Table 1.
Window size | Kernel parameters | Thr* | Sen (%) | Spe (%) | Acc (%) | MCC |
---|---|---|---|---|---|---|
3 | t 2 g 0.1 j 1 c 1 | 0 | 63.41 | 61.27 | 62.34 | 0.25 |
5 | t 2 g 0.1 j 1 c 1 | 0 | 64.46 | 65.13 | 64.79 | 0.3 |
7 | t 2 g 0.1 j 1 c 1 | 0 | 67.98 | 66.83 | 67.4 | 0.35 |
9 | t 2 g 0.1 j 1 c 1 | 0 | 69.09 | 69.32 | 69.21 | 0.38 |
11 | t 2 g 0.1 j 1 c 1 | 0 | 69.7 | 71.37 | 70.54 | 0.41 |
13 | t 2 g 0.1 j 1 c 10 | 0 | 70.81 | 72.78 | 71.79 | 0.44 |
15 | t 2 g 0.1 j 1 c 10 | 0 | 71.56 | 73.89 | 72.73 | 0.45 |
17 | t 1 d 3 | -0.2 | 70.28 | 76.89 | 74.13 | 0.47 |
19 | t 2 g 0.1 j 1 c 100 | 0 | 71.27 | 72.49 | 71.88 | 0.44 |
21 | t 2 g 0.1 j 1 c 10 | 0 | 70.81 | 73.68 | 72.24 | 0.45 |
*(Thr- Threshold, Sen - Sensitivity, Spe - Specificity, Acc - Accuracy, MCC - Matthew's correlation coefficient)
SVM models were trained and tested on a dataset having equal number of positive and negative data. Bold font shows the performance and parameters of selected SVM model.