DNA ResearcH 17, 73-83, (2010)
Advance Access Publication: 4 February 2010

doi:10.1093 /dnares/dsq001

Aligning a New Reference Genetic Map of Lupinus angustifolius with
the Genome Sequence of the Model Legume, Lotus japonicus

Marthew N. Nelson®*, Pauta M. Moolhuijzen?, Jerrrey G. Boersma3 41, Macpatena Chudy?®,
KaroLINA Lesniewska®#, MarTrew Bellgard?, RicHaro P. Oliver®, WojciecH Swiecicki®, Bocoan Wolko®,
WacLace A. Cowling!, and Simon R. Ellwood®

School of Plant Biology and International Centre for Plant Breeding Education and Research, The University of
Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia’; Centre for Comparative Genomics, Murdoch
University, Perth, WA 6150, Australia®; School of Earth and Environment, The University of Western Australia, 35
Stirling Highway, Crawley, WA 6009, Australia®; Department of Agriculture and Food Western Australia, South
Perth, WA 6151, Australia®; Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland> and
Australian Centre for Necrotrophic Fungal Pathogens, WA State Agricultural Biotechnology Centre, Murdoch
University, Perth, WA 6150, Australia®

*To whom correspondence should be addressed. Tel. +61 8-6488-3671. Fax. +61 8-6488-1108.
Email: mnelson@plants.uwa.edu.au

Edited by Satoshi Tabata
(Received 24 November 2009; accepted 28 December 2009)

Abstract

We have developed a dense reference genetic map of Lupinus angustifolius (2n = 40) based on a set of
106 publicly available recombinant inbred lines derived from a cross between domesticated and wild par-
ental lines. The map comprised 1090 loci in 20 linkage groups and three small clusters, drawing together
data from several previous mapping publications plus almost 200 new markers, of which 63 were gene-
based markers. A total of 171 mainly gene-based, sequence-tagged site loci served as bridging points
for comparing the Lu. angustifolius genome with the genome sequence of the model legume, Lotus
japonicus via BLASTn homology searching. Comparative analysis indicated that the genomes of
Lu. angustifolius and Lo. japonicus are highly diverged structurally but with significant regions of con-
served synteny including the region of the Lu. angustifolius genome containing the pod-shatter resistance
gene, lentus. We discuss the potential of synteny analysis for identifying candidate genes for domestication
traits in Lu. angustifolius and in improving our understanding of Fabaceae genome evolution.
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evolutionary relationships, an important aspect of
which is the physical and genetic synteny (two or
more homologous loci found on a single chromo-

1. Introduction

Comparative genetics and genomics use knowledge

from different species to define important some) and collinearity (conserved linear order of
loci) between any two species that can be used to
explain chromosomal rearrangements. Synteny and
T Present address: Department of Plant collinearity have been widely studied in legumes
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(Fabaceae family), and these studies have shown
direct correspondences between evolutionary dis-
tance and the degree of synteny and collinearity.
These include whole chromosome levels of synteny
between members of the closely related Viceae'?
with successively more fractionated and rearranged
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chromosomal relationships moving out to the
Loteae,® Cicereae and Phaseoleae.*

The Lupinus genus—part of the Genistoid clade of
the Papilionoid legumes—includes a number of agri-
cultural crop species, including Lupinus angustifolius L.
(narrow-leafed lupin). The Genistoid clade is
thought to be one of the first clades to diverge from
the rest of the Papilionoid legumes about 56.4
million years ago and is quite distinct from the
other clades containing crop or pasture species.” The
Lupinus genus therefore represents a useful out-
group for understanding genome evolution within
the legume family.

Lupinus angustifolius is diploid (2n =40 chromo-
somes) with a nuclear genome size of 2C=
1.89 pg.® Cytogenetic and linkage analyses found evi-
dence of ancient polyploidy in Lu. angustifolius,®~®
but it is functionally diploid. Alignment of a low-
density genetic map of Lu. angustifolius to an early
draft genome sequence of the model legume species
Medicago truncatula revealed short regions of con-
served synteny between these highly divergent
legume species.”

Genetic map resources for Lu. angustifolius are
modest, comprising two incomplete maps,”? several
gene-tagging reports'°~'* and physical descriptions
of the chromosomes by cytogenetic approaches.'*'®
The purpose of this current study was to bring together
marker data from previous mapping studies, add
almost 200 new markers and develop a high-density
consensus reference genetic map for Lu. angustifolius
with all chromosomes richly populated with gene-
based markers. We then used this map to compare
the genome structure of Lu. angustifolius with the
recently released genome sequence of the model
legume, Lotus japonicus.'” By this approach, we hoped
to gain further insight into the evolution of
Papilionoid legumes by comparing the genomes of a
Genistoid species and a Loteae species. We also
sought to develop a resource for map alignment-
based identification of candidate genes from
Lo. japonicus for use in Lu. angustifolius genetic studies.

2. Materials and methods
2.1. Characteristics of the Lu. angustifolius mapping
population

The Lu. angustifolius recombinant inbred line (RIL)
mapping population used in this study was developed
at the Department of Agriculture and Food Western
Australia (Perth, Australia) and comprised 106 RILs
derived from a cross between a domesticated line
(breeding line 83A:476) and a wild landrace from
Morocco (P27255).” These two crossing parents dif-
fered in six major genes for key domestication traits
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used in all current Australian cultivars: Ku (early
flowering); iucundis (low seed alkaloid); tardus and
lentus (pod shatter resistance); mollis (water per-
meable seed) and leucospermus (pigmented flowers,
seeds and cotyledons, used as a visible marker to indi-
cate when undesirable cross-pollination to wild types
has occurred). Two previous mapping studies used
subsets of this population: 89 RILs were used by
Boersma et al.” and 93 RILs were used by Nelson
et al.” These studies shared 76 RILs in common,
which allowed the straightforward combining of
data sets from these previous studies.

2.2. Previously published markers

Genotyping data for 522 microsatellite-anchored
fragment length polymorphism (MFLP) loci and five
domestication genes (Ku, iucundis, lentus, mollis and leu-
cospermus) were previously reported by Boersma et al.’
The anthracnose resistance gene and linked marker
(Lanr1 and AntjM2, respectively) were reported by
Yang et al.'® and You et al.'* Genotyping at 298
mainly gene-based sequence tagged site (STS) loci,
74 amplified fragment length fragment (AFLP) loci
and five domestication genes (Ku, iucundis, lentus,
mollis and leucospermus) was reported in Nelson
et al.” A sixth domestication gene (Tardus), along with
three linked markers (TaM1, TaM2 and TaM3), was
reported by Boersma et al.'® Four further markers
tagging domestication traits (MoA, LeM1, LeM2 and
KuHM1) were reported by Boersma et al.''~'3 Six
isozyme markers were used to screen the population
using the methods of Wolko and Weeden.®'?

2.3. New PCR-based STS markers

Forty-two STS primer pairs were developed within
the framework of the 6th EU FP Grain Legumes
Integrated Project (GLIP) and were provided by the
Laboratory of Plant Genetics and Breeding at the
Agricultural Biotechnology Center, Godollo, Hungary.
The primer pairs were designed on the basis of infor-
mation on M. truncatula and Pisum sativum consensus
sequences using an intron-targeted strategy to
amplify single or low copy genes. The primer infor-
mation is available on the following website: http://
bioweb.abc.hu/cgi-mt/pisprim/pisprim.pl.

Nineteen previously unmapped Lupinus-derived STS
primer pairs based on polymorphism screening con-
ducted in previous comparative mapping studies
were used to genotype the RIL population.’*”

Two cross-legume primer pairs (PPE and SGR) were
provided by Prof. Norman Weeden (Department of
Plant Sciences and Plant Pathology at Montana State
University, Bozeman, MT, USA). The design strategy
was similar to that used for the GLIP marker gener-
ation (N. Weeden, pers. comm.).
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One BAC-end sequence tag (BEST) marker was devel-
oped from the clone 15L10 from the BAC library of Lu.
angustifolius reported by Kasprzak et al>® BAC DNA
was isolated by QIAprep Spin Miniprep Kit (Qiagen,
Doncaster, VIC, Australia) and the insert ends were
sequenced by BigDye Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems, Scoresby, VIC,
Australia) using an AB PRISM 313 0x/ Genetic Analyzer.
On the basis of the BAC-end sequence, primer pairs
were designed with aid of Primer3 software (http://
frodo.wi.mit.edu/primer3).

An improved dCAPS assay (d212Len) was devel-
oped to replace the CAPS marker 212Len reported
by Nelson et al.”

STS primer pairs from the above sources were
screened on Lu. angustifolius parental DNA. Primer
pairs showing large length polymorphisms were
used directly to genotype the RIL population.
Amplicons of primer pairs showing no visible length
polymorphisms were purified and directly sequenced.
DNA polymorphisms were identified by manual
inspection of alignments and chromatograms and
suitable SNaPshot (AB), CAPS (cleaved amplified poly-
morphic sequence) or dCAPS (derived-CAPS) assays
were developed to genotype the RIL population.

2.4. New MFLP markers

An additional 134 MFLP markers were developed
using the approach described by Boersma et al.’
Briefly, DNA from each RIL was digested by the restric-
tion enzyme Tru91 (Roche Diagnostics Australia Pty
Ltd, Kew, Australia), an isoschizomer of Msel. An AFLP
Msel-adaptor?' was ligated to the restriction frag-
ments using T4 DNA-ligase (Roche). The DNA was
then digested a second time with Hpall (Gene Works
Pty Ltd, Australia) as described by Yang et al.?* Pre-
selective amplification of fragments using the simple
sequence repeat primers listed in Supplementary
Table S1 in combination with an Msel primer with
one selective nucleotide C was followed by a second
round of amplification using 16 Msel primers having
two additional selective nucleotides (Supplementary
Table S1). The PCR products were resolved on 5%
denaturing sequencing gels and polymorphisms visu-
alized by autoradiography.””

2.5. Linkage map construction

Linkage mapping was conducted with the aid of
MultiPoint 1.2 (MultiQTL Ltd, Haifa, Israel), a
mapping software package that used the ‘evolution-
ary optimization strategy’?® to resolve locus order.
Of the 1118 marker and trait loci inputted to
MultiPoint 1.2, 16 marker loci showed severe segre-
gation distortion (x* P < 0.001). These were excluded
from further analyses due to their tendency to
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introduce false linkages into the analysis. Because a
large number of loci were included in this analysis,
moderately distorted loci (0.001 <P < 0.01) were
retained but kept under observation in the event
that they became implicated in false linkages at a
later stage.

Initial clustering into linkage groups was performed
at a maximum observable recombination frequency
(rf) of 0.10. Multipoint marker ordering was per-
formed separately for each linkage group, and the
robustness of marker order was assessed using jack-
knife re-sampling. Markers ordered with jack-knife
values >90% were considered highly robust and
designated as ‘framework’ markers. Markers ordered
with jack-knife values <90% (including redundant
markers that mapped to the same location) were
initially excluded from the map construction due to
their destabilizing effect on locus order. The same
set of procedures was carried out serially at gradually
increasing maximum recombination frequencies (rf =
0.15, 0.20, 0.25, 0.28, 0.30 and 0.31). At each new
clustering cycle, manual inspection of proposed new
clusters assisted the identification of valid and
invalid clusters. A new cluster was considered valid if
its two progenitor clusters were most closely related
to each other via their terminal loci. A new cluster
was considered invalid if its two progenitor clusters
were most closely related by non-terminal loci. Such
invalid clusters were associated with problematic loci
that showed either high degree of missing data
points and/or moderately severe segregation distor-
tion (0.001 <P<0.01) of alleles towards one of
the two founding parents of the population. Only
clusters judged valid were permitted during linkage
mapping.

Once the framework map construction was com-
pleted, the interval sizes were transformed to
account for multiple meioses involved in the develop-
ment of the RIL population and were expressed in
Kosambi centiMorgans (cM). Markers that had
earlier been removed from the map due to their
destabilizing effect on locus order (i.e. those with
jack-knife values <90%) were assigned to the most
likely intervals on the framework map and were
referred to as ‘attached” markers.

2.6. Comparison of Lu. angustifolius and Lo. japonicus
genomes

The Lo. japonicus genome sequence version 4 was
used to generate pseudomolecules representing the
six chromosomes of Lo. japonicus. The pseudomole-
cules were assembled based on the Kazusa clone
lists  (http://www.kazusa.or.jp/lotus/clonelist.html)
using custom Perl scripts (http://www.perl.org/).
Comparison of the genetic map of Lu. angustifolius
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Figure 1. Linkage map of the Lu. angustifolius genome comprising 1090 loci distributed among 20 linkage groups (NLL-01 to NLL-20) and
three small clusters (Cluster-1 to Cluster-3). Loci on the left of each linkage group are ‘framework’ markers used to construct the linkage
group. Loci on the right of each linkage group are ‘attached’ markers whose approximate location between flanking markers is shown.
Locus positions are in Kosambi centiMorgans. Major gene trait loci are shown in bold text.
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and the genome sequence of Lo. japonicus was
achieved via blastall BLASTn homology search®*?®
(at expected alignment values of 1e~2°) and visual-
ized using CMAP hosted at LegumeDB”® and
GridMap 3.0 as described by Nelson and Lydiate.?”

3. Results and discussion

3.1. A new reference map for Lu. angustifolius

The new genetic map of Lu. angustifolius comprised
1090 loci arranged in 20 linkage groups and 3 small
clusters (Fig. 1; larger scale diagrams are provided in
Supplementary Fig. S1). The genotype data and map
positions are provided in Supplementary Table S2.
The total length of the map was 2361.8 cM, with
linkage groups ranging from 69.7 to 168.1 cM.
Table 1 gives summary details of each linkage group,
including their size, the number of framework and
total markers, and the equivalent linkage groups
from the two previous maps of Lu. angustifolius
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reported by Boersma et al.” and Nelson et al.” These
two previous studies lacked both the critical marker
density and sophisticated mapping methodology of
the current mapping study, which led to significant
differences between the maps. Boersma et al’
reported 21 linkage groups, comparison with the
new map revealed that two pairs of the Boersma
et al’ linkage groups (LG13 and LG21, and LG17
and LG20) coalesced into two linkage groups in this
new map (NLL-08 and NLL-10, respectively)
(Table 1). One linkage group (NLL-12) in the new
map was entirely absent from the Boersma et al.’
map. The Nelson et al.” map had 20 linkage groups
(the same number as the current map); comparison
with the new map revealed that five linkage groups
of Nelson et al” (LGO7, LG19, LGO5, LG14 and
LG20) were illegitimately joined and were divided
among 10 of the new linkage groups (Table 1).

This newly constructed genetic map of Lu. angustifolius
involved a significantly greater number of markers
and a more sophisticated mapping approach (the

Table 1. Summary of linkage groups and small clusters for Lu. angustifolius (narrow-leafed lupin) in this study (NLL-01 to NLL-20 and
Cluster-1 to Cluster-3, respectively) and the equivalent linkage groups (LG) in two previous maps

Linkage group  Length (cM)'  Framework loci ~ Total loci®  Linkage group in Boersma et al.’ Linkage group in Nelson et al.”
NLL-01 168.1 52 94 LG1 LGO7 (top) and LG18
NLL-02 155.6 32 60 LG6 LG19 (top) and LG15
NLL-03 153.9 43 65 LG11 LG02

NLL-04 143.9 34 56 LG5 LG10

NLL-05 137.1 34 62 LG4 LG13

NLL-06 133.4 42 82 LG3 LG16 and LG14 (top)
NLL-07 121.8 40 66 LG9 LGO4

NLL-08 121.7 34 55 LG13 and LG21 LGO5 (top)

NLL-09 119.4 32 45 LG18 LG11

NLL-10 117.8 27 54 LG17 and LG20 LGO1, LG19 (bottom) and Triplet-1
NLL-T1 1129 36 78 LG2 LG06 and LG20(bottom)
NLL-12 110.2 20 31 Unlinked clusters LG09

NLL-13 102.9 25 44 LG16 LG07 (bottom) and Pair-3
NLL-14 102.9 25 36 LG15 LG14 (bottom)

NLL-15 101.6 30 42 LG12 LG17 and Triplet-2
NLL-16 100.1 17 34 LG19 LGO5 (bottom) and Pair-2
NLL-17 99.7 27 49 LG8 LGO3

NLL-18 90.8 29 45 LG14 LG12

NLL-19 85.6 22 40 LG7 LGO8

NLL-20 69.7 27 41 LG10 LG20 (top)

Cluster-1 9.5 4 5 Unlinked cluster Pair-1

Cluster-2 1.8 3 3 Unlinked cluster —

Cluster-3 1.4 2 2 Unlinked Unlinked

Unlinked — — 12

Total 2361.8 637 1101

#Framework markers were used to form the linkage groups. Total loci includes both framework and attached loci (see text

for details).
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evolutionary optimization strategy) compared with
the two previous maps. Jack-knife re-sampling was
highly effective in identifying framework markers
that were used to construct stable linkage groups
onto which lower quality (and redundant) markers
were later attached. This approach is particularly
helpful in studies where marker data have been
pooled from several sources since the quality of
marker genotyping is likely to vary due to differing
genotyping technologies and/or technical expertise.
These factors led to a greatly improved map with

Lj1 Lj2 Lj3 Lj4 L5 L6

NLL-01 " k. T ;
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Figure 2. Global distribution of synteny between 20 linkage groups
of Lu. angustifolius (NLL-01 to NLL-20) and 6 chromosomes of
Lo. japonicus (Lj1—-Lj6). Loci showing homology between the
two genomes at P < 1e~2° significance threshold are indicated
by dots.
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the number of linkage groups equalling the haploid
number for this species (n = 20).

This map cannot yet be considered saturated with
markers since 18 intervals exceed 15 cM and 1 inter-
val exceeds 20 cM (Fig. 1, Supplementary Fig. S1).
However, the marker density is ample for most
mapping purposes. Eighteen markers showing signifi-
cant (P< 0.01) segregation distortion were distribu-
ted across nine linkage groups, with the majority
(14) being dominant MFLP markers. Therefore,
these distorted loci are more likely to have arisen
from marker genotyping errors than being an indi-
cation of imbalance in the RIL mapping population.
The population of RILs used to construct this map is
available to the research community on request.
With these resources, this map can be considered
the new reference genetic map for Lu. angustifolius.

3.2. Comparing the genomes of Lu. angustifolius
and Lo. japonicus

The new genetic map of Lu. angustifolius was com-
pared with the recently released genome sequence of
the model legume Lo. japonicus.'” This was achieved
by comparing the DNA sequences of 311 STS
markers (representing 363 mapped loci in Lu. angu-
stifolius) to the genome sequence of Lo. japonicus
using BLASTn homology searching. At the significance
threshold of P< 1e2° 159 markers (detecting 187
Lu. angustifolius loci) matched one or more locations
in the Lo. japonicus genome. Seven markers
(UWA023, UWA097, UWA158, UWA160, UWA270,
UWA300 and LSSR18) representing 16 mapped loci
in Lu. angustifolius detected repetitive sequences in
the Lo. japonicus genome and were removed from
further analysis. The remaining 152 markers (repre-
senting 171 mapped loci in Lu. angustifolius) detected
one or more correspondences in the Lo. japonicus
genome. In total, there were 242 correspondences
between the two genomes, and these are plotted
graphically in Fig. 2 and summarized in Table 2.

Table 2. Numbers of Lu. angustifolius loci with BLASTn (P <
1e729) correspondences in six Lo. japonicus chromosomes (Lj1—
Lj6)

Lotus japonicus Primary All
chromosomes correspondences correspondences?®
Lj1 40 60
Lj2 36 52
Lj3 31 47
Lj4 36 44
Lj5 15 22
Lj6 13 17
Total 171 242

#Primary, secondary and tertiary BLASTn correspondences.
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Figure 3. Three Lu. angustifolius linkage groups (NLL-08, NLL-06 and NLL-12) showing conserved gene order with Lo. japonicus
chromosomes Lj2, Lj3, Lj4 and Lj5. The pod shatter resistance gene, Lentus, is located on NLL-08. Names of loci showing conserved
synteny between the genomes are shown next to the Lu. angustifolius linkage groups (scaled in Kosambi centiMorgans, cM). The
start position of homologous sequences on Lo. japonicus pseudomolecules is shown next to Lo. japonicus chromosomes (scaled in
megabases, Mb).
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Of the 120 pairwise chromosome comparisons (i.e.
20 Lu. angustifolius x 6 Lo. japonicus chromosomes),
50 had at least two correspondences (the minimum
for detecting synteny) and 34 had at least three cor-
respondences (the minimum for detecting collinear-
ity). There were clear differences in the degree of
conserved collinearity on Lu. angustifolius and Lo.
japonicus chromosomes with some regions showing
good conservation whereas other regions were
highly rearranged with respect to each other
(Fig. 2). This heterogeneous pattern of genome
collinearity was also observed in an earlier genome
comparison between Lu. angustifolius (a Genistoid
species) and M. truncatula (a Galegoid species),” and
provides additional support to the wide evolutionary
distance believed to separate the Galegoids and
Genistoids.> A similarly heterogeneous pattern was
observed between Arachis hypogea (groundnut, in
the Dalbergioid clade, which is also considered rela-
tively basal in the evolution of Papilionoid legumes)
and the Galegoid species Lo. japonicus and M. trunca-
tula.?® It is interesting to note that arguably the best
conserved section between the Arachis and Lo. japoni-
cus genomes on chromosomes Ar6 and Lj1 (synteny
block 5, delineated by contigs CM0222—-CM0105),
respectively, appears to shows no conservation in
the Lu. angustifolius genome. A more thorough analy-
sis will be required to make firm conclusions, but on
first inspection it would appear that regions of con-
served gene order may not be generalized across
wide evolutionary distance within the Papilionoid
legumes. This is in contrast to the crucifer family
where large variations in chromosome numbers
and frequent rearrangements exist, but where the
integrity of many chromosomal blocks has been
maintained over a similarly long evolutionary
timeframe.”?

Three regions showing relatively good conserva-
tion of locus order between Lu. angustifolius and
Lo. japonicus are shown in Fig. 3. Even these rela-
tively well-conserved regions show evidence of
chromosome translocations and/or inversions,
which will make exploitation of synteny by lupin
researchers more difficult. One of the potential
applications of synteny is map alignment-based
identification of candidate genes for important
traits in the crop species by searching for likely can-
didates in the equivalent region of the model
genome. For example, the pod shatter resistance
gene lentus is located on Lu. angustifolius linkage
group NLL-08 in a region with relatively well-con-
served gene order with Lo. japonicus chromosome
5 (Fig. 3). Unfortunately, there appears to be an
inversion in the interval containing lentus such
that the equivalent region of Lo. japonicus is some-
what ambiguous and is only delimited to the
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lower half of chromosome 5. Clearly, more bridging
points will be required to make such map-based
inferences in Lu. angustifolius using Lo. japonicus as
a model genome and therefore more gene-based
markers are required in Lu. angustifolius.

In conclusion, we present a high-resolution refer-
ence map for Lu. angustifolius which will serve as a
shared resource for the legume genetic community.
We discovered that the Lu. angustifolius genome has
numerous chromosomal rearrangements relative to
the Lo. japonicus genome, though widespread but
small sections of conserved gene order are present.
As an outlying species compared with other legume
model and crop species, Lu. angustifolius serves as a
useful reference for gaining better understanding of
legume genome evolution.
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