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Abstract
We evaluate two broad classes of cognitive mechanisms that might support the learning of
sequential patterns. According to the first, learning is based on the gradual accumulation of direct
associations between events based on simple conditioning principles. The other view describes
learning as the process of inducing the transformational structure that defines the material. Each of
these learning mechanisms predict differences in the rate of acquisition for differently organized
sequences. Across a set of empirical studies, we compare the predictions of each class of model
with the behavior of human subjects. We find that learning mechanisms based on transformations
of an internal state, such as recurrent network architectures (e.g., Elman, 1990), have difficulty
accounting for the pattern of human results relative to a simpler (but more limited) learning
mechanism based on learning direct associations. Our results suggest new constraints on the
cognitive mechanisms supporting sequential learning behavior.

The ability to learn about the stream of events we experience allows us to perceive melody
and rhythm in music, to coordinate the movement of our bodies, to comprehend and produce
utterances, and forms the basis of our ability to predict and anticipate. Despite the ubiquity
of sequential learning in our mental lives, an understanding of the mechanisms which
underly this ability has proven elusive. Over the last hundred years, the field has offered at
least two major perspectives concerning the mechanisms supporting this ability. The first
(which we will call the “Associationist” or “Behaviorist” view) describes learning as the
process of incrementally acquiring associative relationships between events (stimuli or
responses) that are repeatedly paired. A defining feature of this paradigm is the claim that
behavior can be characterized without reference to internal mental processes or
representations (Skinner, 1957). For example, consider a student practicing typing at a
keyboard by repeatedly entering the phrase “we went camping by the water, and we got
wet.” According to associative chain theory (an influential associationist account of
sequential processing), each action, such as pressing the letter c, is represented as a primitive
node. Sequences of actions or stimuli are captured through unidirectional links that chain
these nodes together (Ebbinghaus, 1964; Wickelgren, 1965). Through the process of
learning, associations are strengthened between elements which often follow one another, so
that, in this example, the link between the letters w and e is made stronger than the link
between w and a because w-e is a more common subsequence. Through this process of
incrementally adjusting weights between units that follow one another, the most activated
unit at any point in time becomes the unit which should follow next in the sequence.
Critically, the associationist perspective directly ties learning to the statistical properties of
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the environment by emphasizing the relationship between stimuli and response (Estes, 1954;
Myers, 1976).

A second view, offered by work following from the “cognitive revolution,” highlights the
role that the transformations of intermediate representations play in cognitive processing.
Broadly speaking, transformational systems refer to general computational systems who’s
operation involves the iterative modification of internal representations. By this account,
processes which apply structured transformations to internal mental states interact with
feedback from the environment in order to control sequential behavior. For example, a
cornerstone of contemporary linguistics is the idea that language depends on a set of
structured internal representations (i.e., a universal grammar) which undergo a series of
symbolic transformations (i.e., transformational grammar) before being realized as
observable behavior (Chomsky, 1959; Lashley, 1951). Like the associative chain models
just described, transformational system link together representations or behavior through
time through input and output relationships and provide a solution to the problem of serial
ordering. However, a critical difference is that while the associative chain account simply
links together behavioral primitives, transformations output new, internal representations
which can later serve as input to other transformations.

Transformation are often more flexible than simple associations. For example, systems that
depend symbolic re-write rules can apply the same production when certain conditions are
met, irrespective of surrounding context (i.e., a rewrite rule such as xABy → xBAy, which
simply flips the order of elements A and B, applies equally well to strings like FXABTYU
and DTABRRR due to the presence of the common AB pattern). This flexibility allows
generalization between structurally similar inputs and outputs. In addition, while the
selection of which transformation to apply at any given point may be probabilistic, the rules
used in transformations tend to regularize their output since only a single mapping can be
applied at any time. Critically, transformational system depend on an appropriately structure
intermediate “state” or representation which is modified through additional processing (in
contrast to the associationist account which learns direct relations between observed
behavioral elements).

The importance of transformations as a general cognitive mechanism extends beyond strictly
linguistic domains such as transformational grammars for which they are most easily
identified. For example, theories of perceptual and conceptual similarity have been proposed
which assume that the similarity of two entities is inversely proportional to the number of
operations required to transform one entity so as to be identical to the other (Imai, 1977;
Hahn, Chater, & Richardson, 2003). In addition, systems based on production rules (which
also work via transformational processing of an intermediate mental state), have figured
prominantly in many general theories of cognitive function (Anderson, 1993; Anderson &
Libiere, 1998; Laird, Newell, & Rosenbloom, 1987; Lebiere & Wallach, 2000). In this
paper, we argue that transformational systems represent a broad class of learning and
representational mechanisms which are not limited to systems based on symbolic
computations. Indeed, we will later argue that certain recurrent neural networks (Elman,
1990) are better thought of as general-purpose computational systems for learning
transformation of hidden states. As a result, we use the term transformations throughout this
paper to refer to a broad class of computational systems including productions,
transformations, rewrite rules, or recurrent computational systems. Each of these systems
has slightly different properties. For example, purely symbolic systems are typically lossless
in their operation, while in recurrent computational systems, representations are more
graded. Nevertheless, these systems share deep similarities, particularly with respect to the
way that representation and processing unfold during learning and performance.
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The goal of the present article is to evaluate these two proposals (i.e., simple associative
learning vs. transformational processing) as candidate mechanisms for supporting human
sequence learning. The two perspectives just outlined predict important differences in the
number of training exposures needed to learn various types of sequentially structured
information. By limiting learning to the experienced correlations between stimuli and
responses, the associationist account predicts that the speed and fluency of learning is a
direct function of the complexity of the statistical relationships that support prediction (such
as conditional transition probabilities). In contrast, the transformational account predicts that
learning will be sensitive to the number and type of transformations needed to represent the
underlying structure of the material. Note that both of these approaches can learn to
represent both probabilistic and deterministic sequences and, as a result, it maybe difficult to
distinguish these accounts on the basis of learnability alone. However, as we will show, the
time course of acquisition provides a powerful window into the nature of such mechanisms
that can differentiate between competing theories.

To foreshadow, our results show that, at least on shorter time scales, human sequence
learning appears more consistent with a process based on simple, direct associations. This
conclusion is at odds with recent theoretical accounts which have argued for domain-general
sequential learning processes based on transformations of an internal state (such as the
Simple Recurrent Network, Elman, 1999). While it is often tempting to attribute
sophisticated computational properties to human learners, our results are consistent with the
idea that human learning is structured to enable rapid adaptation to changing contingencies
in the environment, and that such adaptation may involve tradeoffs concerning
representational flexibility and power. We begin by introducing two representative models
that draw from these two paradigms. Despite the fact that both are based on incremental
error-driven learning, each model makes different predictions about human learning
performance in sequence learning tasks. Finally, using a popular sequential learning task
(the serial reaction task or SRT), we explore the factors influencing the speed of sequence
learning in human subjects and compare these findings to the predictions of each model.

Associations versus Transformations: Two Representative Models
We begin our analysis by considering two models which are representative of the broad
theoretical classes just described. The first, called the Linear Associative Shift-Register
(LASR) is a simple associative learning system inspired by classic models of error-driven
associative learning from the associationist tradition (Rescorla & Wagner, 1972; Wagner &
Rescorla, 1972). The second is the simple recurrent network (SRN) first proposed by Elman
(1990) and extended to statistical learning tasks by Cleeremans and McClelland (1991).
Although related, these modeling accounts greatly differ in the types of internal
representational and learning processes they assume (see Figure 1), which in turn lead them
to predict both qualitative and quantitative differences in the rate of learning for various
sequentially structured materials. In the following sections, we review the key principles and
architecture of each model along with their key differences.

The Linear Associative Shift-Register (LASR) Model
LASR is a model of sequential processing based on direct stimulus-stimulus or stimulus-
response mappings. The basic architecture of the model is shown in Figure 1 (left). Like
associative chain models, LASR describes sequence learning as the task of appreciating the
associative relationship between past events and future ones. LASR assumes that subjects
maintain a limited memory for the sequential order of past events and that they use a simple
error-driven associative learning rule (Rescorla & Wagner, 1972;Widrow & Hoff, 1960) to
incrementally acquire information about sequential structure. The operation of the model is
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much like a variant of Rescorla-Wagner that learns to predict successive cues through time
(see Appendix A for the mathematical details of the model).

The model is organized around two simple principles. First, LASR assumes a simple shift-
register memory for past events (see Elman and Zipser, 1988, Hanson and Kegl, 1987, or
Cleeremans’, 1993, Buffer network for similar approaches). Individual elements of the
register are referred to as slots. New events encountered in time are inserted at one end of
the register and all past events are accordingly shifted one time slot1. Thus, the most recent
event is always located in the right-most slot of the register (see Figure 1). The activation
strength of each register position is attenuated according to how far back in time the event
occurred. As a result, an event which happened at time t − 1 has more influence on future
predictions than events which happened at t − 5 and learning is reduced for slots which are
positioned further in the past (see Equation 4 in the Appendix).

Second, the simple shift-register memory mechanism is directly associated with output units
called detectors (i.e., output units) without mediation by any internal representations or
processing (see Figure 1). A detector is a simple, single-layer network or perceptron
(Rosenblatt, 1958) which learns to predict the occurrence of a single future event based on
past events. Because each detector predicts only a single event, a separate detector is needed
for each possible event. Each detector has a weight from each event outcome at each time
slot in the memory register. On each trial, activation from each memory-register slot is
passed over a connection weight and summed to compute the activation of the detector’s
prediction unit. The task of a detector is to adjust the weights from individual memory slots
so that it can successfully predict the future occurrence of its assigned response. Weight
updates are accomplished through a variant of the classic Rescorla-Wagner error-driven
learning rule (Rescorla & Wagner, 1972;Widrow & Hoff, 1960). Each detector learns to
strengthen the connection weights for memory slots which prove predictive of the detector’s
response while weakening those which are not predictive or are counter-predictive. A
positive weight between a particular time slot and a detector’s response unit indicates a
positive cue about the occurrence of the detector’s response, whereas a negative weight acts
as an inhibitory cue.

Note that in LASR, the critical determinants of performance are simply the relationship
between stimulus and response. As a result, LASR is extremely limited in the kind of
generalizations it can make. For example, the model cannot learn general mappings such as
the an → bn language, where any number (n) of type a events are input, and the model
predicts the same number of b events. Even with regard to simple associations, LASR is
limited by the fact that it lacks internal hidden units (Minsky & Papert, 1969, 1998). As a
result, the model is unable to combine information from two or more prior elements of
context at once (which is necessary in order to represent higher-order conditional
probabilities). On the other hand, this simple, direct connectivity enables the model to learn
very quickly. Since there are no internal representations to adjust and learn about, the model
can quickly adapt to many simple sequence structures.

The Simple Recurrent Network (SRN)
We compare the predictions of LASR to a mechanism based on learning transformations of
internal states. In particular, we consider Elman’s (1990) simple recurrent network (SRN).
The SRN is a network architecture that learns via back-propagation to predict successive

1LASR’s buffer-based memory addresses one of the early criticisms of models based on associative chains. In LASR, repeated
elements of the same type are represented separately with a distinct trace (i.e., repeated elements are given separate memory slots). As
a result, LASR has no difficulty learning a simple sequence based on double or triple alternation like AABBAABB or
AAABBBAAABBB.
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sequence elements on the basis of the last known element and a representation of the current
context (see Figure 1). The general operation of the model is as follows: input to the SRN is
a representation of the current sequence element. Activation from these input units passes
over connection weights and is combined with input from the context layer in order to
activate the hidden layer. The hidden layer then passes this activation across a second layer
of connection weights which, in turn, activate each output unit. Error in prediction between
the model’s output element (i.e., prediction of the next sequence) and the actual successor is
used to adjust weights in the model. Critically, on each time step, the model passes a copy of
the current activation values of the hidden layer back to the context units.

While the operation of the SRN is a simple variation on a standard multi-layer back-
propagation network, recent theoretical analyses have suggested another way of looking at
the processing of the SRN, namely as a dynamical system which continually transforms
patterns of activation on the recurrent context and hidden layers (Beer, 2000; Rodriguez,
Wiles, & Elman, 1999). In fact, the SRN is a prototypical example of a general class of
mathematical systems called iterated function systems, which compositionally apply
functional transformations to their outputs (Kolen, 1994). For example, on the first time
step, the SRN maps the activation of the context unit state vector, c1, and the input vector, i1,
to a new output, h1, which is the activation pattern on the hidden layer, so that h1 = f(c1, i1).
On the next time-step, the situation is similar except now the model maps h2 = f(h1, i2),
which expands to h2 = f(f(c1, i1), i2). This process continues in a recurrent manner with
outputs of one transformation continually feeding back in as an input to the next. As
sequences of inputs are processed (i.e., i1, i2, …), each drives the network along one of
several dynamic trajectories (Beer, 2000). What is unique to the SRN amongst this class of
recurrent systems is the fact that the model learns (in an online fashion) how to appropriately
structure its internal state space and the mappings between input and output in order to
obtain better prediction of elements through time.

Due to the dynamic internal states in the model (represented by the patterns of activity on
the hidden units), the SRN model is capable of building complex internal descriptions of the
structure of its training material (Botvinick & Plaut, 2004; Cleeremans & McClelland, 1991;
Elman, 1990, 1991). For example, dynamical attractors in the model can capture type/token
distinctions (generally items of the same type fall around a single region in the hidden unit
space), with subtle differences capturing context-sensitive token distinctions (Elman, 2004).
Similarly, like the symbolic transformational systems described in the Introduction, the SRN
is able to generalize over inputs with similar structure, such as the rule-based patterns
studied by Marcus et al. (1999) (Calvo & Colunga, 2003; Christiansen, Conway, & Curtin,
2002). Indeed, part of the intense interest in the model stems from the fact that while it is
implemented in a connectionist framework, the transformational processes in the model
make it considerably more powerful than comparable models from this class (Dominey,
Arbib, & Joseph, 1995; Keele & Jennings, 1992; Jordan, 1986). For example, early work
proved that the SRN is able to universally approximate certain Finite State Automata
(Cleeremans, Servan-Schreiber, & McClelland, 1989; Servan-Schreiber, Cleeremans, &
McClelland, 1991). More recently, theorists have found that the representational power of
the SRN might extend further to include simple context-free languages (such as the anbn

language) because network states can evolve to represent dynamical counters (Rodriguez et
al., 1999; Rodriguez, 2001).

How do these accounts differ?
Despite the fact that both models are developed in a connectionist framework with nodes,
activations, and weights, LASR is more easily classified as a simple associationist model.
LASR has no hidden units, and learning in the model is simply a function of the correlations
between past events and future ones. As a result, LASR is considerably more limited in
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terms of representational power and flexibility relative to the SRN. In contrast, processing in
the SRN is not limited to the relationship between inputs and outputs, but includes the
evolution of latent activation patterns on the hidden and context layers. Over the course of
learning, the recurrent patterns of activation in the hidden and context layer self-organize to
capture the structure of the material on which it is trained. The role of inputs to the model
can be seen as simply selecting which of the continually evolving transformations or
functions to apply to the context units on the current time step (Landy, 2004). In addition,
processing in the SRN is a continually generative process where hidden state activations
from one transformation are fed back in as input to the next. As a result, the operation of the
SRN is drawn closer to the transformational systems described in the introduction (Dennis &
Mehay, 2008). Another difference is that LASR’s shift register adopts a very explicit
representation of the sequence, while the representation in the SRN evolves through the
dynamics of the recurrent processing.

Of course, our positioning of the SRN closer to symbolic production systems may appear
odd at first given that at least some of the debate surrounding the SRN has attacked it on the
grounds that it is a purely associative device (Marcus, 1999, 2001). However, as we will
show in our simulations and analyses, the SRN is sensitive to sources of sequence structure
that appear to be somewhat non-associative while our “properly” associationist model
(LASR) appears to to be more directly tied to the statistical patterns of the training set. We
believe this divergence warrants a more refined understanding of both the capabilities and
limitations of the SRN. In addition, as we will see in the following sections, these additional
processes lead the SRN to incorrectly predict the relative difficulty of learning different
sequence structures by human subjects.

Statistical versus Transformational Complexity
Whether human learning is based on a mechanism utilizing direct associations (like LASR)
or is based on learning transformations of internal states (like the SRN) has important
implications for the types of sequence structures which should be learnable and their relative
rates of acquisition. In the following section, we consider this issue in more detail by
considering two different notions of sequence complexity.

Statistical Complexity
When learning a sequence, there are many types of information available to the learner
which differ in intrinsic complexity (see Figure 2). For example, one particularly simple
type of information is the overall base rate or frequency of particular elements, denoted
P(A). Learning a more complex statistic, such as the first-order transition probability, P(At|
Bt − 1) (defined as the probability of event A at time t given the specific event B at time t −
1), requires a memory of what occurred in the previous time step. Each successively higher-
order transition statistic is more complex in the sense that it requires more resources (the
number of distinct transition probabilities for any order n over k possible elements grows
with kn) and the amount and type of memory needed (see also a similar discussion of
statistical complexity by Hunt and Aslin, 2001). Note that in the example shown in Figure
2A, a second-order relationship of the form P(Ct|Bt − xAt − y) is shown. In general, any
combination of two previous elements may constitute a second order relationship even when
separated by a set of intervening elements or lag, for example A * B → C where * is a non-
predictive wild card element2.

2Formally, a second-order relationship is defined as P(Ct|At − xBt − y), for any two positive integers x and y with x < y.
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LASR is particularly sensitive to the statistical complexity of sequences. For example,
LASR cannot learn sequences composed of higher-order conditional relationships because it
lacks hidden units which would allow “configured” responding (i.e., building a unique
association to a combination of two or more stimuli which is necessary to represent higher-
order relationships). If human participants use a learning mechanism akin to LASR to learn
about sequential information, more complex sequences which require abstracting higher-
order conditional probabilities are predicted to be more difficult and learned at a slower
rate3. On the other hand, models such as the SRN concurrently track a large number of
statistics about the material it is trained on and no specific distinction is made concerning
these types of knowledge.

Transformational Complexity
While the complexity of the statistical relationships between successive sequence elements
may have a strong influence on the learnability of particular sequence structures by both
human and artificial learners, other sources of structure may also play a role in determining
learning performance. For example, Figure 2B (top) shows a simple artificial grammar. The
sequence of labels output by crossing each path in the grammar defines probabilistic
sequence. While it is possible to predict each element of the sequence by learning a set of
transition probabilities, transformational systems such as the SRN take a different approach.
For example, at the start of learning, the SRN bases its prediction of the next stimulus
largely on the immediately preceding stimulus (i.e., C → B) because the connection weights
between the context units and hidden layer are essentially random. Later, as the context units
evolve to capture a coherent window of the processing history, the model is able to build
more complex mappings such as AC → B separately from AD → B (Boyer, Destrebecqz, &
Cleeremans, 2004; Cleeremans & McClelland, 1991).

Our claim is that models that use transformations to represent serial order are sensitive to the
branching factor of the underlying Markov chain or finite-state grammar. For example,
compare the grammar in the top panel of Figure 2B to the one on the bottom. The
underlying structure of both of these grammars generates sequences of the form A-*-B
where * is a wildcard element. As a result, both sequences are easily represented with the
statistical relationship P(Bt|At − 2) = 1.0 (essentially the presence of cue A two trials back is
a perfect predictor for B). However, systems based on transformations require a separate
rule or production for each possible path through the grammar (i.e., AC → B, AD → B, AE
→ B, etc…). Thus, even though a relatively simple statistical description of the sequence
exists, systems based on transformations often require a large amount of training and
memory in order to capture the invariant relationship between the head and the tail of the
sequence4. Indeed, some authors have noted limitations in SRN learning based on the
number of possible continuation strings that follow from any particular point in the Markov
process (Sang, 1995). In addition, the SRN has difficulty learning sequences in which there
are long-distance sequential contingencies between events (such as T-E*-T or P-E*-P,
where E* represents a number of irrelevant embedded elements). Note that work with
human subjects has shown that they have little difficulty in learning such sequences in an
SRT task (Cleeremans, 1993; Cleeremans & Destrebecqz, 1997).

3Interestingly, there is evidence to suggest that human learning may be differentially sensitive to these different sources of statistical
complexity. For example, Stadler (1992) demonstrated how learning in SL tasks is linked to the degree of statistical structure and
redundancy of the training sequence.
4While it is possible for symbolic systems to represent productions which have variable slots that generalize over tokens (i.e.,
A*→B), learning such constructs often requires considerable training or an explicit mechanism which can detect the similarities in
other productions and consolidate across them. As a result, systems based on learning transformations require extensive training in
order to predict sequences which have a large number of highly similar sequence paths or branches.
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Overview of Experiments
In summary, we have laid out two sources of sequence complexity that human or artificial
learners may be sensitive to. In Experiments 1 and 2, we place these two notion of sequence
complexity in contrast in order to identify the mechanisms that participants use to learn
about sequentially presented information. In Experiment 1 we test human learning with a
sequence with has low statistical complexity, but high transformational complexity (using
the definition given above). In Experiment 2, we flip this by testing a sequence with low
transformational complexity by higher statistical complex (see Figure 3). Our prediction is
that if human learners utilize a sequential learning mechanism based on transformations on
an internal state (such as the SRN), learning should be faster in Experiment 2 than
Experiment 1. However, if learners rely on a simple associative learning mechanisms akin to
LASR, the opposite patterns should obtain.

In order to assess the rate of learning in both experiments, we utilized a popular sequence
learning task known as the serial reaction time (SRT) task (Nissen & Bullemer, 1987;
Willingham, Nissen, & Bullemer, 1989). One advantage of the SRT over other sequence
learning tasks is that responses are recorded on each trial, allowing a fine-grained analysis of
the time-course of learning. The basic procedure is as follows: on each trial, participants are
presented with a set of response options spatially arranged on a computer monitor with a
single option visually cued. Participants are simply asked to press a key on a keyboard
corresponding to the cued response as fast as they can while remaining accurate. Learning is
measured via changes in reaction time (RT) to predictable (i.e., pattern-following) stimuli
versus unpredictable (i.e., random or non-pattern following) stimuli (Cleeremans &
McClelland, 1991). The premise of this measure of learning is that differentially faster
responses to predictable sequence elements over the course of training reflect learned
anticipation of the next element.

Experiment 1: Low statistical complexity, High transformational complexity
In Experiment 1, we test human learning with a sequence that is transformationally complex
(i.e., has a high branching factor), but which has a relatively simple statistical description.
The actual sequence used in Experiment 1 is generated probabilistically according to a
simple rule: each one of six possible response options had to be visited once in a group of
set of six trials, but in random order (with the additional constraint that the last element of
one set could not be the first element of the next to prevent direct repetitions). Examples of
legal six-element sequence sets are 0-2-1-4-3-5, 3-2-1-5-0-4, and 1-3-5-0-4-2 which are
concatenated into a continuously presented series with no cues about when one group begins
or ends (this type of structure was first described by Lee, 1997).

What sources of information might participants utilize to learn this sequence? Note that by
definition, the same event cannot repeat on successive trials and thus repeated events are
separated by a minimum of one trial (Boyer, et al., 2004). This might happen if, for
example, the fifth element of one six-element sequence group repeated as the first element
of the next sequence. The longest possible lag separating two repeating events is ten, which
occurs when the first event of one six-element sequence group is repeated as the last event
of the following six-element group. Figure 4A shows the probability of an event repeating as
a function of the lag since its last occurrence in the sequence, created by averaging over
1000 sequences constructed randomly according to the procedure described above. The
probability of encountering any particular event is an increasing function of how many trials
since it was last encountered (i.e., lag).

From the perspective of statistical computations, using lag as a source of prediction depends
only on first-order statistical information. For example, a participant might learn about the
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probability of element A given an A on trial t − 1, P(At|At−1), which is always zero (because
events never repeat), or the probability of element A given a B on trial t − 2, P(At|Bt − 2).
Both of these probabilities depend on a single element of context and are thus sources of
first-order information. On the other hand, if the learner tried to track the second order
conditional probability, P(At|At−1Bt−2), they would find it less useful since the probability of
an A at time t only depends on the fact that A was recently experienced (at t − 1) and not on
the occurrence of B at t − 2. Thus, successful prediction can be accomplished by simply
computing transition probabilities of the type P(Xt|Yt − n) (i.e., the probability of event X
given event Y on trial t − n where n is any number of trials in the past). Finally, note that lag
is just one way of examining changes in performance task as a function of experience,
however previous studies used lag as a primary measure of learning which guides our
analysis here (Boyer, et al, 2004).

Despite this simple statistical description, mechanisms based on learning transformations
should have difficulty predicting successive sequence elements. Figure 3 (left) shows only
one branch of the underlying finite-state grammar of the sequence. The large branching
factor and the fact that the sequence has many similar, but non-indentical sequence paths
means that a large number of transformational rules is necessary to represent the sequence.
For example, while this transformation 01234→5 captures one path through the grammar, it
is of little use for predicting the next sequence element following the pattern 23401 (which
is also 5). In fact, there are 1956 total unique transformational rules which are needed to
predict the next sequence element based on any set of prior elements (there are 6!=720
unique transformations alone that map the previous five sequence elements to enable
prediction of the sixth). Sorting out which of these transformations apply at any given point
in time requires considerable training, even with models such as the SRN which allow for
“graded” generalization between similar paths.

Method
Participants—Forty-five Indiana University undergraduates participated for course credit
and were additionally paid $8 for their participation. Subject were recruited on a voluntary
basis through an introductory psychology class where the mean age was approximately 19
year olds, and the general population is approximately 68% female.

Apparatus—The experiment was run on standard desktop computers using an in-house
data collection system written in Python. Stimuli and instructions were displayed on a 17-
inch color LCD positioned about 47 cm way from the subjects. Response time accuracy was
recorded via a USB keyboard with approximately 5–10 ms accuracy.

Design and Procedure—The materials used in Experiment 1 were constructed in
accordance with Boyer, et al. (2004), Exp. 1 (and described briefly above). The experiment
was organized into a series of blocks with each block consisting of 180 trials. For each
subject, a full set of 720 possible permutations of six element sequence groups was created.
In each block of the experiment, a randomly selected subset of 30 of these six-element
groups was selected without replacement and concatenated into a continuous stream with the
constraint that the last element of one six-element group was different from the first element
of the following group in order to eliminate direct repetitions. Given the previous work
suggesting that learning appeared early in the task (Boyer et al., 2004), we trained subjects
in a short session consisting of only 6 blocks of training (in contrast to the 24 blocks used by
Boyer et al.). As a result, there were a total of 1080 trials for the entire experiment and the
task took around 40 minutes to complete. At the end of each block, subjects were shown a
screen displaying their percent accuracy for the last block.
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On each trial, subjects were presented with a display showing six colored circles arranged
horizontally on the screen. The color of each circle was the same for each subject. From left
to right, the colors were presented as blue, green, brown, red, yellow, and purple. Colored
stickers which matched the color of the circles on the display were placed in a row on the
keyboard which matched the arrangement on the display. At the beginning of each trial, a
black circle appeared surrounding one of the colored circles. Subjects were instructed to
quickly and accurately press the corresponding colored key. After subjects made their
response, the display and keyboard became inactive for a response-stimuli interval (RSI) of
150 ms. During the RSI all further responses were ignored by the computer. If the subject
responded incorrectly (i.e., their respond didn’t match the cued stimulus) an auditory beep
sounded during the RSI, but otherwise the trial continued normally.

Participants were given instructions that they were in a task investigating the effect of
practice on motor performance and that their goal was to go as fast as possible without
making mistakes. In addition, they were shown a diagram illustrating how to arrange their
fingers on the colored buttons (similar to normal typing position with one finger mapped to
each key from left to right). Subject used one of three fingers (ring finger, middle finger, and
pointer finger) on each hand to indicate their response. In order to control for the influence
of within- and between-hand responses, the assignment of sequence elements to particular
button positions was random for each subject with the constraint that each sequence element
was assigned to each button an approximately equal number of times.

Prior to the start of the main experiment, subjects were given two sets of practice trials. In
the first set, subjects were presented with ten psuedo-random trials (not conforming to the
lag structure of the subsequent task) and were invited to make mistakes in order to
experience the interface. This was followed by a second phase where subjects were asked to
complete short blocks of ten pseudo-random trials (again lacking the structure of the training
sequence) with no mistakes in order to emphasize that accuracy was important in the task.
The experiment only began after subjects successfully completed two of these practice
blocks in a row without error. Following these practice trials, subjects completed the six
training blocks during which they were exposed to the six-choice SRT design described
above.

Results
Learning performance was analyzed by finding the median RT for each subject for each
block of learning as a function of the number of trials since a particular cue was last
presented. Any trial in which subjects responded incorrectly was dropped from the analysis
(mean accuracy was 96.9%). The basic results are shown in Figure 4. Panel B replicates the
lag effect reported by Boyer et al. averaged over all subjects. Participants were faster to
respond to an item the longer it had been since it was last visited, F(9,396) = 13.477, MSe =
3983, p < .0.001. A trend analysis on lag revealed a significant linear effect (t(44) = 4.99, p
< .001) and a smaller but significant quadratic effect (t(44) = 3.241, p < .003). Like the
Boyer, et al. and Lee (1997) study, our subjects showed evidence of adaptation to the
structure of the sequence.

In order to assess if this effect was learned, we considered the evolution of the lag-effect
over the course of the experiment. Figure 4C reveals that the difference in RT between
recently repeated events and events separated by many intervening elements increases
consistently over the course of the experiment. Early in learning (blocks 1 and 2), subjects
show less than a 10ms facilitation for lag-9 or lag-10 items over lag-1 responses (close to the
approximately 5ms resolution of our data entry device), while by the end of the experiment
(blocks 5 and 6), this facilitation increases to about 45ms. These changes in RT cannot be
explained by simple practice effects and instead depend on subjects being able to better
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predict elements of the sequence structure. These observations were confirmed via a two-
way repeated measures ANOVA with lag (10 levels) and block (6 levels) which revealed a
significant effect of lag (F(9,395) = 12.07, MSe = 186104, p < .001), block (F(5,219) =
11.84, MSe = 54901, p < .001), and a significant interaction (F(45,1979) = 1.52, MSe =
1737, p = .016). Critically, the significant interaction demonstrates that in the later blocks of
the experiment, RT was faster for more predictable sequence elements and provides
evidence for learned adaptation.

The results also replicated at the individual subject level. For each subject, a best fitting
regression line (between level of lag and RT) was computed and the resulting β weights
were analyzed. As expected, the distribution of best fitting β weights for each subject was
significantly below zero (M=−2.87, t(44) = 4.989, p < .001). Similarly, a repeated measures
ANOVA on regression weights fit to each subject for each block of the experiment also
revealed a significant effect of block (F(5,220) = 3.4673, MSe = 75, p < .005) and a
significant linear trend (t(44) = 3.19, p < .003) with the mean value of the β for each block
decreasing monotonically over the course of the experiment.

Discussion
Subjects were able to quickly learn to anticipate sequences defined by a set of first-order
relationships, despite the fact that the underlying transformational structure of the material
was complex. Analysis of the early blocks of learning revealed a steady increase in the
magnitude of the lag effect over the course of the experiment, suggesting that subjects were
learning to anticipate cued responses which had not recently been presented. Overall, this
result appears to support the associationist view (i.e., LASR) described above, a point we
return to in the simulations.

Our results largely replicate previous reports of learning in a similar task. For example,
Boyer et al. (2004) found evidence of rapid adaptation to the Lee (1997) sequence.
However, in this study, it was suggested that performance in the task might be driven by a
pre-existing bias towards inhibiting recent responses (Gilovich, Vallone, & Tversky, 1985;
Jarvik, 1951; Tversky & Kahneman, 1971; Nicks, 1959). Because successful prediction of
the next sequence element in this structure can be facilitated by simply inhibiting recent
responses, the presence of this type of bias calls into question the necessity of a learning
account. However, our analysis of the early block of learning appear to somewhat contradict
this view. One way to reconcile our results is that we focused our analysis more directly on
the early training blocks. Note however that the influence of pre-existing task biases is
something we return to in the simulations.

Experiment 2: Higher statistical complexity, Low transformational
complexity

In Experiment 1, we tested participant’s ability to learn a sequence which was
transformationally complex but which had a simple statistical description that depended only
on first-order statistical relationships. The speed with which subjects learned to predict this
highly irregular sequence is interesting in light of the distinction between transformational
and associative theories of sequential processing. In order to further evaluate our hypothesis,
in Experiment 2 we examine the ability of human participants to learn about sequences
defined by more complex, higher-order statistical relationships, but which can alternatively
be represented by a small number of simple transformational rules.

In particular, Experiment 2 tests learning in a task where the only statistical structure of
predictive value are higher-order transitions (i.e., P(At|Bt−1Ct−2)). In the original paper on
the SRN, Elman (1990) demonstrated how the network can learn to predict elements of a
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binary sequence defined by the following rule: every first and second element of the
sequence was generated at random, while every third element was a logical XOR of the
previous two. The abstract structure of this sequence is shown as a simple grammar in
Figure 3 (right). The only predictable component of this sequence requires learners to
integrate information from both time step t − 2 and t − 1 simultaneously to represent the
following rule (or higher-order conditional probability): “if the last two events are the same,
the next response will be 0, otherwise it will be 1.” Thus, unlike Experiment 1, no predictive
information can be obtained using first-order transition probabilities alone. In terms of the
hierarchy of statistical complexity described in the previous section, prediction or
anticipation of the sequence elements in Experiment 2 depends on more complex statistical
relationships than those used in Experiment 1. However, in a transformational sense, the
sequence tested in Experiment 2 has a rather simple description made up of four simple
transformational mappings (00→0, 11→0, 10→1,10→1).

Subjects were assigned to one of three conditions which each tested a slightly different
aspect of learning. In the first condition, referred to as the 2-Choice Second-Order or 2C-SO
condition, participants were given a binary (two choice) SRT task. This condition faithfully
replicates the classic Elman (1990) simulation results with human participants (this is the
first study to our knowledge to directly assess this). The second condition, the 6-Choice
Second-Order or 6C-SO condition, extends the first condition by testing learning in a task
with six response options (similar to the six-choice task used in Experiment 1). In addition,
this condition helps to alleviate some of the issues with respond repetition that arise in
binary SRT task (see Gureckis, 2005 for an extensive discussion). However, this sequence
structure also introduces partial predictability in the form of first-order statistical
relationships (similar to the graded prediction across lags available in Experiment 1). The
third and final condition (6-Choice First-Order or 6C-FO condition) offers an additional
source of control for the 6C-SO condition by testing learning of the first-order (linear)
component of that sequence.

LASR’s prediction is that when both first-order and second-order sources of structure are
available (such as in both the 6C-SO and 6C-FO conditions), participants will learn the first-
order information and not the more complex, second-order information. In contrast, the SRN
predicts that learning will be robust since it depends on a small number of simple
transformations (matching the four separate paths through the grammar in Figure 3B).

Learning in all three conditions was assessed in two ways. First, because every third element
of the sequence was fully predictable on the basis of the previous two (as in the XOR
sequence), we were able to measure changes in RT between predictable and unpredictable
sequence elements as we did with the lag structure in Experiment 1. In addition, in all three
conditions we introduced transfer blocks near the end of the experiment which allowed us to
measure RT changes to novel sequence patterns (Cohen, Ivry, & Keele, 1990; Nissen &
Bullemer, 1987), a procedure akin to the logic of habituation. By carefully controlling the
ways in which the transfer sequences differed from the training sequences, we were able to
isolate what sources of structure subjects acquired during training (Reed & Johnson, 1994).

To foreshadow, in Experiment 2 participants were tested in a single, one-hour session. We
were unable to find any evidence of higher order statistical learning. However, consistent
with the predictions of LASR and the results of Experiment 1, participants in the 6C-FO
condition were significantly slower in responding during the transfer blocks, which violated
the first-order patterns of the training sequence.
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Method
Participants—Seventy-eight University of Texas undergraduates participated for course
credit and for a cash bonus (described above). Subjects were recruited on a voluntary basis
through an introductory psychology class where the mean age was approximately 19 year
olds, and the general population is approximately 68% female. In addition, eight members of
the general University of Texas community participated in a followup study (reported in the
discussion) which took place over multiple session and were paid a flat rate of $25 at the end
of the final session.

Apparatus—The apparatus was the same as that used in Experiment 1.

Design and Procedure—Subjects were randomly assigned to one of three conditions:
2C-SO, 6C-SO, or 6C-FO. Twenty-six subjects participated in each condition. Subjects in
the 6C-SO and 6C-FO conditions experienced a six-choice SRT task while in the 2C-SO
condition the display from Experiment 1 was adapted to use two choice options instead of
six. As in Experiment 1, colored stickers were placed in a row on the keyboard in a way
compatible with the display. However, the mapping from the abstract structure shown in
Figure 5 to response keys varied between participants. In addition, this mapping was subject
to a set of constraints which avoided spatial assignments which might be obvious to the
participant, such as all patterns in the experiment moving from left to right. Like Experiment
1, subjects were instructed to use both hands during the experiment and were told how to
arrange their fingers on the keyboard.

On the basis of pilot data which failed to find a significant learning effect with this material,
and following a number of other studies (Cleeremans & McClelland, 1991), we attempted to
increase the motivation of our subjects by informing them they would earn a small amount
of money for each fast response they made but that they would lose a larger amount of
money for every incorrect response (so accuracy was overall better than excessive speed).
Subjects earned 0.0004 cents for each RT under 400 ms (2C-SO) or 600 ms (6C-SO and 6C-
FO), but lost 0.05 cents for each incorrect response. At the end of each block of the
experiment, participants were shown how much money they earned so far, and their
performance for the last block. Subject typically earned a $3–4 bonus in all conditions. In
addition, subjects were given three practice blocks consisting of 30 trials each. Like
Experiment 1, the session was divided into a set of blocks each consisting of 90 trials each.
After completing 10 training blocks, participants were given two transfer blocks (180 trials
total). After the two transfer blocks in each condition, the sequence returned to the original
training sequence for an additional 3 blocks leading to a total of 15 blocks in the experiment
(or 1350 trials). The structure of the transfer blocks depended on the condition to which
subjects were assigned:

Materials
2C-SO Condition—The structure of the training materials used in the 2C-SO (two-choice,
second-order) condition conformed to the sequential XOR structure. Learning was assessed
during transfer blocks with sequences that violated this second-order relationship. The
abstract structure of the transfer blocks are shown in Figure 5 under the column 2C-SO.
Notice that the first four rows of this table are identical to the training sequence, while the
final four rows have the identity of the critical, third position flipped. If subjects have
learned the statistical structure of the 2C-SO training sequence, they should slow down and
make more errors to these transfer sequences due to the presence of these novel patterns
which violate the second-order structure of the training sequence. For example, in the
training sequence P(0t|0t − 10t − 2) = 1.0, but in the transfer sequence this probability reduces
to 0.5 (the transfer sequence is effectively a pseudo-random binary sequence).
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6C-SO Condition—In the 6C-SO (six-choice, second-order) condition, a similar sequence
was constructed where every third element was uniquely predictable based on a combination
of the previous two (a second-order relationship). Like the 2C-SO sequence, any individual
element was equally likely to be followed by two other elements (i.e., a 2 is equally likely to
be followed by a 4 or a 5), and cannot be the basis of differential prediction. However,
unlike the 2C-SO condition, the 6C-SO sequence utilized six response options (see the
training sequence in Figure 5 under the column 6C-SO). The motivation for the 6C-SO
condition is that it generalizes the results from the 2C-SO condition to a sequence structure
utilizing the same six-choice SRT paradigm as was tested in Experiment 1. As in the 2C-SO
condition, transfer sequences were constructed that violated the structure of the training-
material by flipping the identity of the third, predictable element (see the transfer sequence
table in Figure 5 under the column 6C-SO). Critically, the transfer sequences in both the 2C-
SO and 6C-SO conditions preserved all sources of statistical structure.

6C-FO Condition—Note that the 6C-SO sequence has another dimension of structure,
namely that responses 0 and 1 are equally likely to be followed by either a 2 or a 3, but are
never immediately followed by a 4 or a 5. Thus, subjects can learn at least part of the 6C-SO
sequence by learning which of the subset of response options are likely to follow any other
subset, thereby improving the odds of successful guess from 1/6 to 2/6. This partial
predictability is similar to the graded probability structure of Experiment 1 and is captured
by simple first-order statistical relationships (i.e., P(5|2) or P(3|0)). Thus, in the 6C-FO (six-
choice, first-order) condition, we test for learning of these simpler statistical relationships by
examining subjects’ responses to transfer sequences which break this first-order relationship
(see the transfer sequence in Figure 5 under the column 6C-FO). Note that like the other
transfer sequences, the first four items of this table are the same patterns presented during
training, but the four new items exchange two of the columns (i.e. positions 2 and 3). Thus,
in the transfer blocks of the 6C-FO condition, subjects experience transitions between cued
responses which were not present in the training set (i.e. 2 might be followed by 0 in transfer
while it never appeared in that order during training). It is important to point out that the
training sequences in the 6C-SO and 6C-FO were identical, with the only difference being
the structure of the transfer blocks.

Results
For each subject, the median RT was computed for every block of learning. Any trial in
which subjects responded incorrectly was dropped from the analysis. Overall accuracy was
96.9% in condition 2C-SO, 97.8% in condition 6C-SO, and 96.4% in condition 6C-FO.
Figure 6 shows the mean of median RT for each block of learning. Learning was assessed by
examining RT during the transfer blocks (blocks 11 and 12, where the sequence structure
changes) relative to the surrounding sequence blocks. In order to assess this effect, we
computed a pre-transfer, transfer, and post-transfer score for each subject by averaging-over
blocks 9 and 10 (pre-transfer), 11 and 12 (transfer), and 13 and 14 (post-transfer). Note that
all analyses presented below are in terms of RT, although similar conclusions are found by
analyzing accuracy scores ruling out strong speed-accuracy tradeoffs.

In the 2C-SO condition, there were no significant differences between the pre-transfer and
post-transfer RT compared with RT during the transfer phase, t(25) = .96, p > .3 or between
the pre-transfer and transfer score, t(25) = .47, p > .6 (M= 356 ms, 354 ms, and 350 ms,
respectively). Similarly, a linear trend test confirmed that RT monotonically decreased
across the three phases of the experiment (t(25) = 2.40, p < 0.03), while a test for a quadratic
relationship failed to reach significance (t(25) = 0.96, p > 0.3). Thus, we did not obtain
evidence that subjects slow their responses during the transfer blocks relative to the
surrounding blocks.
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Likewise, in the 6C-SO condition, we found no significant difference between the pre-
transfer and post-transfer RT compared with RT during the transfer phase, t(25) = 1.62, p > .
1. RT values between the pre-transfer and transfer block scores also did not reach
significance, t(25) = 1.26, p > .2 (M= 514 ms, 510 ms, and 499 ms, respectively). As in the
2C-SO condition, we found a significant linear trend across the three phases, t(25) = 3.60, p
< 0.002, while the quadratic relationship failed to reach significance, t(25) = 1.62, p > 0.1.
Thus, like the 2C-SO condition, we failed to find evidence that subjects slow their responses
during the transfer blocks relative to the surrounding blocks.

However, in the 6C-FO we found a highly significant difference between the pre-transfer
and post-transfer RT compared with RT during the transfer phase, t(25) = 7.16, p < .001,
and between the pre-transfer and transfer score, t(25) = 4.28, p < .001 (M= 510 ms, 532 ms,
and 491 ms, respectively). Both the linear and quadratic trends were significant, t(25) =
4.51, p < 0.001 and t(25) = 7.16, p < 0.001, respectively. Unlike condition 2C-SO or 6C-SO,
subjects in this condition did slow down during the transfer blocks relative to the
surrounding blocks (by about 22 ms on average). Another way to assess learning is to
compare RT to predictable versus unpredictable sequence elements during the transfer
blocks themselves. For example, roughly half the triplets each subject saw during the
transfer set corresponded to those they saw during the training phase, while the others were
new subsequences they had not experienced. In both the 2C-SO and 6C-SO condition we
failed to detect a difference between predictable or unpredictable responses within the
transfer blocks, t(25) < 1 and t(25) < 1, respectively. A similar analysis considering only
every third trial (the one that was predictable on the basis of second-order information)
found the same results with no evidence that subjects slowed their responses during the
transfer block in either the 2C-SO or 6C-SO conditions.

Discussion
The results of Experiment 2 clearly demonstrate that subjects have difficulty learning the
higher-order statistical patterns in the sequence. Unlike Experiment 1, subjects in this
experiment were given additional incentive to perform well in the form of cash bonuses
which were directly tied to their performance. Despite this extra motivation to perform at a
high level, learning was less robust while subjects in Experiment 1 seem to learn a similar
sequence within 50–100 trials5. This result is surprising given previously published results
showing that subjects can learn higher-order sequence structures (Remillard & Clark,
2001;Fiser & Aslin, 2002). However, unlike at least some of these previous reports, the
sequential XOR task we utilized carefully restricts the statistical information available to
subjects. Particularly in the 2C-SO condition, the only information available to subjects is
the second-order conditional relationship between every third element and the previous two.
In addition, many previous studies have utilized extensive training regimes which took place
over a number of days (Cleeremans & McClelland, 1991;Remillard & Clark, 2001). On the
other hand, in the 6C-FO condition, we again observed robust first-order learning (like the
results of Experiment 1).

Although a critical contrast between the training materials in Experiment 1 and 2 is the
presence or absence of second-order statistical relationships, these sequence patterns differ
in a number of other ways. However, along most of these measures it would appear that
Experiment 2 should be the easier sequence to learn. For example, the relevant subsequences
in Experiment 1 were six elements long (the overall sequence was constructed by
concatenating random permutations of six elements), while in Experiment 2, stable
subsequence patterns were only three elements long. In addition, on any given trial subjects

5Note that the same results obtained in pilot data, where participants were not paid for performance.
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had a 1/2 chance of randomly anticipating the next element in the 2C-FO condition while in
Experiment 1 the odds of guessing were 1/6. Likewise, if subjects perfectly understood the
rules used to create the sequence in Experiment 2, they could perfectly predict every third
element. In contrast, perfect knowledge of the rules used to construct the sequence in
Experiment 1 would only allow perfect prediction of every sixth element (i.e., given 12345,
the subject would know with certainty the next element would be 6). Thus, by most intuitive
accounts, the XOR sequence in Experiment 2 should be the easier of the two patterns to
learn.

Despite the fact that few, if any, of our subjects demonstrated any evidence of learning the
higher-order structure of the XOR task within the context of a single session, our conclusion
is not that human subjects cannot learn such sequences. Instead, we believe that our results
show that learning these relationships in isolation is considerably slower than learning for
other types of information. While LASR is extreme in its simplicity as it utilizes direct
associations that are limited to first-order patterns, the model could be augmented to include
new conjunctive units (i.e., hidden units) which would allow it to capture higher-order
patterns with extensive training (a point we return to in the discussion). As a test of these
ideas, we ran eight additional subjects in the 2C-SO and 6C-SO conditions for two sessions
per day for four days (a total of 9760 trials) in Experiment 2B. By session 5 (day 3), subjects
showed unambiguous evidence of learning in terms of an increasingly large difference in RT
between training versus transfer blocks in the later half of the experiment.

Model-Based Analyses
In the following section, we consider in more detail how our representative models (LASR
and the SRN) account for human performance in each of our experiments. Each model was
tested under conditions similar to those of human subjects, including the same sequence
structure and number of training trials (the details of both models are provided in
Appendices A and B).

Experiment 1 Simulation Results
Each simulation reported here consisted of running each model many times over the same
sequences given to human participants, with a different random initial setting of the weights
employed each time (in order to factor out the influence of any particular setting). Data were
analyzed in the same way as the human data (i.e., the average model response was
calculated as a function of the lag separating two repeated events). Extensive searches were
conducted over a wide range of parameter values in order to find settings which minimized
the RMSE between the model and human data (the specifics of how the models were applied
to the task are presented in Appendix B).

LASR—Figure 7 shows LASR’s response at each of the 10 levels of lag (left) along with
the evolution of this lag effect over the learning blocks (right) compared to the human data
(middle). Data in the middle and right panels of Figure 7 were first receded in terms of the
amount of RT facilitation over lag-1 responding, thus RT to stimuli at lag-1 was always
scored as 0 ms with increasingly negative values for longer lags. This allows us to measure
the changes in learning to respond to stimuli with greater lag independent of unspecific
practice effect over the course of learning blocks shown in Figure 4C. After adjusting these
values relative to lag-1, all human and model responses were converted to average z-scores
(around the individual simulation run or human subject’s mean response) for easier
comparison.

Starting from a random initial weight setting, the model very quickly adapts to the lag
structure of the stimuli. Like the human data, within the first block of training, LASR has
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already learned a strong lag effect. Furthermore, the strength of this learning effect continues
to increase until the end of the experiment. Indeed, the model provides a very close
quantitative fit of the data (the average correlation between the model and human data
shown in the left panel of Figure 7 was M=0.981, SD = 0.005 and the mean RMSE was
M=0.181, SD = 0.0026). The best fit parameters were found to be α = 0.1, η = 0.65, and
momentum=0.96.

However, the overall pattern of results was not specific to this particular setting of the
parameters. In the right panel of Figure 9, we show the model’s predicted relationship
between lag-10 and lag-1 responses over a large number of parameter combinations (note
that values of the model’s response which are closer to 1.0 indicate higher prediction error
and thus slower responding). We considered the factorial combination of the following
parameters: forgetting rate 0.001, 0.01, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 5.0, or 10.0, learning-rate
could be 0.001, 0.01, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.5, or 2.0, and momentum
values could be either 0.50, 0.7, 0.8, 0.85, or 0.9 for a total of 650 unique parameter
combinations. Each point in the plot represents the performance of the LASR with a
particular setting of the parameters (simulations were averaged over a smaller set of 90
independent runs of the model due to the size of the parameter space). Also plotted is the y <
x region. If a point appears below the y = x line (the gray region of the graph), it means the
model predicts faster responding to lag-10 events than to lag-1 (the correct pattern). The
right panel of Figure 9 (left) shows that over the majority of parameter combinations, LASR
predicts faster responding to lag-10 events. Indeed, of the 650 parameter combinations
evaluated, 67% captured the correct qualitative pattern (those parameter sets that did not
capture the correct trend were often associated with a forgetting rate parameter which was
too sharp or a learning rate parameter which was too low to overcome the initial random
settings of the weights).

Looking more closely at how the model solves the problem reinforces our interpretation of
the structure of the task. Figure 8 shows the setting of each of the weights in the model at the
end of learning in a typical run. Each box in the figure represents the 6×6 array of weight
from a particular memory slot in the register to each of the six output units (or detectors) in
the model. The key pattern to notice is that the diagonal entries for each past time slot are
strongly negative while all other weights are close to zero. The diagonal of each weight
matrix represents the weight from each event to its own detector or output unit. Thus, the
model attempts to inhibit any response that occurred in the last few trials by attempting to
reduce the activation of that response. Despite the transformational complexity of the
sequence, LASR (like human participants) appears to exploit simple first-order statistical
patterns that enable successful prediction.

SRN—Consistent with our predictions concerning systems based on learning
transformations, the SRN describes learning in a much different way. Despite extensive
search, under no circumstances could we find parameters which allowed the SRN to learn
the negative recency effect in the same number of trials as human subjects. A similar
exploration of the parameter space as was conducted for LASR is shown in the left panel of
Figure 9 (right). We considered the factorial combination of the following parameters:
hidden units7 could be 5, 10, 30, 50, 80, 100, 120, or 150, learning rate could be 0.001, 0.01,
0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.5, or 2.0, and momentum values could be either

6The length of the memory register in the model was set large enough so that there was no influence of this parameter relative to the
steepness of the forgetting function in the model.
7This large range of hidden units values was considered so that we covered the space and were in line with Boyer, et al.’s simulations
of the same task which required 80 hidden units). In addition, certain combinations of the parameters overlap with commonly reported
parameters used in previously published results.
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0.50, 0.7, 0.8, 0.85, or 0.9 for a total of 520 unique parameter combinations. As shown in the
figure, very few of these parameter combinations predict the correct ordering of lag-1 and
lag-10 responses (i.e., very few points appear below the y=x line). In fact, of the 520
combinations evaluated, only 8% correctly ordered lag-1 relative to lag-10. However,
manual examination of these rare cases revealed that in these situations the model failed to
capture the more general pattern of successively faster responses across all 10 lags
demonstrated by human subjects in Figure 4B. Given that the model failed to capture even
the qualitative aspects of the human data across an entire range of reasonable parameters, we
settled on the following “best-fit” parameters mostly in accordance with previous studies:
momentum = 0.9, learning rate = 0.04, and number of hidden units = 80. The resulting
quantitative fit of the model was very poor (the average correlation between the SRN and
human data shown was M=−0.111, SD = 0.019 and the mean RMSE was M=1.414, SD =
0.012).

In order to evaluate whether the failure of the model to account for human learning was
particular to some aspect of the SRN’s back-propagation training procedure, we explored the
possibility of making a number of changes to the training procedure. In particular, we
considered changes which might improve the speed of learning in the model, such as
changing the steepness of the sigmoid squashing function (Izui & Pentland, 1990), using a
variant of back-propogation called quick-prop (Falhman, 1988), changing the range of
random values used to initialize the weights (from 0.001 to 2.0), and related variants of the
SRN architecture such as the AARN (Maskara & Noetzel, 1992, 1993) in which the model
predicts not only the next response but its current input and hidden unit activations. Under
none of these circumstances were we able to find a pattern of learning which approximated
human learning. In addition, we considered if this failure to learn was a function of the fact
that the model has multiple layers of units to train by comparing the ability of other multi-
layer sequence learning algorithms such as the Jordan network (Jordan, 1986; Jordan, Flash,
& Arnon, 1994) and Cleereman’s buffer network (Cleeremans, 1993). Despite their hidden
layer, these models all fit the data much better than did the SRN (the average correlation
between the best fit version of the Buffer network and human data was 0.94, while it was
0.97 for the Jordan network), suggesting that the limitation is unique to the type of
transformational processing in the SRN rather than some idiosyncratic aspect of training.

Evaluating the SRN—Following Boyer et al. (1998), when the SRN is given more
extensive exposure to the material, such that training lasts for 30,240 trials (30 times the
training that subjects in Experiment 1 experienced), the model is able to eventually adapt to
the lag structure of the material (as shown in the bottom row of Figure 10). However, at the
end of this extensive training, the model appears to have learned the structure of the material
in a more perfect way than did human subjects in our experiment. For example, Figure 4A
shows the probability of a sequence element repeating as a function of the number of trials
since it was last experienced. Interestingly, this probability increases sharply only for the
first five lag positions, after which it levels off. Human subjects RT and LASR’s fit (Figure
7, left) show a similar plateau (compare to Figure 10, right). It appears that the SRN
regularizes the pattern, while human subjects are sensitive to the statistical properties of the
training sequence.

Why is the SRN so slow to learn this negative recency pattern? In order to gain some insight
into the operation of the model, we examined changes in the organization of the hidden unit
space before learning and at various stage during training. Prior to any training, the hidden
space in the model is largely organized around the last input to the model (i.e, the pattern of
hidden unit activations in the model cluster strongly on the basis of the current input). As a
result, the model is limited to simple transformations that map a single input to a single
output (i.e., A→B). However, as the model receives more training, the organization of this
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hidden space changes. After extensive training, we find that the hidden unit space in the
model has effectively been reorganized such that the current input is no longer the only
factor influencing the model’s representation. Indeed, sequence paths which are similar,
such as 1,2,3 and 2,1,3, end up in a similar region of the hidden unit space compared to
highly dissimilar sequences like 5,4,6 or 6,3,5. This analysis explains the process by which
the SRN learns the Lee material. At the start of learning, the model is heavily biased towards
its current input despite the random initialization of the weights. However, after learning,
sub-sequence paths which lead to similar future predictions are gradually mapped into
similar regions of the hidden unit space. Uncovering this representation of the sequence
takes many trials to properly elaborate.

As mentioned earlier, in order to address the disparity between the readiness with which
subjects learn in the task compared to the difficulty facing the SRN, Boyer et al. (2004)
suggested that subjects may have a pre-experiment learned bias towards negative recency.
To evaluate this they pretrained the SRN with a sequence where a weak form of negative
recency was present (by degrading the Experiment 1 sequence with random noise).
Exposure to negative recency confounds two factors in the SRN: learning to properly
elaborate the hidden unit representations versus learning the negative recency contingency
between the hidden unit representations and the model outputs. In order to evaluate these
separate components, we also pre-trained the SRN on a degraded form of the Experiment 1
sequence (by randomizing he input token on 10% of trials). However, prior to exposing the
model to the actual Experiment 1 task, we re-randomized the network weights from the
hidden units to the output units. This essentially resets the mapping from internal
representations in the model to output responses, while leaving intact the recurrent
connections and input weights which build the internal transformations in the model. This
had little impact on the simulations results, and like Boyer, et al. (2004), we found the model
showed effective learning in the first few blocks. In contrast, resetting the value of the
weights in the lower level of the network (between the input and hidden units) severely
interfered with the ability of the model to quickly re-learn.

In conclusion, the SRN has difficulty accounting for the speed with which human subjects
adapt to the sequence defined by a negative recency relationship. This difficultly stems from
a representational bias in the model toward building complex transformations of internal
states and is not tied to a specific training procedure or the need to train multiple layers of
network weights. The only way the model is able to account for the speed and efficiency of
human learning is to assume additional training. However, the model appears to regularize
its representation of the sequence in a way not observed by human participants.

Experiment 2 Simulation Results
Our goal in the following simulations was to evaluate the overall ability of each model to
learn the sequential XOR tasks rather than to precisely fit the results of Experiment 2 which
showed little evidence of learning in two out of the three conditions. Thus, we simulated
both models over a large range of their parameters and considered what each set
qualitatively predicted. Of particular interest was a comparison between this analysis and the
parameter space analysis reported for Experiment 1. Overall, the simulations closely
followed the modeling procedures used in Experiment 1. Each model was trained on
sequences constructed in the exact same manner as those given to human subjects and for
the same number of learning trials.

LASR—LASR predicts that subjects will only slow their responses during transfer blocks in
the 6C-FO condition. This is because LASR, lacking hidden units, is unable to learn the
higher-order statistical component of the sequence. Instead, it is limited to learning
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sequences with first-order relationships. The results of the parameter space analysis with
LASR confirm these intuitions. The model was evaluated on the same ranges of parameters
used in Experiment 1 for a total of 650 distinct combinations. To factor out the influence of
particular random settings of the weights, for each parameter combination the model was
run 200 times and the results were averaged. Figure 11 plots the average model responses
during the transfer blocks (11 and 12) versus the surrounding training blocks (9, 10, 13, and
14) for each parameter combination. Points which fall below the y=x line (in the shaded
region) represent cases where the model predicts slower responding during the transfer
blocks. As is clearly visible, LASR predicts a strong difference between the transfer and
surrounding block only in the 6C-FO condition. Interestingly, this is exactly the pattern
which our subjects showed.

Of the 650 parameter combinations we evaluated in the 2C-SO condition, 49.8%
demonstrated facilitation for XOR-consistent blocks, a pattern which is consistent with
small random fluctuations in particular runs of the model. Indeed, the average difference
between the model’s responses to transfer and surrounding blocks was marginal (M=
−0.0006, SD=0.005). A similar conclusion characterizes the results of the 6C-SO condition
(M=.0003, SD=.004). In contrast, in the 6C-FO condition, 100% of the parameter
combinations evaluated showed a learning effect, the magnitude of which was significantly
different from zero (M=.159, SD=.055, t(649)=74.3, p < .001). Thus, under no
circumstances could we find parameters which predicted a change during transfer blocks
except in the 6C-FO condition (similar to the pattern of human results). Of course, these
findings are not surprising given the simple, associative learning mechanism in LASR. In
the discussion, we consider how new knowledge structures and configural units may
develop with extensive training in order to allow LASR to account for the results of
Experiment 2 where subjects eventually learned the higher order relationships. However, in
the context of a single training session, learning appears consistent with the simple, limited
process advocated by LASR. As in human participants, it appears that statistical complexity,
not transformational complexity, is a critical factor influencing learning performance.

SRN—Like our simulations with LASR, our emphasis was on exploring the performance of
the SRN across a wide range of parameter values in order to assess the overall learnability of
the sequence (see Boucher & Dienes, 2003 for a similar approach). In contrast to LASR, the
SRN predicts that subjects will slow their responses during the transfer blocks in all three
experimental conditions. This is confirmed in Figure 12 which shows the size of the
predicted learning effect in terms of the mean prediction for transfer blocks 11 and 12
compared to the surrounding blocks: 9, 10, 13, and 14. Like Figure 9, points below the y=x
line represent cases where the model predicts slower responding during the transfer blocks.
We used the same 520 parameters as in Experiment 1. Due to the computational complexity
of these parameter space analyses, the model was averaged over 30 runs. Overall, 74% of
the parameter combinations fall below the y=x line in the 2C-SO condition, and the average
magnitude of the difference between transfer and surrounding blocks was significantly
different from zero (M=.004, SD=.007, t(519)=13.58, p < .001). In addition, 83% of the
parameter combinations show learning in the 6C-SO condition (again, the magnitude of the
effect was on average significantly different from zero, M=.01, SD=.02, t(649)=20.82, p < .
001). Finally, like LASR, the SRN predicts that virtually all parameter combinations (99%)
show learning in the 6C-FO condition (M=.2, SD=.07, t(649)=20.82, p < .001). In contrast
to the SRN simulations of Experiment 1, it was much easier to find parameters which
allowed the SRN to learn in all three conditions of Experiment 2. In Experiment 1, the entire
sampled parameter space predicted no learning effect, while in Figure 12, a much larger
proportion of parameters predict learning than the opposite pattern.
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Finally, remember that one explanation for the results of Experiment 1 is that subjects came
to the task with a pre-experimental bias towards negative recency. However, if this is the
case, then we would expect that this same bias would come into play in Experiment 2. In
order to evaluate the effect of pre-existing bias on learning, we pre-trained the SRN on the
same material used in Experiment 1 for 24 blocks (180 trials each). After this pre-training
we tested the learning ability of the SRN in the 6C-SO task. Interestingly, we found that
rather than interfering with learning, the existence of a pre-existing, learned bias towards
negative recency actually improves the magnitude of the learning effect (a paired t-test
shows that the mean size of the facilitation for sequence blocks actually increased as a result
of pre-training, t(649)=10.7, p < .001). Similarly, after training, for the same ranges of
parameters, 97% of the parameters now predict the correct qualitative ordering.

General Discussion
Successful interaction with the world often requires the appreciation of subtle relationships
between events arranged in time. What is the nature of the learning mechanisms that support
these abilities? A common assumption in psychological research is that complex behavior
implies the operation of correspondingly complex mental processes. However, this focus on
only the highest forms of human competency may ignore many other, equally vital aspects
of adaptive cognition. Our results show that learners are able to quickly acquire knowledge
about complex sequential patterns in a way consistent with a simple learning mechanism
based on direct associations. Rather than learn the complex, latent structures that define a
sequential regularity, it appears that our learning processes may be biased to exploit simpler
types of structure. As we will describe in the following sections, we believe this observation
reflects a vital component of our cognitive toolbox, allowing us to quickly adapt to our
environment in a variety of real-world situations. Limitations in the types of processing and
structural regularities that are learned in the short-term may represent a solution to the
computational tradeoff between between speed of learning and what is can be learned.

Implications for Models of Sequential Learning
Our findings raise a number of interesting issues concerning models of sequential learning.
First, our results demonstrate potential limitations with popular accounts of sequential
processing (i.e., the SRN). Rather than compare a single setting of “best-fit” parameters, we
evaluated the prediction of the SRN across an entire parameter space. The failure of the
SRN to capture the qualitative pattern of human results across our empirical studies was
surprising given the broad success of the model at accounting for sequentially organized
behavior. However, the time-course of acquisition provides an important theoretical
constraint on learning which is often overlooked.

Also note that a common criticism of the simple associationist account is that it is unable to
generalize beyond the training set to deal with unique constructions (something that even
infants can accomplish, Marcus et al. 1999). However, in Experiment 1, the sequence
structure was characterized by an abstract rule with a large number of valid constructions.
Each subsequence encountered in the experiment was completely unique, yet predictable
based on its underlying shared structure (or similarity) with previous subsequences.
However, the novelty of each path through the sequence grammar is actually what leads the
transformational processing in the SRN to have difficulty. In contrast, the direct associations
in LASR were able to learn the abstract pattern in a rather concrete way by quickly
adjusting its weights to inhibit repetition of recently cued responses. Only with extensive
training does the SRN eventually learn the structure of the material, but it appears to
regularize the pattern beyond the training set (by predicting faster response across all lags
instead of matching the true statistical pattern of the sequence, see Figure 10 and associated
discussion). Thus, the SRN appears to generalize in ways that people do not.
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Implications for Language Acquisition
Given the extremely limited architecture of LASR, one might question the generality of our
argument, particularly with respect to language. One possibility is that LASR is more
applicable to perceptual-motor sequence learning as opposed to linguistic processing.
However, there is growing evidence to suggest that relatively simple forms of statistical
information may ago a long way towards disambiguating the sequential structure of
language as well. For example, Karlsson (2007) found in a large corpus analysis, across
multiple languages, that examples of double embedding (the type of patterns LASR is ill-
equiped to handle) are extremely infrequent in spoken language. Thus, some of the
arguments in favor of a complex processing scheme such as the SRN may rest on written
and edited language rather than online cognitive performance. This observation lead Dennis
and Mehay (2008) to propose a simple, single layer learning mechanisms akin to LASR that
they show can capture the hierarchical phrase structure of sentences in a natural language
corpus. One implication these studies is that linguistic processing may be readily
accomplished by a system that attends to a much more limited set of statistical information.
Understanding how far these simple forms of sequential adaptation can go in advancing our
understanding of language and cognition is an important area of continued investigation.

Our view is that any complete account of sequential learning will likely have to recognize
the multiple time scales on which learning takes place. The types of learning which
characterize a lifetime of experience with grammar and syntax may not appropriately
describe the learning used in acquiring a simple skill or adapting to the speech patterns of an
unfamiliar accent. For example, the follow-up results of Experiment 2 reveals how different
types of learning may unfold on shorter or longer time-scales. In the following sections, we
consider one proposal for how more complex forms of processing may be brought online in
an incremental fashion during learning.

Learning of Higher Order Conditional Relationships
In Experiment 2, we failed to find evidence of higher-order statistical learning in the context
of a single one-hour training session. This result was surprising given that (outside of the
dependence on higher order statistical relationships) there is nothing inherently more
difficult about the sequential XOR pattern relative to the sequence used in Experiment 1
(and as discussed earlier, a number of intuitive reasons to expect that the XOR sequence
should be easier to learn). One possibility is that different types of statistical information
might be acquired by separate learning mechanisms which might operate on different time
scales (Cohen, Ivry, & Keele, 1990; Gomez, 1997). Such a position would also be consistent
with recent neuropsychological work which has found that different types of statistical
information may be processed in different ways. For example, Curran (1997) found that
medial-temporal lobe (MTL) amnesics are impaired at learning sequences composed of
second-order transitions, but not first-order transitions. This finding was supported by fMRI
work showing increased MTL involvement while learning sequences composed of higher
order transitions (Schendan, Searl, Melrose, & Stern, 2003). Importantly, however, this
study found increased MTL involvement for second-order sequences even when subjects
showed little explicit knowledge of the sequence, suggesting that MTL involvement is a
function of stimulus properties rather than conscious awareness (Chun & Phelps, 1999;
Eichenbaum, 1999). Given that the MTL is thought to play a critical role in mediating
stimulus associations to configurations or combinations of experienced stimuli (Love &
Gureckis, 2007; McClelland, McNaughton, & O’Reilly, 1995; Sutherland & Rudy, 1989),
one possibility is that the contribution of the MTL increases when the statistical structure of
a sequence requires responses which depend on particular combinations of previous stimuli
(such as second or higher order conditional probabilities which require learning the
association between two or more distinct sequence elements and a subsequent response).
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Also, the increased role of the MTL in processing higher order statistical relationships
would explain why such sequences are often harder to learn under dual-task conditions
(Cohen, Ivry, & Keele, 1990).

In fact, one way of integrating the results just reviewed with our findings and simulations is
to suggest that one of the key architectural principals of human learning is the process of
incrementally adding complexity as needed (Carpenter & Grossberg, 1987; Love, Medin, &
Gureckis, 2004; Quartz, 1993). On shorter time scales, the simple, more limited processing
of a model like LASR may adequately capture performance. However, with more training
(and depending on the nature of the material), new configural processing elements (i.e.
hidden units) may be added to enrich the complexity of learning over longer time scales.
From this perspective, our results may reflect an inherent computational trade-off between
rate of acquisition and representational flexibility. LASR’s account suggests that one way to
learn quickly is to focus on a simpler subset of statistical pattern (i.e., first order statistical
patterns) to the exclusion of more complex forms of processing. Even partial or incomplete
prediction is likely better than waiting for enough data to enrich a complex, transformational
representation of the task or environment.

Finally, note that our failure to find evidence of learning in Exp. 2 is surprising in light of
the extensive literature on “second-order conditional” learning in SRT task (Reed &
Johnson, 1994; Remillard & Clark, 2001). However, as noted by Remillard & Clark (2001),
previous investigations of SOC learning have sometimes failed to exclude other sources of
first-order information that might aid learning. For instance, the 12-item SOC sequences
tested by Reed & Johnson (1994, Experiment 2) can actually be learned by LASR because
first-order lag information discriminates the training and test sequence. Remillard & Clark
(2001) more directly controlled the influence that first-order information might have had on
learning, but also introduced short pauses in the task at critical boundaries which might have
helped participant segment the sequence into the higher order units. In addition, in this
study, participants were often trained for multiple training sessions over a number of days.
In contrast, in Experiment 2, we failed to find any evidence of learning in a single, 1-hour
session (but did with extensive training). One hypothesis then is that when no first order
information is available in a sequence (such as Exp. 2), it takes much longer to learn. Also
note that one major difference between these sequences and the XOR sequences we tested
are that our sequences critically depended on participants getting the “segmentation” of the
sequence into triplets correct. For example, although 000 was a legal sequence triplet in the
2C-SO condition, it might also appear as the middle elements of the 110 and 000 (e.g., …
110000…). However, when this subsequence crossed the two triplet subsequences, there
was no actual predictability of the third element. Thus, in order to learn the 00→0 “rule” one
needed to not only learn the configuration, but also “apply” it at the right time. This is less
of a problem in previous studies of SOC learning because the non-predictive versions of the
SOC relationship never appears.

Finally, note that across our studies we find a general bias toward learning simpler first-
order patterns which can be learned with a simple linear network (LASR). Interestingly, in
other domains such as category learning, the distinction between linear and nonlinear pattern
learning has not been found to be a strong constraint on learnability (Medin &
Schwanenflugel, 1981). One difference between these studies and ours may have to do with
how easy or hard it is to chunk aspects of the stimulus in memory. In typical category
learning context, all the features of a stimulus are presented simultaneously (unlike
sequential tasks where events are arranged in time). In addition, in the non-linear XOR
problem studies in Experiment 2, each higher-order chunk is highly similar to other task-
relevant chunks which may impede the ability of participants to isolate the relative
components of the sequence. In addition, performance in the SRT is unsupervised in the
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sense that sequential structure of the task was incidental to participant’s primary goal of
correctly responding to each cue that in unsupervised concept learning, there appears to be a
bias towards linearly separable patterns (Ashby, Queller, & Berretty, 1999; Love, 2002). We
conclude with the suggestion that an important and often overlooked characteristic of human
cognition is the ability to rapidly acquire complex sequential skills, and that this behavior
may be supported by surprisingly simple and limited cognitive processes.
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Appendix A: LASR Model Formalism
The following section describes the mathematical formalism of the LASR model.8

Input Representation
The input to the LASR model on each time step is a simple binary vector representing which
of a set of events occurred at the current time step, t. Given N possible events, input to the
model is a N-dimensional vector mt where each entry  corresponds to the presence ( )
or absence ( ) of event i on the current trial, t. For example, given three possible events
(A, B, and C) an input vector [100] would encode that event A occurred on the present trial,

8A couple of simple notation conventions: uppercase bold letters (M) are used to refer to matrices, lowercase bold letter (m) refers to
vectors, and regular script with a subscript (mi) refers to individual elements of a vector.
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while input vector [010] would encode that event B occurred, and [011] would encode that
event B and C occured.

The model maintains a simple shift-register memory of past events which are indexed based
on the current time t. Thus, mt−1 refers to the input vector experienced on the previous time
step, and mt−2 refers to the input experienced two time steps in the past. The complete
history of past events is a NxP matrix, M, where N is the number of possible events, and P is
the number of events so far experienced and stored in memory.9

Response
Given N possible events or choice options, the model has N detectors. The activation dk of
the detector k at the current time t is computed as the weighted sum of all past events for all
time steps multiplied by an exponential attenuation factor:

(1)

where  is the outcome of the jth option at time t − i, w(t − i)jk is the weight from the jth
outcome at time slot t − i to the kth detector, and e−α·(i−1) is the exponential attenuation
factor. The α is a free parameter (constrained to be positive) which controls the forgetting
rate of the model. When α is large, the model has a steep forgetting curve and thus only
events in the very recent past influence future prediction, while small settings of alpha cause
a less steep forgetting function. The general form of Equation 1 shares much in common
with well established single-layer feed-forward networks (McCulloch & Pitts, 1943; Minsky
& Papert, 1969, 1998; Rosenblatt, 1958)

As is standard in most connectionist-type models, the final output of each detector, ok, is a
sigmoid transform of the activation, dk, of each detector:

(2)

This makes the formalism used in LASR identical to other comparable models such as the
simple recurrent network (Elman, 1990) and standard back-propagation (Rumelhart,
McClelland, & the PDF Research Group, 1986), highlight substantive differences in the
learning processes between different models rather than differences in the output function.

Like other models of sequential learning, when comparing the model’s response to human
data, the absolute activations of each detector are converted into response probabilities using
the Luce choice rule (Luce, 1959):

(3)

9Note that while this formalism allows for an infinite memory for past events attenuated only by the exponential decay (i.e., P = ∞),
in practice, only a limited number of past event slots will have significant activations (due to the exponential forgetting curve). In all
simulations reported, the length of the register P was set to a large value (approximately 30 or larger), and it was verified that adding
more elements to the register had little effect on the results.
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where pk represents the probability of response k on the current time step. RT is assumed to
be inversely related to pk so that fast RTs correspond to high response probabilities
(Cleeremans & McClelland, 1991).

Learning
Learning in the model is implemented using the well known delta-rule for training single
layer networks (Rescorla & Wagner, 1972; Sutton & Barto, 1981; Wagner & Rescorla,
1972; Widrow & Hoff, 1960) with a small modification introduced by Rumelhart and
McClelland (1986) which accounts for the sigmoid transform at the output of each detector
(sometimes referred to as the generalized delta-rule for single layer networks). For each
detector, the difference between the actual outcome of the current trial gk and the detector
output ok is computed and used to adjust the weights:

(4)

The Δwijk(t) value is added to the corresponding weight after each learning episode. The η is
a learning rate parameter and e−α·(i−1) is the exponential forgetting factor. The dk (1 − dk) is
a factor representing the derivative of the sigmoid transfer function with respect to the
weights and moves the weights in the direction of gradient descent on the error. In addition,
the λ·Δwijk (t−1) is a momentum term which adds some fraction of the weight update from
the previous trial, Δ wijk (t − 1) to the current one which is included here for compatibility
with the SRN. The complete model has only three free parameters: α (forgeting rate), η
(learning rate), and λ (momentum).

Appendix B: Simulation Details
Each model was initialized with six input units and six output units which corresponded to
the six choice options in the task (in the Experiment 2 simulations, one network was tested
with two inputs and two outputs corresponding to the 2C-SO condition). On each trial, the
activation of one of the six input units was set to 1.0 (corresponding to the cued response
shown to subjects) and the model’s task was to predict the next sequence element. The
resulting pattern of activation across the six output units in response to this input pattern was
converted into a choice probability. The error in the model’s prediction and the actual next
element was used to adjust the learning weights on a trial-by-trial basis. Following
Cleeremans and McClelland (1991) human RT in the experiment was assumed to relate
directly to the value of 1 − pk where pk is the model’s response probability for the correct
response, k, on that trial.

In the Experiment 1 simulations, each model was presented with 46 separate sequence
streams (each consisting of 1080 trials) which matched exactly the sequences presented to
our 46 subjects in Experiment 1. Each simulation consisted of running each model 200 times
over each of these 46 sequences each time with a different, random initial setting of the
weights (sampled from a uniform distribution between −1.0 and 1.0) resulting in a total of
200×46=9,200 independent runs of each model. The results were averaged over these
independent runs of the model in order to factor out the influence of any particular setting of
the initial weights. Extensive searches were conducted over a wide range of parameters
values in order to find settings which minimized the RMSE and maximized the correlation
between the model and human data.
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Figure 1.
The schematic architecture of the LASR (left) and SRN (right) networks. In LASR, memory
takes the form of a shift-register. New events enter the register on the right and all previous
register contents are shifted left by one position. A single layer of detector units learns to
predict the next sequence element given the current contents of the register. Each detector is
connected to all outcomes at all memory slots in the register. The model is composed of N
detectors corresponding to the N event outcomes to be predicted (the weights for only two
detectors is shown). In contrast, in the SRN, new inputs are presented on a bank of input
units and combine with input from the context units to activate the hidden layer (here, solid
arrows reflect fully connected layers, dashed arrows are one-to-one layers). On each trial,
the last activation values of the hidden units are copied back to the context units giving the
model a recurrent memory for recent processing. In both models, learning is accomplished
via incremental error-driven adaptation of learning weights.
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Figure 2.
Dimensions of sequence complexity. Panel A: A hierarchy of statistical complexity. More
complex statistical relationships require more memory and training in order to learn. Higher-
order statistical relationship are distinguished by depending on more than on previous
element of context. The order of a relationship is defined as the number of previous
elements the prediction depends on. Thus, a pattern like ABC → D) is a third-order
statistical relationship. Also, the elements of a n-th order conditional relationship may be
separated by any number of intervening elements (or lag) as the definition only stipulates the
number of previous elements required for current prediction. Panel B (top): A simple
grammar with a small number of branches. Panel B (bottom): A more complex grammar
with a large number of highly similar branches. Although the number of paths through each
grammar increases, both are captured with a simple transition probability (shown beneath).
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Figure 3.
The finite-state grammar underlying the sequences used in Experiment 1 (left) and 2 (right).
The sequence used in Experiment 1 has a large branching factor and a large number of
highly similar paths while the grammar underlying Experiment 2 is much simpler. In
contrast, the sequence tested in Experiment 1 affords a simple, first-order statistical
description, while the sequence tested in Experiment 2 relies entirely on higher-order
conditional probabilities. See the introduction for each experiment for a detailed
explanation.
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Figure 4.
Panel A: The probability of an event repeating as a function of the number of trials since it
was last experienced (lag). Responses become more likely as the number of trials since they
were last executed increases. Panel B: RT as a function of the lag between two repeated
stimuli in Exp. 1. RT is faster as lag increases, suggesting adaptation to the structure of the
task. Panel C: The evolution of the lag effect over the course of the experiment. Each line
represents the lag effect for one block of the experiment. In the first block, RT to lag-10
items is very close to the RT for lag-1 items. However, by block VI the speed advantage for
lag-10 item has sharply increased. In panel B and C, error bars show standard errors of the
mean. In panel C, for visual clarity, error bars are shown only for block 1 and 6, which
reflect the beginning and endpoint of learning. However, the nature of variability was
similar across all blocks.
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Figure 5.
The abstract structure of the sequences used in Experiment 2. Each sequence was created by
uniformly sampling triplets (one line at a time) from these tables and presenting each
element to subjects one at a time (the columns of each table reflect possible outcomes on
every 1st, 2nd, and 3rd trial).
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Figure 6.
Mean of median RTs for Experiment 2B as a function of training block. Error bars are
standard errors of the mean. Transfer blocks are highlighted by the grey strip covering
blocks 11 and 12.
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Figure 7.
Left: The mean RT to stimuli separated by different lags in Experiment 1 compared to the
predictions of LASR. Middle: Human data considered in each block of the experiment. RT
values were subtracted from the lag-1 value for that block so that the differential
improvements to stimuli at longer lags is more visible. Right: A similar plot for the
predictions of LASR broken by block. In order to facilitate comparison between the model
and human data, all data are plotted as z-scores.
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Figure 8.
The final LASR weights for Experiment 1. LASR learns negative receny by developing
negative weights between events and the corresponding detector. Negative weights are
darker red. Positive weights are darker blue. The weights leaving each memory slot (t − 1, t
− 2, etc…) are shown as a separate matrix. Each matrix shows the weights from each
stimulus element to each output unit. For example, the red matrix entry in the top left corner
of t−1 slot is the weight from event 1 to the output for event 1. Likewise, the white cell to
the immediate right of this cell represents the weight from event 1 to the output unit for
event 2.
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Figure 9.
Explorations of the parameter space for LASR and the SRN in Exp. 1. Each model’s average
response for lag-1 is plotted against the average response lag-10. The division between the
grey and white regions represent the line y=x. Each point in the plot represents the
performance of the respective model with a particular setting of the parameters. If the point
appears below the y=x line in the grey area, it means the model predicts faster responding to
lag-10 events than to lag-1 (the correct qualitative pattern). Note, however, that accounting
for the full pattern of human results requires a monotonically decreasing function of
predicted RT across all 10 event lags, while this figure only illustrates the two end points
(lag-1 and lag-10). Thus, the few instances where the SRN appears to predict the correct
pattern are not in general support for the model (see main text).
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Figure 10.
Comparison of the overall lag effect (left) and separately by blocks (right) when the SRN is
given additional training in the task. In order facilitate comparison between the model and
human data all data are plotted as z-scores.

Gureckis and Love Page 39

Cogn Sci. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
Explorations of the parameter space of the LASR in the three conditions (2C-SO, 6C-SO,
6C-FO) of Experiment 2. The key behavioral pattern from Experiment 2 was that subjects
only responded differently during transfer block in the 6C-FO condition. The model’s
average response for the transfer blocks 11 and 12 are plotted against the average response
for the surrounding learning block (9, 10, 13, and 14). Also plotted is the line y=x. Each
point in the plot represents the performance of the LASR with a particular setting of the
parameters. If the point appears below the y=x line, it means the model predicts slower
responding during the transfer blocks (and thus evidence of learning). LASR predicts a
systematic learning effect only in the 6C-FO condition (i.e. first-order, linear learning), like
human subjects.
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Figure 12.
Explorations of the parameter space of the SRN in the three conditions (2C-SO, 6C-SO, 6C-
FO) of Experiment 2. The model’s average response for the transfer blocks (11 and 12) are
plotted against the average response for the surrounding learning block (9, 10, 13, and 14).
Also plotted is the line y=x. Each point in the plot represents the performance of the SRN
with a particular setting of the parameters. If the point appears below the y=x line, it means
the model predicts slower responding during the transfer blocks (and thus a learning effect).
The SRN, unlike human subjects, shows a learning effect in all three conditions.
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