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Abstract
β-peptides possess several features that are desirable in peptidomimetics; they are easily synthesized,
fold into stable secondary structures in physiologic buffers, and resist proteolysis. They can also bind
to a diverse array of proteins to inhibit their interactions with α–helical ligands. β–peptides are not
usually cell permeable, however, and this feature limits their utility as research tools and potential
therapeutics. Appending an Arg8 sequence to a β–peptide improves uptake but adds considerable
mass. We reported that embedding a small cationic patch within a PPII, α– or β–peptide helix
improves uptake without the addition of significant mass. In another mass-neutral strategy, Verdine,
Walensky, and others have reported that insertion of a hydrocarbon bridge between the i and i+4
positions of an α–helix also increases cell uptake. Here we describe a series of β–peptides containing
diether and hydrocarbon bridges and compare them on the basis of cell uptake and localization,
affinities for hDM2, and 14-helix structure. Our results highlight the relative merits of cationic patch
and hydrophobic bridge strategies for improving β–peptide uptake and identify a surprising
correlation between uptake efficiency and hDM2 affinity.

β-peptides1-4 possess several features that are desirable in peptidomimetics;5,6 they are easily
synthesized, fold into helices1-3,7 in physiologic buffers,8 and resist proteolysis.9 They also
bind in vitro to proteins such as hDM2,10-14 hDMX,10 gp41,15,16 and others,17-19 and inhibit
their interactions with α-helical ligands. β-peptides are not usually cell permeable, however,
and this feature limits their utility as research tools and potential therapeutics. Appending an
Arg8 sequence to a β-peptide can improve uptake20,21 but adds considerable mass. We reported
that embedding a small cationic patch within a PPII,22 α-23 or β-peptide11 helix improves
uptake without the addition of significant mass.24,25 Similarly, Verdine, Walensky, and
others26-33 reported that insertion of a hydrocarbon bridge (a “staple”) between the i and i+4
positions of an α-helix34 increases uptake.26,29,32,34-38 Here we describe a variety of β-peptides
containing diether- and hydrocarbon bridges and compare them on the basis of cell uptake and
localization, affinity for hDM2, and 14-helix structure. Our results highlight the relative merits
of cationic patch and hydrophobic bridge strategies for improving β-peptide uptake and identify
an unprecedented correlation between uptake efficiency and hDM2 affinity in vitro.
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Our studies began with an analysis of available x-ray39,40 and NMR structures13,41 of β-peptide
14-helices to identify those position pairs that would best tolerate an ether42,43 or
hydrocarbon34 bridge. This analysis, supported by recent work of Perlmutter42 and
Seebach44 suggested that a 21-atom bridge could be accommodated between most i and i+3
positions of a 14-helix. To test this prediction, we synthesized an analog of β-peptide 27

containing (O-allyl)-β3-L-Ser at positions 3 and 6 (2(3-6), Figure 1), and subjected it to on-
resin ring-closing metathesis using bis(tricyclohexylphosphine)benzylidene ruthenium (IV)
dichloride34 to generate 2(3-6)s.45 The circular dichroism (CD) spectra of 2, 2(3-6) and 2(3-6)
s were identical (Figure S1), indicating that this 21-atom diether bridge is accommodated
between positions 3 and 6. Introduction of the diether bridge did not significantly increase or
decrease the extent of 14-helix structure as judged by CD.

In order to evaluate the relative uptake of bridged β-peptides in the context of a functional
molecule of diverse sequence, we synthesized a series of variants of β53-12,10 an inhibitor of
p53-hDM2 complexation (Figure 1). These variants contained either (O-allyl)-β3-L-Ser (to
generate a diether bridge) or (S)-3-aminooct-7-enoic acid (to generate a hydrocarbon bridge)
at i and i+3 positions 2 and 5 (25.O-s and 25.C-s, respectively) or 4 and 7 (47.O-s and 47.C-
s, respectively). According to the CD spectra (Figure 2), all bridged β-peptides assumed a 14-
helical structure and were modestly more helical than unbridged analogs (Figure S2).

As a prelude to evaluating cell uptake and localization, we employed a direct fluorescence
polarization assay to compare hydrocarbon and diether bridged β-peptides on the basis of
affinity for hDM21-188 (Figure 2B). β-peptides containing a diether or hydrocarbon bridge
between positions 4 and 7 bound hDM21-188 2-fold better (Kd = 53.9 ± 22.7 and 94.1 ± 18.4
nM, respectively) than the corresponding unbridged analogs (Kd = 114 ± 28 and 253 ± 75 nM,
respectively), in line with analogous comparisons in an α–peptide context.35 By contrast, β-
peptides containing a diether or hydrocarbon bridge between positions 2 and 5 bound
hDM21-188 between 4 and 8-fold worse (Kd = 548 ± 58 and 546 ± 96 nM, respectively) than
unbridged analogs (Kd = 139 ± 13 and 68.1 ± 7.8 nM, respectively). In silico analysis suggests
that the lower hDM21-188 affinity of β-peptides 25.C-s and 25.O-s results from steric hindrance
between the hydrocarbon bridge and the hDM2 surface that is absent in the complex with
peptides 47.C-s and 47.O-s (Figure 3, compare A and B).

We next set out to monitor the mammalian cell uptake and sub-cellular localization of diether-
and hydrocarbon bridged β-peptides based on β53-12. Uptake was monitored using flow
cytometry, whereas sub-cellular localization was assessed using confocal microscopy (Figure
4). β-peptides containing diether or hydrocarbon bridges between positions 4 and 7 were taken
up significantly more efficiently (MCF = 8.21 ± 0.45 and 8.63 ± 0.77, respectively) than
unbridged analogs (MCF = 3.23 ± 0.31 and 2.63 ± 0.32, respectively), irrespective of bridge
structure. By contrast, β-peptides containing diether or hydrocarbon bridges between positions
2 and 5 were taken up poorly, irrespective of bridge structure, and behaved much like the
unbridged analogs. In all cases, as judged by flow cytometry, the greatest uptake was observed
with β-peptide β53-12SB3, which contains a cationic patch on one 14-helix face but no bridge
of any kind (Figure 4AB).

The localization of bridged β-peptides upon cell uptake was explored in more detail using
confocal microscopy. HeLa cells were treated with fluorescently labeled β-peptide (green) as
well as Alexa Fluor® 647 labeled transferrin and Hoescht 33342 to visualize recycling
endosomes46,47 (red) and nuclei (blue). β-peptides containing a diether or hydrocarbon bridge
between positions 4 and 7 are distributed widely among Tf+ and Tf- endosomes, as well as
nuclear and cytosolic compartments, whereas those containing the analogous bridge between
positions 2 and 5 are not (Figure 3). Indeed, β-peptides containing a diether or hydrocarbon
bridge between positions 2 and 5 are taken up more poorly than the unbridged analog (Figure
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S4). These results highlight an intriguing correlation between hDM2 affinity and cell uptake;
it is possible that the structural features that lower hDM2 affinity (Figure S3) also lower uptake
efficiency. Indeed, it appears that for these β-peptides, an increase in 14-helix secondary
structure does not necessarily confer increased cell uptake.26
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Figure 1.
Helical net representation of β-peptides studied herein. β3-homoamino acids are identified by
the single-letter code used for the corresponding α–amino acid. Orn represents ornithine. Z
represents 3-(S)-3-amino-4-(2-trifluoromethylphenyl)-butyric acid.
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Figure 2.
CD analysis of β-peptides containing hydrocarbon or diether bridges between residues (A) 2
and 5 or (B) 4 and 7. Fluorescence polarization (FP) analysis of hDM2 binding by β-peptides
containing (C) hydrocarbon or (D) diether bridges.
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Figure 3.
Computational model of hDM2 (grey) in complex with (A) 25.C-s or (B) 47.C-s.45
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Figure 4.
HeLa cell uptake and localization of Flu-labeled β-peptides. (A,B) HeLa cells were incubated
with 2 μM β–peptide for 4 h, treated with 0.25% trypsin for 10 min, washed with cold DMEM
and PBS, and analyzed using flow cytometry. (C) Confocal microscopy of HeLa cells treated
with 20 μM of the indicated β-peptide (green), 5 mg•mL-1 Alexa Fluor 647-transferrin (red)
and 150 nM Hoescht 33342 (blue).
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