Table 2.
Window size | Kernel parameters | Thr* | Sen (%) | Spe (%) | Acc (%) | MCC |
---|---|---|---|---|---|---|
3 | t 2 g 1.0 j 1 c 10 | 0 | 83.26 | 82.61 | 82.93 | 0.66 |
5 | t 2 g 1.0 j 1 c 10 | 0 | 82.59 | 87.51 | 85.05 | 0.7 |
7 | t 2 g 0.1 j 1 c 10 | 0 | 82.39 | 84.67 | 83.53 | 0.67 |
9 | t 2 g 0.1 j 1 c 10 | 0 | 84.18 | 86.13 | 85.16 | 0.7 |
11 | t 2 g 0.1 j 1 c 10 | 0 | 85.28 | 86.25 | 85.77 | 0.72 |
13 | t 2 g 0.1 j 1 c 10 | 0 | 85.7 | 86.52 | 86.11 | 0.72 |
15 | t 2 g 0.1 j 1 c 10 | 0 | 85.36 | 86.31 | 85.84 | 0.72 |
17 | t 2 g 0.1 j 1 c 10 | 0 | 83.69 | 87.99 | 85.84 | 0.72 |
19 | t 2 g 0.1 j 1 c 10 | 0 | 86.13 | 88.37 | 87.25 | 0.75 |
21 | t 2 g 0.1 j 1 c 10 | 0 | 85.52 | 87.33 | 86.43 | 0.73 |
SVM models were trained and tested on a dataset having equal number of positive and negative data. Bold font shows the performance and parameters of selected SVM model.