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Abstract

The development of conditions that allow use of inexpensive aryl chlorides as electrophiles in Pd-
catalyzed alkene carboamination and carboetherification reactions is described. A catalyst composed
of Pd(OAc)2 and S-Phos minimizes N-arylation of the substrate and prevents formation of mixtures
of regioisomeric products. A number of heterocycles, including pyrrolidines, isoxazolidines,
tetrahydrofurans, and pyrazolidines, are efficiently generated with this method.

Over the past several years, our group has developed a new type of cross-coupling reaction in
which alkenes bearing pendant aminopropyl groups are transformed to substituted pyrrolidines
via Pd-catalyzed carboamination reactions with aryl bromides. These alkene
difunctionalization reactions provide a convergent and efficient means to access substituted
N-aryl, N-acetyl, or N-Boc pyrrolidines with a high degree of stereocontrol.1,2 This strategy
has also been employed for the generation of several other oxygen- or nitrogen-containing
heterocycles.3,4,5

To further expand the scope and utility of these transformations, we sought to employ
inexpensive aryl chlorides as electrophilic coupling partners in these reactions.6 In our prior
studies we had found that chelating phosphine ligands with wide bite angles, such as Dpe-phos,
Xantphos, or dppb, provided optimal results in many transformations of aryl bromides.2
However, Pd-catalysts supported by these ligands are not sufficiently active to facilitate
transformations of aryl chlorides, which are considerably less reactive than the corresponding
aryl bromides. Thus, to achieve our goal, we would need to discover catalysts that both activate
aryl chlorides, and also promote the alkene carboamination process.

Due to the significant economic advantages associated with using aryl chlorides in place of
aryl bromides, considerable research effort has been expended on the development of ligands
for Pd-catalyzed cross-coupling reactions of these relatively unreactive electrophiles.7 Many
of these ligands are highly effective in Suzuki couplings, N-arylations, and other carbon-carbon
or carbon-heteroatom bond-forming processes.7,8,9 However, our initial efforts to employ
these ligands in Pd-catalyzed carboamination reactions of γ–(N-arylamino)alkenes (e.g., 1a)
provided unsatisfactory results. Use of Buchwald’s biphenyl(dialkyl)phosphines8 led to
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competing N-arylation of these substrates, and many other electron-rich ligands led to mixtures
of regioisomeric products. For example, the Pd/P(tBu)2Me-catalyzed reaction of 1a with 2-
chloronaphthalene afforded an 11:1:1:3 mixture of 2a:3:4:5 (eq 1).

(1)

After considerable optimization, we discovered that PCy2Ph provided acceptable results in
many Pd-catalyzed carboamination reactions of aryl chlorides with γ-N-(arylamino)alkenes.
As shown in Table 1, both electron-donating and electron-withdrawing groups are tolerated
on the aryl chloride, and in all cases the major products were formed with ≥ 90%
regioselectivity. Transformations involving acyclic internal alkene substrates were
unsuccessful, affording complex mixtures of products.10 However, cyclopentene-derived
substrate 1d was converted to bicyclic heterocycles 2f–2g in good yields and with high
diastereoselectivities.11

The mechanism of the carboamination reactions involves the syn-aminopalladation of
intermediate I, followed by C–C bond-forming reductive elimination from intermediate II to
afford the desired products (Scheme 1).1,2 Diarylamine side products (III) result from
competing C–N bond forming reductive elimination of intermediate I.12,13 Undesired
regioisomers 3–5 are generated through β-hydride elimination of II, followed by a series of
hydridopalladation/β-hydride elimination steps.1,2 In light of this mechanism, the difficulties
we encountered during our studies on carboamination reactions between aryl chlorides and γ-
(N-arylamino)alkenes can be ascribed to two factors: (a) use of electron-rich ligands slows
reductive elimination from II, leading to increased amounts of regioisomers; and (b) use of
bulky, electron-rich ligands that facilitate C–C bond forming reductive elimination leads to
competing N-arylation via C–N bond-forming reductive elimination from I.

This mechanistic analysis suggests that transformations of the analogous N-Boc-protected
substrates may be less problematic. The electron-withdrawing Boc-group is known to slow the
rate of C–N bond-forming reductive elimination that leads to N-arylation.1b,12 Thus, bulky
electron-rich ligands could be used to facilitate the C–C bond-forming reductive elimination
from intermediates analogous to II with less concern about competing N-arylation. In addition,
the electron-withdrawing Boc-group also disfavors β–hydride elimination pathways that
provide regioisomers,1b which should further aid in the selective formation of a single product.

We have recently illustrated that the electron-rich ligand S-Phos14,15 provides excellent results
in Pd-catalyzed carboetherification reactions between unsaturated alcohols and aryl bromides,
16 and this ligand appeared to be a good candidate for use in alkene difunctionalization reactions
between aryl chlorides and substrates containing relatively non-nucleophilic heteroatoms. As
such, we examined the Pd-catalyzed coupling of 6a with 4-chlorotoluene and were gratified
to find this transformation afforded the desired product 7a in 74% yield (eq 2).
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(2)

In order to explore the scope of this method, we examined the coupling of a range of N-Boc-
protected γ-aminoalkene derivatives. As shown in Table 2, the transformations are effective
with a variety of aryl chlorides, including electron-rich, electron-poor, and ortho-substituted
compounds. In addition, satisfactory results were also obtained with the heteroaromatic
electrophiles N-benzyl-5-chloroindole, 2-chloropyridine, and 2-chloropyrazine (entries 2, 6,
and 8). The synthesis of cis-2,5-disubstituted products was achieved with excellent
stereocontrol (entries 12–13), and good to excellent selectivity was obtained in the synthesis
of trans-2,3-disubstituted products. In all cases the products were generated with complete
regioselectivity.17 Although substitution at the allylic position of the γ-aminoalkene derivative
was tolerated (entries 9–11), efforts to employ substrates bearing internal alkenes were
unsuccessful due to competing substrate decomposition.17

Following our success with N-Boc-aminopropyl alkenes, we proceeded to examine the utility
of the Pd/S-Phos catalyst in carboamination and carboetherification reactions of aryl chlorides
that generate other heterocycles. As shown in Table 3, the conversion of urea 8, hydroxylamine
9, and hydrazine 10 to the corresponding imidazolidin-2-one 14, isoxazolidine 15, and
pyrazolidine 16 proceeded smoothly. The heterocyclic products were obtained in good
chemical yield, and 15 was formed as a single diastereomer. The coupling of tertiary alcohol
11 with 1-chloronaphthalene afforded tetrahydrofuran 17 in 89% yield, although a 13:1 mixture
of regioisomers was generated. However, attempts to effect a similar transformation between
secondary alcohol 12 and 4-chloroanisole failed to yield the desired tetrahydrofuran product.
18 Instead, oxidation of the alcohol was observed, which suggests that alkene oxypalladation
from an intermediate analogous to I is relatively slow with S-Phos as ligand. As a result, β-
hydride elimination from this intermediate is the predominant reaction pathway with substrate
12. The conversion of amine 13 to morpholine 19 was also unsuccessful due to competing N-
arylation of the substrate.18,19

In conclusion, we have developed conditions that allow use of inexpensive and readily available
aryl chloride electrophiles in many Pd-catalyzed carboamination and carboetherification
reactions. These studies significantly expand the scope and utility of this method for
heterocycle synthesis and also illustrate several remaining challenges for catalyst development
in the field.

Experimental Section
Representative Procedure for Pd-Catalyzed Carboamination Reactions of Aryl Chlorides

(±)-tert-Butyl 2-(4-methylbenzyl)pyrrolidine-1-carboxylate (7a)—A Schlenk tube
was evacuated, flame-dried, and backfilled with nitrogen. The tube was charged with Pd
(OAc)2 (2.3 mg, 0.01 mmol), 2-dicyclohexylphosphino-2′,6′-dimethoxy-1,1′-biphenyl (S-
Phos, 8.2 mg, 0.02 mmol), and NaOtBu (57.7 mg, 0.60 mmol). The tube was evacuated and
backfilled with nitrogen three times. A solution of tert-butyl pent-4-en-1-ylcarbamate (93 mg,
0.50 mmol) and 4-chlorotoluene (71 μL, 0.60 mmol) in toluene (2 mL) was added to the Schlenk
tube via syringe. The mixture was heated in a 90 °C oil bath with stirring until the starting
material had been consumed as judged by GC analysis (7 h). The reaction mixture was cooled
to room temperature, quenched with saturated aqueous NH4Cl (2 mL), and diluted with EtOAc
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(2 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 5
mL). The organic layers were concentrated in vacuo, and the crude product was purified by
flash chromatography on silica gel to afford 95 mg (69%) of the title compound as a pale yellow
oil. 1H NMR (400 MHz, C6D5CD3, 100 °C) δ 7.03–6.89 (m, 4 H), 4.03–3.91 (m, 1 H), 3.33–
3.23 (m, 1 H), 3.20–3.01 (m, 2 H), 2.51 (dd, J = 8.9, 13.0 Hz, 1 H), 2.13 (s, 3 H), 1.55–1.28
(m, 13 H); 13C NMR (100 MHz, C6D5CD3, 100 °C) δ 154.6, 137.1, 135.9, 130.0, 129.6, 78.9,
59.5, 59.4, 47.2, 30.3, 29.1, 23.7, 21.2; IR (film) 1693, 1394, 1172 cm−1; MS (ESI): 298.1779
(298.1783 calcd for C17H25NO2, M + Na+).
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SCHEME 1.
Mechanism and Side Reactions
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TABLE 1

Carboamination of γ-(N-Arylamino)alkenes with Aryl Chloridesa

entry amine product regioselectivityb yieldc

1

1a

2a

43:3:0:1 79%
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entry amine product regioselectivityb yieldc

2 1a

2b

38:3:0:1 74%

3 1a

2c

27:2:0:1 79%
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entry amine product regioselectivityb yieldc

4

1b

2d

10:1:0:0 66% (>20:1 dr)

5

1c 2e

>20:1 65% (>20:1 dr)d

6

1d

2f

11:1e 70% (>20:1 dr)f

7 1d

2g

12:1e 69% (>20:1 dr)f

a
Conditions: amine (1.0 equiv), aryl chloride (1.1–1.4 equiv), NaOtBu (1.2 equiv), Pd2(dba)3 (1 mol %), PCy2Ph (4 mol %), toluene (0.25 M), 110

°C.

b
Determined by GC and GC/MS analysis. The minor regioisomers formed are analogous to 3–5 shown in eq 1.
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c
Isolated yield (average of two or more experiments).

d
PCy3•HBF4 was used in place of PCy2Ph.

e
The minor regioisomer was arylated at C4 rather than C5.

f
P(tBu)2Me•HBF4 was used in place of PCy2Ph.
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TABLE 2

Carboamination of γ-(N-Boc)Aminoalkenes with Aryl Chloridesa

entry amine product yieldb

1 6a

7b

74%

2 6a

7c

66%
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entry amine product yieldb

3 6a

7d

65%
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entry amine product yieldb

4

6b

7e

73%
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entry amine product yieldb

5 6b

7f

81%

6 6b

7g

72%
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entry amine product yieldb

7

6c

7h

63%
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entry amine product yieldb

8

6d

7i

56%
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entry amine product yieldb

9

6e

7j

61% (4:1 dr)
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entry amine product yieldb

10

6f

7k

64% (> 20:1
dr)

11 6f

7l

63% (> 20:1
dr)
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entry amine product yieldb

12

6g

7m

71% (> 20:1
dr)

13 6g

7n

69% (> 20:1
dr)

a
Conditions: amine (1 equiv), aryl chloride (1.2 equiv), NaOtBu (1.2 equiv), Pd(OAc)2 (2 mol %), S-Phos (4 mol %), toluene (0.25 M), 90 °C.

b
Isolated yield (average of two or more experiments).
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TABLE 3

Synthesis of Other Heterocycles Using Aryl Chlorides as Electrophilesa

entry substrate product yieldb

1

8

14

77%
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entry substrate product yieldb

2

9

15

81% (20:1 dr)
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entry substrate product yieldb

3

10

16

73%

4

11

17

89%c
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entry substrate product yieldb

5

12

Not observed
18

0%

6

13
19

Not observed

0%

a
Conditions: substrate (1 equiv), aryl chloride (1.2 equiv), NaOtBu (1.2 equiv), Pd(OAc)2 (2 mol %), S-Phos (4 mol %), toluene (0.25 M), 90 °C or

110 °C.

b
Isolated yield (average of two or more experiments).

c
This material was obtained as a 13:1 mixture of regioisomers.
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