Skip to main content
. 2010 Mar 30;11:160. doi: 10.1186/1471-2105-11-160

Table 1.

Performance of SVM model developed using amino acid sequence (binary pattern) at different window lengths.

Window size Kernel parameters Thr* Sen (%) Spe (%) Acc (%) MCC
3 t 2 g 0.1 j 1 c 1 0 63.41 61.27 62.34 0.25
5 t 2 g 0.1 j 1 c 1 0 64.46 65.13 64.79 0.3
7 t 2 g 0.1 j 1 c 1 0 67.98 66.83 67.4 0.35
9 t 2 g 0.1 j 1 c 1 0 69.09 69.32 69.21 0.38
11 t 2 g 0.1 j 1 c 1 0 69.7 71.37 70.54 0.41
13 t 2 g 0.1 j 1 c 10 0 70.81 72.78 71.79 0.44
15 t 2 g 0.1 j 1 c 10 0 71.56 73.89 72.73 0.45
17 t 1 d 3 -0.2 70.28 76.89 74.13 0.47
19 t 2 g 0.1 j 1 c 100 0 71.27 72.49 71.88 0.44
21 t 2 g 0.1 j 1 c 10 0 70.81 73.68 72.24 0.45

*(Thr- Threshold, Sen - Sensitivity, Spe - Specificity, Acc - Accuracy, MCC - Matthew's correlation coefficient)

SVM models were trained and tested on a dataset having equal number of positive and negative data. Bold font shows the performance and parameters of selected SVM model.