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ABSTRACT

Array-based comparative genomic hybridization
(aCGH) is a powerful tool to detect genomic
imbalances in the human genome. The analysis of
aCGH data sets has revealed the existence of a
widespread technical artifact termed as ‘waves’,
characterized by an undulating data profile along
the chromosome. Here, we describe the
development of a novel noise-reduction algorithm,
waves aCGH correction algorithm (WACA), based on
GC content and fragment size correction. WACA
efficiently removes the wave artifact, thereby
greatly improving the accuracy of aCGH data
analysis. We describe the application of WACA to
both real and simulated aCGH data sets, and
demonstrate that our algorithm, by systematically
correcting for all known sources of bias, is a
significant improvement on existing aCGH noise
reduction algorithms. WACA and associated files
are freely available as Supplementary Data.

INTRODUCTION

Array-based comparative genomic hybridization (aCGH)
is a powerful molecular cytogenetic method for the
detection of chromosomal imbalances (1) for which test
and reference DNA are differentially labeled and
co-hybridized on microarrays with DNA clones or
oligonucleotides spanning the human genome (2,3).
Array CGH has been instrumental in identifying regions
of the genome encompassing copy number variations
(CNVs) that contribute to the development of complex
genetic diseases ranging from cancer to neurodegenerative
disease (4,5). In the analysis of aCGH data sets, the choice
of image processing and normalization methods, which
are the first step in data analysis, can have a significant
impact on aberration calling and data clustering. It is
therefore essential to identify and remove all systematic

sources of variation (e.g. unusual labeling efficiencies
and scanning properties of the Cy3 and Cy5 dyes, print-
tip or spatial effects) by appropriate normalization
methods. One scatter-plot-based normalization technique
that is particularly suitable for balancing the dye
intensities uses ‘locally weighted scatter plot smoothing’
(lowess). Its original application was for smoothing
scatter plots in a weighted, least-squares fashion (6).
This technique is typically chosen to adjust microarray
data in many microarray analysis software suites, such
as the Feature Extraction software (Agilent).
The development of aCGH has revealed the presence of

a significant technical artifact, termed ‘waves’, observed in
many laboratories and first referred to by Cardoso et al.
(7). These waves result from a spatial bias in aCGH
profiles, generating an undulating (waved) profile instead
of a flat one. It was previously thought to result from
variable specificity in the DNA amplification process.
However, this phenomenon was also described using the
HapMap data (8), a result that argued against the first
idea. What is clear is that waves can have an adverse
effect on the accuracy of aberration calling and thus
must be properly modeled and corrected for, in order to
detect real copy number aberrations with high sensitivity
and specificity. In a previous study, Nannya et al. (9)
considered both the GC content of the hybridizing DNA
fragments and their sizes in order to normalize aCGH
data. Marioni’s study (8) found that the GC content of
the BAC probes was strongly correlated with the waves.
Thus, regions with a low GC content corresponded
roughly to peaks of the waves, while regions with high
GC probe content corresponded to troughs. However,
they determined that fitting a lowess curve on the
Log2Ratio versus chromosomal position plot was
preferable to correcting for GC content. This was in
contrast to Song’s study (10), which applied a correction
based on the GC content of the probes. In contrast, a
recent study presented an algorithm called NoWaves,
not based on the GC content, but applying a correction
based on a set of calibration profiles (11). Here we
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describe the development of a novel data correction
algorithm, called waves aCGH correction algorithm
(WACA) and principally based on GC content correction.
We describe the application of WACA to both real and
simulated aCGH data sets, and demonstrate that our
algorithm, by systematically correcting for all known
sources of bias, is a significant improvement on existing
aCGH noise-reduction algorithms.

MATERIALS AND METHODS

Samples

To test for its efficacy and reliability on data analysis, we
applied WACA on six sets of samples (Table 1). From our
laboratory, we selected 20 samples from patients
presenting with diffuse large B-cell lymphoma (DLBCL)
and 11 samples from patients with chronic lymphocytic
leukemia (CLL). Additionally, we selected 13 samples
from patients suffering from developmental delay
(CONSTIT) and used them as standard profiles for
artificially creating aberrations, since they present few
variations, none of them at precise locations as listed
below. Raw data from these samples are available at the
Gene Expression Omnibus database (GEO, http://www
.ncbi.nlm.nih.gov/projects/geo/index.cgi) and their GEO
accession numbers and platforms are listed in Table 1.
Furthermore, 31 samples presenting with waves were
selected from the GEO database as a second set for
WACA development. We selected 10 human samples
corresponding to T-cell acute lymphoblastic leukemia
(TALL) patients extracted from the GPL2879 platform.
Eleven glioblastoma (GBM) and 10 melanoma
(MELANO) samples were also selected in the GEO
database respectively from the GPL4091 and the
GPL887 platform.
All arrays, from our laboratory or extracted from the

GEO database, were hybridized on 44K (CLL,
CONSTIT, DLBCL and TALL) or 244K (GBM and
MELANO) arrays, and scanned with the G2505B
Micro-Array Scanner System (Agilent).

Derivative Log2Ratio Spread

The Derivative Log2Ratio Spread (DLRS), as described
by Kincaid et al. (12), is implemented in the DNAanalytics
software (Agilent) and is the noise quantification chosen
by Agilent for their arrays. This metric calculates probe-
to-probe Log2Ratio noise of an array and hence of the
minimum Log2Ratio difference required to make reliable
amplification or deletion calls. The principal assumption

of this metric is that there are not >50% of probes
delimiting breakpoints. It measures the difference
between consecutive Log2Ratio. The DLRS, presented
as a robust method of estimating noise from the sample
array alone, can range under 0.2 for excellent array and
higher than 0.3 for poor experiments. Following the
indications given by the manufacturer, we computed the
DLRS as:

L ¼ ðl1; l2; . . . ; lnÞ

L1 ¼ ðl1; l2; . . . ; ln�1Þ

L1 ¼ ðl1; l2; . . . ; lnÞ

DLRS ¼
Q3ðL2 � L1Þ �Q1ðL2 � L1Þ

1:349 �
ffiffiffi

2
p

Q1 and Q3 being respectively the first and third quartile,
and L the Log2Ratios ordered by positions.

Standard deviation as a standard for quality evaluation

Without any real aberration, variation between con-
secutive probes is a consequence of technical noise
defined as the standard deviation (SD), further referred
to as inter-oligonucleotide variation and thereby reflecting
the array quality. To estimate the quality of each array, we
measured the SD of the Log2Ratio on the autosomes. The
main pitfall of the SD is that it is biased by real aberration.
However, SD is impacted by the waves, whereas DLRS is
not. To assess the ability for our algorithm to correct for
these wave effects and minimize the impact on real
aberrations, we computed the SD correction efficiency
(SDe). Given an uncorrected CGH profile and the
normalized one, the SDe is calculated as follows:

L ¼ ðl1; l2; . . . ; lnÞ

L� ¼ ðl�1 . . . ; l�nÞ

SDeðLÞ ¼ 100�
SDðLÞ � SDðL�Þ

SDðLÞ

with m the mean value of L. L* is used for the corrected
Log2Ratios ordered by positions.

WACA workflow

As a preliminary step to WACA, we computed all the
listed biases for each probe. The GC content of the
probes was included by parsing from the beginning to
the end of each probe the hg18 NCBI Build 36
(wGCprobe). Following Agilent protocols, fragments are
issued from DNA digestion by Alu I and Rsa I enzymes

Table 1. Selected samples for WACA design

Samples GEO numbers Number Type of arrays Origin

CLL (1–11) GSM484836–46 11 Agilent 44k private-GPL9797
DLBCL (1–20) GSM484847–66 20 Agilent 4� 44K private-GPL9798
CONSTIT GSM484823–35 13 Agilent 4� 44 k private-GPL9796
GBM (1–11) GSM231848–58 11 Agilent 244K GEO-GPL4091
MELANO (1–10) GSM188319–28 10 Agilent 244 k GEO-GPL887
TALL (1–10) GSM183859–68 10 Agilent 44K GEO-GPL2879
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and therefore their sizes are in the majority comprised
between 200 and 1500 bp. Sizes and GC contents of
fragments are calculated by parsing the hg18 NCBI
Build 36 for nearest enzymatic sites around each probe
(wFragSize and wGCfrag). Consequently, fragments are
theoretical and must correspond to a complete digestion.
For the GC content of windows surrounding each probe,
the procedure was the same as above with GC content of
windows of 150 and 500 kb at each side of the probes
(wGC150 and wGC500).

For each above-identified bias, one file with numeric
values associated to each probe is created. Given these
pre-computed data, WACA is based on a correction
scheme as follows: after fitting a lowess curve to the
Log2Ratio data without the X and Y chromosome
versus the current analyzed bias, WACA subtracts to the
Log2Ratio of each probe the computed variation between
the lowess curve and the mean Log2Ratio. Under the
assumption that aberrations (gains and loss) do not
contain all the probes, the lowess computes the assessing
error due to each bias, independently from gains and loss
(we use the lowess implemented in the R packages with a
classical smoothing parameter of 0.67). Those aberrations
are therefore perfectly conserved because not linked to GC
content nor fragment size but rather than with genomic
position. WACA is the repeated corrections of the bias
in this following order: wGC150, wGC500, wGCprobe,
wGCfrag and wFragSize. Other window sizes and
correction orders were tested and discussed further. All
these biases were found to fit a lowess curve with probe
Log2Ratio.

Implementation of WACA in RReportGenerator under R

For many conveniences, we used RReportGenerator that
consists in providing a simple and user-friendly graphical
user interface (GUI) that allows running routine and
statistical analysis using R via predefined scenarios in a
local and independent manner (13). The results (text,
figures and tables) are automatically assembled into a
pdf-formatted report. WACA was designed as a suite
of scripts for RReportGenerator (i.e. preprocessing,
correction and post-processing) to allow simple
manipulation of files. Moreover, the specific GC design
files corresponding to each of the bias that we detected
and described are loaded as supplement files in
RReportGenerator.

Statistical analysis

Hierarchical clustering (Hclust package) were computed
based on the Pearson’s correlation. For clustering, the
distance between two samples was 1 minus the absolute
value of Pearson’s correlation of their Log2Ratio. Self-
organizing maps (SOMs package) were obtained with
the SOM R package querying for 2� 2 clusters with
default parameters (14). Normality test (Shapiro–Wilk)
of each data set was assessed. T-tests were executed on
the efficiencies of correction (Sde) and all statistical
analyses were executed using R packages.

Artificial aberrations

We evaluated the capacities of WACA by simulating
artificial profiles with aberrations at precise locations.
The artificial profiles contain complete gain of
chromosomal arm 1q (1968 probes on 103Mb) and a
partial one at 3p25.3 (only nine probes on 468 kb), total
loss of chromosomal arm 2p (1061 probes on 91.3Mb)
associated with a limited one at 4q13.3 (103 probes on
5.9Mb). We added 0.25 and �0.25, respectively for gain
and loss, to the Log2Ratios of the corresponding probes
of each profiles. We then applied our algorithm on the
modified profiles and loaded in DNAanalytics (Agilent)
raw profiles, in addition to modified profiles and
WACA-corrected simulated profiles. We applied CBS as
segmentation algorithm with a filter of three points and
0.2 at Log2Ratio to visually assess the effect of WACA.

RESULTS

Searching for optimal methods for waves correction

The artifactual wave effect is a general feature of aCGH
data sets. It is observed worldwide and can occur in any
sample, independent of the methods or the tissues used for
DNA extraction. Indeed, we observed this effect on many
samples varying from developmental delay to leukemia,
with or without use of commercial DNA pool or
autologous DNA as reference and independently of the
commercial platform used (Agilent or Affymetrix). As
detailed in Marioni’s study (8), the amplitude of the
waves at any given chromosomal region can vary from
sample to sample and, moreover, the polarity of the
waves can even be reversed (Supplementary Figure S1).
We hypothesized that multiple sources of bias were
causing this phenomenon. Among the potential sources
of bias, and assuming that all technical bias were
accounted for, we focused on the GC content of the
probe, of the fragments generated during DNA
preparation, of the genomic windows neighboring each
probe and the generated fragments sizes. In order to
evaluate data corrections, two parameters could be
tested: the DLRS and the SD. The first one is the
Agilent’s standard for probes hybridization quality
assumption and is not influenced by copy numbers, but
since we hypothesized that waves were a more global
phenomenon than previously described, the DLRS that
computes the Log2Ratio differences between consecutive
probes along the chromosomes, was not considered,
although calculated, as the best metric to base on for
corrections. Therefore, we preferred the SD, to evaluate
the wave effect. In order to eliminate aberration effect on
the SD, we rather compute the SDe as described earlier.
In an initial analysis, we aligned the wGCprobe and

Log2Ratio profile across the genome of one of the
TALL samples and found a correlation between both
parameters (Pearson’s correlation test, r=0.29),
indicating that the wave artifact could be strongly
associated with the GC content of the probes
(Supplementary Figure S2A). This result was in agreement
with previous studies (7). We also aligned the GC content
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of 150-kb windows flanking each probe with the
Log2Ratio of the same sample (Supplementary Figure
S2B) and obtained very similar results (Pearson’s
correlation test, r=0.30). We then tested the effect of
different window sizes (ranging from 2� 30 bp to
2� 1Mb) and DNA fragment sizes on aCGH data
correction by computing the correction SDe of the
Log2Ratio on five samples sets (62 arrays) with waves.
We tested the effect of data correction based on the GC
contents of the following parameters: the probe, the
fragment, genomic windows spanning the probe and the
fragment size. Window sizes were arbitrarily chosen at
2� 30 bp, 2� 200 bp, 2� 1 kb, 2� 10 kb, 2� 100 kb,
2� 150 kb, 2� 250 kb, 2� 500 kb and 2� 1Mb
(Supplementary Table S1).
We employed both Student’s t-test and SDe to select the

best parameters or combinations of parameters to apply
for the most accurate correction. We established that
correction using a 150-kb window, followed by correction
using a window of 500 kb, the wGCprobe, the wGCfrag
and the wFragSize was the most effective procedure (noted
Wmulti10 in Supplementary Table S1). Our analysis
shows that this choice of windows sizes is robust (mean
SDe=3.8873 %, P-value=4.86 10�7). As illustrated by
these results, amplitude effects of the waves are different
from sample to sample, so that corrections do not act the
same way for each of them.

Data analysis improvement with WACA

In order to assess WACA efficacy on data quality
improvement, we considered quality parameters and
SDe, and also measured the quality improvement on
further classical analysis, such as hierarchical clustering,
data segmentation and aberration calling.
Each sample from the five sets used for correction

testing was submitted to WACA using the optimal
correction procedure described above. We plotted the
Log2Ratio against the GC content for the 62 samples
before and after WACA processing. The application of
WACA significantly reduced the SD of the 62 samples
(mean=0.3408±0.0805 for uncorrected data,
0.3267±0.0757 after WACA; P-value=4.86�10�7) in
addition to their DLRS (mean=0.1966±0.0408 for
uncorrected data, 0.1901±0.0368 after WACA;
P-value=3.23�10�8).
In light of this and since both quality standards were

improved by the application of WACA on aCGH data
sets, we postulated that clustering of the five sets would
be superior after WACA than without the treatment. We
then constructed the Pearson’s correlation matrix for the
62 samples (we used the log2ratio of 21980 probes
matching both 44K and 244K designs) and applied a
hierarchical clustering to generate a dendrogram for the
untreated and WACA treated samples (Supplementary
Figure S3). WACA application to the raw data strongly
rectified cluster formation with the five samples sets
(Supplementary Figure S3). Before WACA correction,
the TALL and CLL samples were not clearly separated
and defined, whereas after correction, the samples
clustered into five clearly distinct sets, with the exception

of two CLL samples [number #1 and 5, the only samples
showing a lack of large aberrations (data not shown)] and
one DLBCL sample (number 10), for which the diagnosis
of CLL was made before DLBCL onset. This indicated
that WACA could significantly improve the analysis of
aCGH data sets.

To further assess the WACA algorithm, and its interest
on waves processing, we selected the noisiest CLL sample
for data correction, CLL11 for which we had the
karyotype [47, XX, +12, del (13)(q14.2)]. CLL11 was
processed with WACA and reloaded in CGH-analytics
for comparison to the uncorrected data. After circular
binary segmentation (CBS) application (15), described as
one of the best segmentation method (16), we confirmed
that data correction with the optimal multiple parameter
procedure was superior to single parameter correction
alone (Figure 1). On chromosome 12 without WACA
treatment, there were 11 segments. Applying WACA,
only one amplified segment is detected. On chromosome
13 without WACA treatment, there were eight detected
segments. With WACA, only three segments were
detected, highlighting the loss at 13q14.2. It is clear that
uncorrected Log2Ratios did not reflect the CLL11 sample
karyotype, while the WACA-corrected sample revealed
the duplication of the whole of chromosome 12 in
association with a 13q14.2 deletion (5Mb), in perfect
concordance to the sample karyotype (Figure 2). This
example shows that data correction by WACA
considerably improved the Log2Ratio of the profile and
thus the segmentation procedure. Moreover, SD and
DLRS of the sample were both improved
(DLRS=0.260479 and SD=0.4920178 before
treatment; DLRS=0.2539805 and SD=0.3422664 after
WACA treatment), allowing a more accurate
characterization of the sample’s aberrations. This
demonstrates undoubtedly that multiple corrections are
necessary to overcome all biases since correction with
part of the biases (Figure 1, lanes B–D for the GC of
the probes, of the fragment and the fragment sizes, and
also E and F for windows of 150 and 500 kb, in contrast to
the complete correction we developed, in G) could let false
aberrations (at 13q34 for lanes E and F, Figure 1). These
results validate our hypothesis that bias is not only
restricted to probes and neighboring fragments, but may
also be acting in regions distant from the probe.

Advanced analysis of WACA correction

In order to know whether the WACA corrections, and,
hence the different corrected biases, could be associated
with DNA extraction protocols, with choice of platform,
sample, pathology and with DNA origin (tissue, cell and
organ), a hierarchical cluster analysis was performed to
group the 62 samples according to the degree of similarity
present in the correction efficiencies of WACA treatment.
In the resulting dendrogram (Supplementary Figure S4),
the samples segregated in mainly six groups (the CLL11
sample being alone). This analysis perfectly shows that
correction is independent from types of array or
pathologies of samples.
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At the beginning of this study, we hypothesized that
there were three main biases which were independent:
local GC, effect of GC in large windows and fragment
sizes. Therefore, we performed a hierarchical clustering
on SD efficiencies for each corrected bias. Hierarchical
clustering of the windows and combinations of windows
separated perfectly the type of correction that we used
(Supplementary Figure S5). In this analysis, three main
groups were formed: simple and small windows for
correction (i.e. wGC30, wGCprobe, wGC200, wGCfrag
and wGC30+wGC200), corrections with larger windows
or combinations and at last one cluster grouping the
corrections with the fragment size and associated
combinations of windows.

Finally, we applied a current SOM approach to group
samples under correction efficiency into four clusters
(Supplementary Figure S6). Apart from the multiple
corrections for which efficiencies remained the greatest
(Supplementary Figure S6, features 10–12), samples were
clustered into four sets revealing the main bias in each
group. The first cluster shows a set of samples, which
mainly have fragment size bias (feature1, cluster B and
C), a second one for which the GC content of larger

genomic regions is the main bias (cluster A, features
4–9) and samples for which correction does not change
the Log2Ratio SDs considerably, which were initially of
good quality (cluster D). This last analysis confirmed our
above findings: first that array data correction is sample
dependent, and second that corrections with GC content
around each probe (in green), GC content of larger
windows around these probes (in blue), fragment sizes
(in gray) and combinations of these ones (in red), are
typically independent (Supplementary Figure S6).
These results first show that there are almost two types

of bias in addition of the fragment sizes: a local one based
on probe composition, fragment size or their respective
GC contents and another one more global based on the
GC content of large windows; and, second, that array
correction by WACA is sample dependent, but not
associated with any other features, such as sample
pathology, or array resolution.

Improvement of WACA with artificial aberrations

As a last test, we assessed the capacities of WACA by
simulating artificial tumor profiles with no aberration at
precise locations. All 13 samples showed to keep the

Figure 1. Application of WACA to a noisy sample (1) WACA application on the CLL11 patient under different corrections (in order in the
figure, A=raw data, B=wGCprobe, C=wGCfrag, D=wFragSize, E=wGC150k, F=wGC500k, G=wGC150k+
wGC500k+wGCprobe+wGCfrag+wFragSize). Plots of the chromosome 13 are extracted from the DNAanalytics software, and moving
averages of the CLL11 sample for each type of corrections are shown. Segments are represented by vertical lines on the right or the left of each
profile, respectively, showing gains and losses underlined by filled boxes. As shown, only correction at line G shows a perfect correlation of the plot
to the sample’s karyotype at chromosome 13.

PAGE 5 OF 10 Nucleic Acids Research, 2010, Vol. 38, No. 7 e94



artificial aberration after correction by WACA (data not
shown). For chromosomes 1, 2 and 4 with large (up to one
arm for chromosomes 1 and 2), application of WACA did
not change the aberration calling. The aberrations at
chromosomes 1, 2 and 4 were perfectly detected in both
artificial and WACA-treated profiles and therefore are not
represented. We then focused on the smallest artificial
aberration at 3p25.3 (a gain of 468 kb with nine
modified probes), correction by WACA provided
impressing results. First, WACA application led to a
more precise aberration calling after segmentation by
CBS in DNAanalytics for one of the samples (sample A,
Figure 3). Agilent’s software detected a gain of 1.7Mb
defined by 28 probes in the artificial sample at 3p25.3.
This gain was refined to a region of 468 kb with nine
probes for the WACA-corrected sample. Interestingly,
those nine probes correspond to the probes for which we
artificially simulated one aberration at 3p25.3. The second
interesting point is the perfect recovery of this last artificial
aberration for another sample (sample B, Figure 3):
whereas the artificial profile does not show any aberration,
the WACA corrected profile showed the aberration that
we simulated.

These last examples demonstrate perfectly that in
addition to greatly improving data quality, our algorithm
allows both a more precise aberration calling and the
recovering of real aberrations in noisy samples, while
false aberrations are skipped.

WACA comparison to GC-content-based and not-based
algorithm

Finally, we compared our method to the algorithm
presented by Nannya et al. (9), Song et al. (10) and Van
de Wiel et al. (11) by using 20 Belgian tumor profiles
extracted from this last study. We used these data and
applied our algorithm (WACA) and theirs (in the order,
CNAG, MA2C and NoWaves) and computed as
described above the SDe and DLRS correction efficiencies
(Table 2). Although we reached a better mean efficiency
correction for WACA (17.09±6.04% for SDe,
5.41±4.47% for DLRS) compared to CNAG
(1.24±0.76% for SDe, �1.46±1.51% for DLRS) and
MA2C (0.47±0.34% for SDe, �0.39±0.98% for
DLRS), corrections were not significantly different when
comparing to NoWaves (14.42±7.92% for SDe,

Figure 2. Application of WACA to a noisy sample (2) Chromosomes 12 and 13 screen captures (DNAanalytics) before and after treatment with
WACA for the CLL11 sample selected as an example. Each dot represents the Log2Ratios and a moving average is also drawn. Segments are
represented by vertical lines on the right or the left of each profile, respectively showing gains and losses underlined by filled boxes. The sample’s
karyotype was [47, XX, +12, del (13)(q14.2)] as shown by the corrected profile.
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1.13±0.75% for DLRS). As illustrated in Figure 4,
we plotted one Belgian sample data (n�7276), comparing
the raw versus the NoWaves or the WACA-treated data.
This figure shows that application of both algorithms
greatly improved the quality of this noisy sample.

We also compared our algorithm to CNVmix, described
by Marioni et al. (8), by using the CLL11 sample for
which the karyotype was known. For the smallest
aberration (at chromosome 13q14.2), CNVmix let to
identify a group of 34 probes spanning 4.428Mb but
divided in 21 segments (with lost, gain and normal
status), whereas WACA allowed the detection of an
entire lost segment (75 probes spanning 4.958Mb), in
perfect concordance to the sample karyotype. Assuming
the fact that we were not able to compare both quality
improvements (for WACA and CNVmix), since CNVmix
does not provide the corrected Log2Ratios, this last test
shows that our algorithm lets a more precise aberration
calling.

DISCUSSION

We and others have noted the presence of the waves
throughout the genome in a number of aCGH data sets
but nevertheless, the mechanisms leading to these waves
are still unclear. Many methods tried to correct the effects
of these waves but did not reach our results (those
algorithms are listed in Table 3). Marioni and colleagues
(8) applied a lowess-threshold-based algorithm that does
not take into account all biases associated with GC
contents nor fragment sizes. Marioni’s paper furthermore
shows a correlation between GC content of each probe
and Log2Ratio, revealing that the GC content of huge
windows (larger than oligonucleotides probes since they
used BAC clones) can influence the wave effects.
Another team proposed a correction for single nucleotide
polymorphism (SNP) arrays based on the GC content of
the probes (10) but still do not consider the whole effect of
this GC content along the genome as we demonstrated.
Komura’s method reaches a better correction in pointing
some unreliable probes or clones, and in correcting the
Log2Ratio by the probes adjacent GC contents (17), but
still is limited to the local GC and the sizes of the
fragments. The lowess algorithm proposed by Nannya
et al. (9) takes into account only part of biological and
experimental parameters (length and GC content of the
PCR products). Some of the above parameters were
included in our method of waves correction [as the GC
content of the probes (10,17), the GC contents of
fragments (9,17), and the sizes of fragments (17)]. These
methods claimed their efficiency to extract all bias from
microarray data sets and to produce more consistent data
for analysis; however, we have shown that there was

Figure 3. Chromosome views of artificial profiles. Two samples (A and B) are shown for the following conditions (raw data, modified data and
WACA corrected modified data) for chromosome 3. CBS-detected segments are represented by vertical lines on the right of each profile, respectively,
showing gains underlined by filled rectangles. The nine modified probes are underlined across the profiles. As shown, while WACA in sample A
allows a better delimitation of the artificial aberration, our algorithm allows the recovery of the same aberration in sample B after CBS segmentation.

Table 2. Algorithm comparison on data quality improvement

efficiency (%)

WACA CNAG MA2C NoWaves

SDe
Mean 17.09 1.24 0.47 14.42
SD 6.04 0.76 0.34 7.92
T-test 1.07�10�10 6.05�10�7 6.83�10�6 1.27�10�7

DLRS
Mean 5.41 �1.46 �0.39 1.13
SD 4.47 1.51 0.98 0.75
T-test 3.19�10�5 3.84�10�4 9.23�10�2 1.94�10�6
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another bias related to the GC content of larger windows
surrounding the probes. Our method that relies on the
local GC content (of the probes and the fragment),
associated with a larger GC content (defined by

windows up to 2� 500 kb) in addition to the sizes of the
fragments, exhibits an advanced way to correct for aCGH
data, independently from the platform, from the samples
and the probe density of the arrays.

Figure 4. NoWaves and WACA comparison. Applying NoWaves methods, profiles of one of the Belgian samples (n�7276) showing raw data and
data respectively treated by NoWaves and WACA.

Table 3. Algorithms comparison

Names References Technologies Correction specification

– Komura et al. (2006) Affymetrix 10K oligonucleotides microarrays Probes and fragments GC contents and
fragments sizes

CNVmix Marioni et al. (2007) 26K BAC clones arrays Threshold based lowess
CNAG Nannya et al. (2005) Affymetrix 100K oligonucleotides arrays length and GC content of the PCR products

using quadratic regressions
MA2C Song et al. (2007) NimbleGen 400K tiling microarrays GC-content of probes
NoWaves Van de Wiel et al. (2009) Agilent custom 44K arrays Regression on a reference array set
WACA Leprêtre et al. (2010) Agilent 44 and 244K oligonucleotides arrays GC contents of probes, fragments, windows of

150 and 500 kb, and fragment sizes
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Van de Wiel et al. (11) present an interesting algorithm,
independent of the GC contents. It is a regression method
that removes the wave biases from tumor profiles, but it
implies the creation of a calibration set. Making a
calibration set for each design (for each number and
choice of probes) is a complex task because data should
contain no aberration. Amazingly, our method, which
is based on known biases, is at least as good as their
method. As they use calibration profiles, it should
mean that we identified all common biases from their
data. In this case, with all (or most of) biases identified,
using WACA and skipping the difficult task of calibration
emphasizes our method. By applying WACA, we
significantly improved the quality of the majority of our
data as illustrated by our analysis and examples.
Furthermore, one of these examples illustrates clearly
that multiple corrections are necessary to overcome all
biases since correction with part of the biases could
allow false aberrations. The application of WACA to
the CLL11 sample strikingly demonstrates the utility
of WACA for array data correction. This further
illustrates that waves correction is likely to have a
significant effect on advanced data analysis in aCGH
experiments. The use of WACA to this sample clearly
shows the precision of aCGH compared to classic
cytogenetic methods, and the strong usefulness of
our algorithm in array correction: while false aberrations
are skipped, all real ones are conserved, and thus
highlighted (as also illustrated on artificial aberrations).
Hierarchical clustering analysis and application
of WACA allowed us first to have a better classification
of the five samples sets that we used, and second to show
that waves are the contribution of at last three main
causes, the GC content around each probes, the GC
content of larger windows around theses probes, with
a deep implication of the fragment sizes. We have
described the development of WACA, a novel algorithm
for noise (waves) reduction of aCGH data sets, based
on GC content and fragment size corrections, and
its implementation as a comprehensive, multiparameter
correction procedure for aCGH data. One parameter
that should be taken into account is the restriction
enzymes used in the technical procedure. Enzymatic
sites are computed from the University of California
Santa Cruz (UCSC) database and should be adapted to
each technical protocol used depending on the platform.
We build the WACA scripts with the idea that each step is
independent and thus wFragSize or wGCFrag files,
associated with the enzymatic procedure, could be
modified.

We propose WACA to be performed in CGH array
data analysis, since we proved that this algorithm
seriously increases data quality, and therefore allows
more reliable analysis. As discussed in other studies,
waves are detected in other platforms and therefore
should be modeled as we have shown for Agilent. Thus,
we emphasize to develop our algorithm to be performed
on these platforms and for other applications with DNA
hybridization such as ChIP-on-chip and DNA
methylation studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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