121. Similarly, membranous ossification programs122, 123 elaborated by Msx2-Wnt signaling
cascades are also dependent upon peroxide signals elaborated from mitochondrial activity and
downstream of TNF stimulated NADPH oxidases124, 125. Very recently, Miller, Heistad, and
colleagues demonstrated co-localization of oxidative stress signaling and the osteogenic
transcription factors Msx2 and Runx2/Cbfa1 in calcifying human aortic valves88. However,
the sources of oxidative stress were shown to arise from uncoupling of nitric oxide synthase
(NOS) and failures in the enzymatic defenses (e.g., catalase) that restrain peroxide
accumulation88. Using the “Reversa” mouse model, they subsequently demonstrated that
elevated cholesterol levels are required for calcification and sustained vascular induction of
the osteogenic transcription factors Msx2 and Runx2/Cbfa1126. This suggests that an
oxylipid127 -- in addition to oxylipid-responsive cytokines such as TNF29, 95 and RANKL28,
128 -- is required for vascular calcification, as first proposed by Demer95, 127, 128.

In summary, although sources of oxidative stress may differ with vascular venue and disease
state88 -- and the signaling cascades have yet to be fully elucidated124 -- oxidative stress signals
provide important stimuli. With inflammatory cytokine signals, this helps provide a unifying
theme for arterial elaboration of osteogenic mineralization processes.

IV. Of BMPs and Wnts: Osteogenic morphogens as proximal mediators of
vascular calcification

BMP2 is a powerful osteogenic morphogen that promotes bone formation during skeletal
development and also maintains skeletal integrity and supports fracture repair during post-natal
life129. Via an autocrine Wnt signaling loop, BMP2 promotes osteoblast commitment and the
induction of the bone alkaline phosphatase (AKP2) 130, the latter an important enzymatic
mediator of osteogenic matrix mineralization (Figure 1)130. Almost two decades ago, Bostrom,
Demer and colleagues identified the presence of BMP2 in calcified atherosclerotic plaques and
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demonstrated the important role for BMP2 in CVC mineralization131. With Anderson's
studies55, this provided the first molecular insights into the biology of vascular calcium
deposition and vascular BMP2 expression -- now mechanistically integrated with
pathophysiological states that initiate calcific vasculopathy124. Ungvari and colleagues
recently demonstrated that TNF, H202, and high intravascular pressure –stimuli commonly
encountered with diabetes, hypertension, and the metabolic syndrome -- all upregulate the
expression of BMP2 in endothelial cells132. This provides a morphogenetic cue that reinforces
osteogenic differentiation of multipotent vascular mesenchymal cells such as pericytes and
CVCs that reside within the vascular wall 131, 133, 134(Figure 1). Moreover, as mentioned
above, RANKL stimulates BMP4 production by VSMCs, providing an autocrine stimulus for
osteochondrogenic transdifferentiation -- if not held in check by BMP4 antagonists such as
noggin36 or MGP30. Importantly, in addition to being entrained to TNF29, the vascular
osteogenic Wnt signaling cascades previously discussed87, 124, 125 (Figure 1) are also activated
downstream of BMP2 in vivo2. Of note, these canonical Wnt signals drive osteochondrocytic
differentiation of multipotent vascular pericytes in vitro135 as well as promote the arterial
calcification of type II diabetes in vivo87; via multiprotein cell surface receptor complexes
containing LRP5 or LRP6, the Wnt polypeptide family contributes to bone morphogenesis and
skeletal integrity136 in conjunction with the BMPs137. Intriguingly, along with many Wnt
ligands, LRP5 and LRP6 are expressed in endothelial cells and VSMCs138. The precise reasons
why vascular expression of these osteogenic morphogens does not always lead to arterial
mineralization is still unclear. This presumably reflects the local balance between agonists and
antagonists of BMP/Wnt signaling124 (e.g., MGP and Dkk1, respectively; Figure 1); the
important roles of inorganic pyrophosphate139, fetuin107, and osteopontin140 as osteogeonic
mineralization inhibitors; elastin metabolism141-144; and the impact of matrix stiffness145 upon
the osteogenic potential of vascular mesenchymal progenitors. Nevertheless, strategies that
can selectively (a) inhibit the activation or the actions of vascular osteogenic BMP/Wnt
signaling; or (b) augment vascular defenses that prevent mineralization hold promise for
limiting arterial calcium accumulation.

V. Inorganic pyrophosphate (PPi) and Matrix Gla protein (MGP): Overlapping
consequences of genetic and inflammation-induced deficiency in two key
vascular defenses

Elegant genetic studies in mice and humans have highlighted the important roles for inorganic
pyrophosphate and MGP as non-inflammatory inhibitors of vascular mineralization. Karsenty
and colleagues first identified that murine deficiency in the BMP2/4 antagonist MGP133 results
in chondroid metaplasia of the arterial tunica media, pan-arterial calcification, and vascular
rupture146. Similarly, Terkeltaub showed that murine deficiency in the mineralization inhibitor
PPi, arising from genetic disruption of the ectoezyme NPP1 (ectonucleotide pyrophosphatase/
phosphodiesterase I) also results in arterial calcification with chondroid metaplasia139. The
relevance of the PPi/NPP1 axis to human genetic disease is established via identification that
generalized arterial calcification of infancy (OMIM #208000), a rare congenital disorder, arises
from PPi deficiency due to NPP1 loss-of-function mutations147. How, then, is inflammation
connected to these critically important inhibitors of mineralization? Overtly, the induction of
AKP2 by TNF95 and down-stream osteogenic BMP-Wnt pathways29, 87, 136 (described above)
hydrolyzes PPi to destroy this inhibitor during vascular mineralization (Figure 1)148. Moreover,
depletion of PPi markedly down-regulates osteopontin149, the even more potent inducible
inhibitor of vascular mineralization140. However, until very recently, the relationship between
inflammation and MGP insufficiency was less clear. In a series of very insightful studies,
Bostrom identified that MGP is a Gla-dependent inhibitor of BMP2 and BMP4150, osteogenic
morphogens that upregulate AKP2 expression30, 133, 150. Bostrom went on to show that IL6,
an inflammatory cytokine important in diabetic vascular disease, increases the expression and
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secretion of HSP70, an endogenous MGP binding protein and antagonist of MGP function that
is highly expressed in calcifying atherosclerotic plaques30. Thus, by inducing HSP70,
inflammatory signals provided by IL6 potentiate vascular BMP2/4 actions by nullifying
MGP30 (Figure 1). Whether other inflammatory cytokines participate in this hierarchy of
regulated mineralization is unknown. Nevertheless, these newer data point to how two axes –
genetic defenses against vascular mineralization and inflammation –induced arterial
osteogenic programs – functionally intersect to regulate arterial calcification4.

VI. Summary and Future Directions
The fund of knowledge available to the field of arterial calcification and vascular mineral
metabolism has dramatically grown in recent years. Our understanding of this disease biology
has been enabled by incredible advancements in bone and mineral research that occurred
alongside innovative investigation in cardiovascular medicine and insightful human studies
from astute clinician-scientists. As in bone, mechanistic heterogeneity exists in the different
forms of vascular mineral deposition, and also during stages of disease initiation and disease
progression. Moreover, there is heterogeneity in the sources and mechanisms of mineralizing
vascular cell types; osteochondrocytic VSMC trans-differentiation, VSMC apoptosis, and
osteochondrocytic lineage allocation of multipotent mesenchymal cells all contribute, but to
varying extents dependent upon pathophysiologic setting and disease stage (Figure 1). It has
been posited that marrow derived circulating osteoprogenitors may also contribute to vascular
mineralizing cell types151-153, but this has yet to be unambiguously established.

To date, approaches to prevent and/or reverse macrovascular calcification have largely been
unsuccessful154, due in part to this mechanistic heterogeneity and the intrinsic pro-
inflammatory actions of vascular calcium phosphate that provide a “feed-forward” stimulus
for disease25, 26. In addition, clinical setting dramatically alters the metabolic milieu and rate-
limiting pathophysiology of calcific vasculopathy (Table 1) – risk factors that differentially
impact disease initiation and progression155. Moreover, not all human medial calcific sclerosis
may be associated with overt inflammation; indeed, use of oral calcium-based phosphate
binders alone increases coronary artery medial calcification in CKD – a vascular bed not usually
afflicted by medial sclerosis24. However, recent data highlight the fundamental contributions
of inflammation, oxidative stress, and osteogenic morphogen signaling in this vascular disease.
With careful patient selection and consideration of the diseased vascular segment, intervention
with a potent statin may yet play a clinically important role via LDL cholesterol reduction and
anti-inflammatory actions12, 156, 157. Unfortunately, simple strategies that seek to “scavenge”
redox signals elaborated by inflammation do not offer significant clinical benefits for most
individuals at risk80. Approaches that target the OPG/RANKL pathway61, the calcium sensing
receptor158 and other calciotropic signals39,116, 119, or key vascular proteases141, 144 offer hope
--- but individually may be insufficient in some clinical settings, particularly dialysis-
dependent renal failure100,159. Except for a few prescient reports on the relationships between
arterial pressure and vascular BMP-Wnt signaling132, 160-164, remarkably few studies have
examined the mechanistic links between hypertension and signals that regulate arterial
calcification165. Given that endothelin-dependent signals control both vascular calcium
homeostasis and blood pressure166, 167, the paucity of such studies represents an unmet
scientific need. Moving forward with mechanistic insights, pharmacological strategies can be
crafted that newly acknowledge disease complexity4, 5, and thus antagonize with sophistication
the combination of pathobiological processes that promote vascular mineralization during
disease initiation and progression168. The future holds great promise for the development of
these successful therapeutics and the medical management necessary to address a burgeoning
clinical need5.
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Figure 1. Inflammation and Osteogenic Regulation of Vascular Calcification: A Review and
Working Model
Osteochondrocytic cells that promote vascular matrix mineralization can arise from at least
two sources: (1) trans-differentiation of VSMCs – i.e., a type of phenotypic modulation in
which the mature VSMC phenotype is replaced, and reprogrammed to that of an
osteochondrocytic cell; or (2) osteogenic lineage allocation from a multipotent mesenchymal
progenitor – i.e., a cell that has the potential to become an osteoblast, chondrocyte, VSMC, or
adipocyte. Both processes are triggered by key inflammatory cytokines and oxidative stress
signaling (boxed). VSMCs also elaborate apoptotic bodies and matrix vesicles that can nucleate
mineral deposition – but also may play a role in removing vascular calciprotein particles via
fetuin and MGP-dependent cellular uptake. Thus, apoptosis of VSMC not only provides
substrate for nucleation, but also loss of cellular defenses. Multiple paracrine inhibitors control
(a) pro-osteogenic signals provided by BMP/Wnt signaling, RANKL and TNF actions; and
(b) nucleation/aggregation/epitaxial propagation of apatitic calcium phosphate deposition. Via
HSP70-mediated inhibition of MGP and AKP2-mediated PPi degradation, inflammatory
cytokines such as IL6 and TNF impair MGP and PPi defense mechanisms, respectively.
Inflammation also down-regulates expression of serum fetuin, an import hepatocyte-derived
inhibitor of soft tissue mineral deposition. Not shown are the enzymatic defense mechanisms
such as catalase and glutathione peroxidase that reduce vascular oxidative stress10, 88, 169.
Although clearly an important stimulus for vascular BMP2 expression132, remarkably few
studies have examined the molecular mechanisms whereby hypertension activates vascular
osteogenic signaling cascades. Of note, contribution of marrow-derived osteogenic endothelial
progenitor cells as an additional source of mineralizing vascular mesenchymal progenitors has
been recently posited, but has yet to be established153. See text for details and additional
references.
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Table 2
Features of ApoE-/- and LDLR-/- Murine Models of Arterial Calcification*

Murine Disease Model

Parameter ApoE-/- Mouse LDLR-/- mouse

Diet-induced hypercholesterolemia Yes33, 185 Yes33, 186

Diet-induced atherosclerosis Yes185 Yes187

Diet–induced diabetes No33 Yes33, 44

Diet-induce obesity No33 Yes33

“Spontaneous” arterial chondroid metaplasia Yes54, 98
(accelerated by drug-induced diabetes)

No29, 44

Early diet-induced non-endochondral7 medial artery
calcification

No54 Yes29, 168

Late diet-induced endochondral7 atherosclerotic calcification Yes54 Yes28, 29, 168

Hemodynamically -significant calcific aortic valve disease
occurs with progression

Not known
(valve thickening seen with CRI)188

Yes126, 189
(concomitant ApoB100/100

genotype)

Exaggerated inflammatory response and susceptibility to
mortality with gram-negative sepsis

Yes53, 190 Less so**53, 191

Arterial calcification accelerated by chronic renal insufficiency
(CRI)

Yes141 Yes118

*
C57Bl/6 background. Arterial calcification is greater in male animals in both apoE -/- and LDLR-/- mice39, 192

**
Sepsis susceptibility with exaggerated inflammation: apoE -/- > LDLR-/- > wild-type C57Bl/6 mice53, 190, 191
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