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Abstract

Background: The objective was to study if an association exists between the incidence of malaria and some
weather parameters in tropical Maputo province, Mozambique.

Methods: A Bayesian hierarchical model to malaria count data aggregated at district level over a two years period
is formulated. This model made it possible to account for spatial area variations. The model was extended to
include environmental covariates temperature and rainfall. Study period was then divided into two climate
conditions: rainy and dry seasons. The incidences of malaria between the two seasons were compared. Parameter
estimation and inference were carried out using MCMC simulation techniques based on Poisson variation. Model
comparisons are made using DIC.

Results: For winter season, in 2001 the temperature covariate with estimated value of -8.88 shows no association
to malaria incidence. In year 2002, the parameter estimation of the same covariate resulted in 5.498 of positive
level of association. In both years rainfall covariate determines no dependency to malaria incidence. Malaria
transmission is higher in wet season with both covariates positively related to malaria with posterior means 1.99
and 2.83 in year 2001. For 2002 only temperature is associated to malaria incidence with estimated value 2.23.

Conclusions: The incidence of malaria in year 2001, presents an independent spatial pattern for temperature in
summer and for rainfall in winter seasons respectively. In year 2002 temperature determines the spatial pattern of
malaria incidence in the region. Temperature influences the model in cases where both covariates are introduced
in winter and summer season. Its influence is extended to the summer model with temperature covariate only. It is
reasonable to state that with the occurrence of high temperatures, malaria incidence had certainly escalated in this
year.

Background
Malaria is the primary cause of mortality in Mozambi-
que, resulting in an estimated 44,000-67,000 malaria-
specific deaths each year for all age groups [1]. Trans-
mission intensity varies from region to region, with high
incidence in areas where climatic conditions are favour-
able towards its development and transmission, whereas
some drier parts of the country are epidemic-prone.
About six million reported cases of malaria are
accounted every year, with 44% of all outpatient consul-
tations and 65% of all paediatric hospital admissions. It

is the leading cause of death among children admitted
to paediatric services in Mozambique, with figures of
32% in year 1998, 42% in year 1999 and 40% in year
2000. Malaria is also a major problem affecting pregnant
women in rural areas (like Maputo province), with para-
sites infection rates of around 20% and a level of 30%
among first pregnancies [1,2]. Health coverage is very
low in the country, with 56% of population being over
an hour away from the nearest health centre. In rural
areas the figure is higher (72%) than in urban areas
(14%). On the other hand, the level of Plasmodium falci-
parum resistance to drugs like chloroquine has been
reported throughout most of the country [3-5]. Cur-
rently health authorities have dropped its use in the
country.
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A number of studies modelling the spatial distribution
of malaria and other tropical diseases in Africa using
environmental data have adopted Bayesian approach
[6-9]. The flexibility and robustness provided by Baye-
sian methods has led to the increase of applications on
disease mapping, spatial statistics and decision-making
[10]. These methods can incorporate spatial correlation
and the uncertainty into modelling process is achieved
by modelling the observed data and any unknown para-
meter as random variables. Although Bayesian methods
were initially derived for use in small-area analyses of
chronic non-infectious disease [10], recently they have
been used in the studies of geographical distribution of
malaria [11] and other tropical diseases. Geographic
modelling of malaria distribution is central for under-
standing spatial and and/or spatio-temporal patterns
that may help to identify discrepancies in disease burden
among different districts in Mozambique. These pat-
terns often reflect a composition of human host factors,
heterogeneities in vector distribution and human-vector
contact [12]. The capability of uncertainty assessment
within the Bayesian approach has increased its usage in
all aspects of disease mapping. Estimates of uncertainty
obtained as model outputs are easily included in the
map production in relation to malaria disease control
strategy, as to facilitate a strategy based on geographic
risk stratification. This may allow for more informed
and objective decision making from disease control pro-
gramme managers. A more detailed knowledge of
malaria incidence risk in the region may also serve as a
basis for an increase of health service provision and
improved targeted malaria control. While spatial analyti-
cal methods are regarded as an attractive research objec-
tive [9], they have been rarely applied in context of
district geographical health analyses in Mozambique,
especially as tools for enhanced planning and implemen-
tation of disease control programmes.
The aim of this study was to conduct a spatial statisti-

cal analysis of malaria incidence to identify important
predictor variables and to produce a malaria distribution
map of Maputo province, illustrating the variation in
malaria risk. It is thus investigated whether there is any
association between malaria incidence and environmen-
tal variables, temperature and rainfall in the region.

Methods
Study area
Maputo province (study region) has an area of 23,669
km2. Its boundaries are Gaza province to the north,
South Africa to the south, Swaziland to the west and
Indian Ocean to the east. With population size of
around 900,000 people, the province exhibits a density
of 44 inhabitants per square kilometres [2]. It is sub-
divided into eight administrative districts. Figure 1,

shows the Mozambique location map highlighting the
study area - Maputo province. It is composed of the dis-
tricts of Magude, Moamba, Manhiça, Marracuene,
Matola, Boane, Namaacha and Matutuine.
The regional health network comprises 92 health facil-

ities [2]. Of these, three are rural district hospitals, 23-50
health posts located at small rural administrative areas
within the province, which offer very basic health service
to their community, and a set of health centres.

Data
Cases of malaria are scrutinized daily in various health
centres and rural hospitals and gathered together with
other diseases occurrences to produce the BES, and
then summarized into annual reports. The cases thus
aggregated as counts of disease events are channelled to
NMCP where are centralized by district within Maputo
province [1]. This study covers data from years 2001
and 2002. They included cases confirmed either by a
microscopy or by a rapid (inexpensive) diagnostic test,
and also unconfirmed cases with symptoms similar to
malaria diagnosed by health-trained personnel (clinical
malaria cases). The spatial crude incidence density map
of malaria for years 2001 and 2002 in Maputo province
is illustrated in Figures 2 and 3 respectively.
The Mozambique tropical to sub-tropical climate is

divided into the dry (winter) and rainy (summer) seasons,
with Maputo province being sub-tropical. Summer season
goes from October to March, while the winter lasts from
April to September. Two years climatic data, monthly
averages maximum temperature and rainfall were obtained
from INAM and used as covariates. These data are read
twice daily at the Benfica meteorological station in
Maputo city. They are accumulated per month and aver-
age values calculated to yield a monthly weather bulletin.
Rainfall in the study region is highly seasonal, with highest
values of 290.9 mm and 184.8 mm in November 2001 and
January 2002 respectively (Figure 4). Low amounts of rain
were reported in months June to September in both years.
The air temperature reaches peak values in January-March
and December, with low values in June-July in both years
(Figure 5). Moreover, it is known that malaria vector does
not develop at low temperatures similar to those that
occur in some regions of Maputo province in the dry sea-
son, due to many reasons including reduction of breeding
pools. This may contribute to the reduction of malaria
incidence levels. On the other hand, the available malaria
data does not capture this seasonality. Thus, the use of
stratification is a way to examine the characteristics of the
incidence of malaria in each season.

Modelling
Malaria distribution is governed by a set of factors relat-
ing the parasite, the vector and the human host [13].
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Environmental and climatic factors are among the most
important particularly, temperature, rain precipitation,
humidity, vegetation, stationary water pools and human-
vector interaction, as they affect the habitat and vector
breeding sites. Monthly maximum temperature and
rainfall climatic data were used for modelling and map-
ping malaria incidence risk. To analyse the relationship
between environmental factors and malaria cases, a
Poisson model in Statistical Package R [14] was fitted.
Both covariates showed a significant association with
malaria cases with P < 0.001. Climatic data is aggregated
into seasonal averages and are separately modelled for
each year. This resulted in two seasonal dependent
models for each year.
Let’s sub-divide the geographic domain of Maputo

province into i = 1,..., m distinct districts (m = 8), and

denote the observed number of malaria cases as Oi with
the corresponding expected number of cases Ei

Expected counts are calculated by multiplying the dis-
trict population density by the country malaria mortality
reference rate (WHO and UNICEF) chosen from the
reference population, i.e. Ei = Pi * R where Pi and R are
district population density and mortality reference rate
respectively. Reference population is chosen to be
infants between 0 - 4 years of age because they lack
parasite immunity thus being the most vulnerable por-
tion of population. Conditional on i the counts Oi of
individual regions follow a Poisson distribution yielding
stochastic variables with distribution Oi ~ Pois(Eiμi) (1),
where μi is the area specific risk rate.
The relative risk parameter μi is assigned a log-normal

prior distribution where the mean and variance are

Figure 1 Mozambique map provided by [20], with an indication of study region (Maputo province).
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defined as a linear function of common intercept term a
and two independent random effects. The term ui repre-
sents the correlated heterogeneity reflecting local spatial
structure by incorporating the influence of neighbouring
geographic areas, and vi is the uncorrelated heterogene-
ity that does not depend on geographic location
(exchangeable). Prior distributions are assigned to these
linear terms and hyper-prior distributions assigned to
variance terms, creating additional 3-levels of the hierar-
chy where the first is (1) above, as follows:
Level 2: log μi = a + ui +vi (2).
The inclusion of environmental covariates temperature

and rainfall into (2) yields the model,
log   i k ki i ik

X u v    1

2 , where i = 1,..., m
(2.1).
Xki = (xk1,..., xkm) - is the ecological vector of covari-

ates, and b is a vector of regression coefficients b = (b1,
b2), with b1 the maximal temperature and b2 the rainfall

quantity coefficients respectively. This model belongs to
a class of models generally known as convolution regres-
sion models.
Level 3: Intercept term a is assigned a flat prior and

non-informative prior distribution bk ~ N(0.0,1.0E - 05)
is assigned to regression coefficients with high variance.
Excess heterogeneity vi is modelled through a set of
exchangeable priors with zero mean and variance  v

2

given by, v Ni v~ ( , )0 2 (3).
A Conditional Autoregressive CAR (1) model

proposed by [15] is used, where

[ | , , ] ~ ( , )u u i j N ui j u i i  2 2 (4). The term ui

u jwijj
wijj





is the weighted mean of the distribution, and

 
i

u
wijj

2
2

 
the variance. The contiguity values wij = 1

for districts i and j that are adjacent (i.e. neighbours),

Figure 2 Crude incidence density of malaria in year 2001.
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and wij = 0 otherwise. Parameters  v
2 and  u

2 are used

to control the variability of spatial effects. Inverse
Gamma prior distribution specified to all the variance
parameters, with shape a = 0.5 and scale b = 0.0005.
The model was fitted in Winbugs [16], with Geobugs

used for mapping the resulting posterior distribution of
the RR estimated parameters. To speed up convergence,
the model was re-parameterized by centring the covari-
ates on their mean and divided by the corresponding
standard deviation. Two parallel chains were run with
over-dispersed starting values that were a combination
of posterior means from a trial run for each year [17]. A
burn-in of 1,000 interactions followed by 200,000

interactions was allowed and the values of main para-
meters were stored. Convergence of stored variables was
checked through the analysis of the Brooks, Gelman and
Rubin statistics [18], and by visual examination of his-
tory and density plots. The level of autocorrelation in
chains was verified by using the built-in autocorrelation
function of Winbugs. The intercept and covariate coeffi-
cients were still auto-correlated with first lag values
around 0.75-0.90. To reduce the level of autocorrelation
thinning was performed. A further 100 000 interactions
were then run to collect the posterior distribution of
each parameter. This number of interactions had been
determined to fully describe the posterior distributions

Figure 3 Crude incidence density of malaria in year 2002.
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as the ratio Monte Carlo error and standard deviation
was found to be less than 0.05 for all parameters. DIC
statistic was calculated for the following Bayesian mod-
els (where random effects were included):

• With and without covariates;
• With either one of covariates.

This led to determining whether the fit of the model
was affected by addition or suppression of covariates.

Results
The inference is based on a sample of around 900,000
malaria cases observed in two years. Table 1 illustrates

the overall mean relative risk (i.e. the baseline malaria
intercept), the median malaria distribution and also the
lower and upper posterior interval limits in the fully
model version (all covariates).
Posterior estimates and credibility intervals of the

parameters are presented in table 2 and table 3. In sum-
mer season of both years, the rainfall covariate is not
associated with malaria incidence in the model where it
is considered the only covariate. While temperature is
associated to malaria incidence in all the models it is
included. In the dry season of year 2001, the tempera-
ture is not associated to malaria incidence in the model
with both covariates. However, it is associated to malaria
in the model with temperature covariate. Rainfall is

Figure 4 Monthly rain precipitation in Maputo province.

Figure 5 Average maximum temperature in Maputo province.
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Table 1 Baseline malaria intercept, median and 95%CI for year and season in Maputo province

Year and season Mean Lower limit (2.50%) Median Upper limit (97.50%)

2001 - Rainy/Summer 0.2286 0.009099 0.1516 0.6998

2001 - Dry/Winter 0.7513 9.63E-04 0.2329 5.646

2002 - Rainy/Summer 0.03168 6.83-E-04 0.0143 0.1307

2002 - Dry/Winter 0.7903 0.08158 0.487 3.028

Table 2 Posterior estimates of regression coefficients and variances of random effects of different models for winter

Model Alpha Beta[1] Beta[2] Variance U Variance V DIC

Year 2001

No covariates 1.11
(0.79, 1.43)

- - 0.0035
(2.1E-04, 1.37)

0.19
(7.6E-04,0.699)

106.9

Temperature covariate 3.53
(1.22,6.12)

3.54
(0.27, 7.38)

- 0.0038
(2.14E-04, 1.4)

0.191
(7.6E-04, 0.69)

106.9

Rainfall covariate 3.8
(1.32, 6.27)

- 4.12
(0.32, 7.95)

0.0034
(2.1E-04, 1.34)

0.195
(8.7E-04, 0.71)

106.9

Both covariates -1.46
(-6.95,1.73)

-8.88
(-18.99,-3.33)

2.25
(-2.58,17.7)

0.0044
(2.1E- 04,1.51)

0.183
(5.93E-04,0.69)

106.9

Year 2002

No covariates 1.33
(1.02, 1.61)

- - 0.0089
(2.3E-04,1.72)

0.18
(4.2E-04,0.72)

106.8

Temperature covariate 2.22
(-1.75,5.67)

-2.42
(-16.3, 11.7)

- 0.009
(2.2E-04, 1.75)

0.185
(4.0E-04, 0.77)

106.9

Rainfall Covariate 3.32
(-0.79, 7.11)

- 4.11
(-4.27,11.6)

0.078
(2.5E-04, 2.1)

0.133
(3.0E-04, 0.78)

106.9

Both covariates -0.719
(-2.51, 1.11)

5.498 (0.696,12.2) -0.223
(-6.26,4.06)

0.282
(2.7E-04, 2.04)

0.089
(2.9E-04,0.638)

106.8

Beta [1] - temperature and Beta [2] - rainfall. Credibility intervals at 95% in brackets

Table 3 Posterior estimates of regression coefficients and variances of random effects of different models for summer

Model Alpha Beta[1] Beta[2] Variance U Variance V DIC

Year 2001

No covariates 1.12
(0.82, 1.47)

- - 0.0042
(2.2E-04, 1.62)

0.18
(5.4E-04,0.67)

112.5

Temperature covariate 1.12
(-2.16, 3.81)

0.014
(-3.94,4.69)

- 0.0042
(2.1E-04, 1.48)

0.182
(6.1E-04, 0.67)

112.3

Rainfall covariate 1.62
(-1.15, 5.36)

- -0.851
(-6.54,3.28)

0.0048
(2.2E-04, 1.54)

0.18
(5.57E-04,0.67)

112.5

Both covariates -1.89
(-4.7, -0.36)

1.99
(0.56,4.13)

2.83
(0.39, 5.04)

0.0036
(2.1E-04, 1.35)

0.192
(8.83E-04,0.69)

112.4

Year 2002

No covariates 1.34
(1.11, 1.65)

- - 0.0052
(2.2E-04, 1.49)

0.196
(5.6E-04,0.72)

112.3

Temperature covariate -2.23
(-5.22,0.99)

1.62
(0.18, 2.97)

- 0.027
(2.48E-04,1.78)

0.16
(3.58E-04,0.68)

112.4

Rainfall Covariate 1.73
(-1.27, 4.58)

- -0.999
(-10.6, 8.8)

0.0072
(2.3E-04,1.73)

0.184
(3.71E-04,0.71)

112.4

Both covariates -4.25
(-7.29,-2.04)

2.23
(1.46, 2.85)

4.71
(-3.54,11.3)

0.034
(2.4E-04,1.93)

0.143
(3.4E-04,0.679)

112.4

Beta [1] - temperature and Beta [2] - rainfall. Credibility intervals at 95% in brackets
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associated to malaria incidence in the models with both
covariates and with rain only. For year 2002, tempera-
ture is not associated with malaria incidence in the
model of temperature covariate and the rainfall is not
associated in model with both covariates. The rainfall
environmental factor however, is associated with malaria
in the model with rainfall covariate, while temperature
is associated in the model with both covariates.
The results of model comparison for summer 2001

showed that the spatial model with temperature only
had relatively small DIC value, being the model which
best fit the data. In winter 2001, all models had the
same DIC value. In this case the simplest model, i.e. the
spatial model with no covariates is chosen. The esti-
mates and CI 95% of random effects in all the models
are very similar.
In winter 2002 the results of model comparison

showed that models with no covariate and with both
covariates had small DIC value. The variation of
malaria incidence due to structured random effect
obtained in the spatial model with both covariates is
higher compared to model with no covariate. While
for the unstructured random effect the estimates and
CI 95% are very similar. Model comparison for sum-
mer 2002 showed that the spatial model with no cov-
ariates is the best-fit model as it had smaller DIC
value of all. However, the spatial variation of unstruc-
tured random effect in model with no covariates
(0.196, CI 95%: [5.6E-04, 0.72]) is very similar to the
variance of the model with both covariates (0.143, CI
95%: [3.4E-04, 0.679]). To illustrate the mapped spatial
malaria incidence risk and variation of random effects,
see additional files:

• Additional file 1: Year 2001- both seasons
• Additional file 2: Winter 2002
• Additional file 3: Summer 2002

The results of spatial pattern of malaria incidence risk
in 2001 show no seasonal variation of RR, where the
highest incidence rate is from 4.6 to 5.9 cases per 1,000
population year in north districts of Magude and
Moamba. Low incidence rate ranges from 1.5 to 1.9 in
Matola in the centre and Matutuine in the south. For
year 2002 the geographic pattern of RR in both seasons
is over 1.9 cases per 1,000 population year with the
highest value of 9.5 in district of Matola.

Discussion
The objective of this investigation was to determine the
association of malaria incidence with environmental
variables temperature and rainfall in Maputo province,
and mapping this variation. The study used yearly aggre-
gated malaria data by district level and additional

climate data sources to access the role of climate.
Malaria incidence occurs in distinct seasons and the
level of epidemics varies alternating from low to high
incidence periods. To capture this pattern an assump-
tion about malaria data distribution for each year was
made. This assumption has yielded two sub-models per
year, following climate seasonality of Mozambique: win-
ter (dry) season in months of April-September and sum-
mer (wet) season in months October-March.
The results of the analysis confirm that the malaria

cases in Maputo province were significantly associated
with climate variables. The climate seasonal variation
influences malaria incidence but does not significantly
modify its spatial patterns.
Results from summer 2001 show that malaria inci-

dence was strongly and positively correlated with tem-
perature. For year 2002, malaria incidence was found to
be associated with both rainfall and temperature. Similar
results were found for winter 2002 season, with tem-
perature strongly correlated to malaria incidence.
Although the analysis has revealed association of malaria
to rainfall only in year 2002 (summer), this may be mis-
leading as there could be some undetermined relation-
ships such as increase in stable mosquitoes breeding
sites under low or non-existent rainfall. The average
value of 26°C of maximum temperature in year 2001
may have accelerated the parasite development. More-
over, the study in [19] found that the most significant
variables to malaria transmission in KwaZulu-Natal,
South Africa were mean maximum daily temperature of
the preceding months and rainfall of corresponding
summer season. They suggest that the survival rate of
mosquitoes or the size of parasite’s reservoir could be
determined by the temperature in the preceding rainy
season. This would consequently make an increase in
malaria incidence more likely on the following rains
onset. The results obtained in this study agree with [7]
regarding positive association of malaria incidence with
rainfall, without adjusting however for the covariate
maximum temperature.
Covariates temperature and rainfall do not explain all

the variability present in the malaria data as there is
overdispersion that is captured by regional structured
and unstructured random effects. This can be seen on
variation of structured and unstructured effects with
values (0.0036 CI 95%: [2.1E-04, 1.35]) and (0.19 CI
95%: [8.83-E-04, 0.69]) in summer 2001, and also in
winter 2002 with results (0.282 CI 95%: [2.6E-04, 2.04])
and (0.089 CI 95% [2.9E-04, 0.638]) respectively.
Produced maps illustrate spatial variation of malaria

incidence, being different from climatic suitability model
maps [15]. Their objective is to represent an empirical
description of Malaria RR in Maputo province. They
identify high malaria RR in districts of Matola over 6.9,
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Moamba over 5.9 and Magude over 4.9 in 1000 popula-
tion year. Areas with medium RR are Boane and Man-
hiça with value over 2.9. Districts found to exhibit low
malaria risk are Marracuene, Matutuine and Namaacha.
The analysis performed is expected to be of help to

malaria control programmes on:

1. Identifying the areas where intervention may be
required and perhaps which will be most appropriate
(house-spraying, ITN usage, etc.)
2. Encouragement and improvement of malaria test-
ing procedure/diagnostic of the disease. This may
improve a systematic data collection and notification
of malaria cases, reducing overestimation specially
from clinically diagnosed cases
3. Improvement of decision-making process specially
through the increase of feedback information to dis-
trict level which will also encourage improved
reporting
4. Awakening to the need for malaria environmental
control by fighting the mosquito larvae
5. If needed, adjust treatment with most appropriate
and modern drugs
6. Designing and implementation of emergency
responses

Due to unavailability of surveillance malaria system in
Mozambique, climate forecasts become important as it
offers an acceptable degree of predictability of climate
fluctuations at a seasonal lead time. Studies like this
have great potential as they may help proof this
hypothesis.

Conclusions
Using yearly collected data from different health centres
in each district, the linkage between malaria incidence
and environmental data was investigated in Maputo pro-
vince. The model made it possible to analyse the way
malaria data cases arose under climate conditions that
occurred, highlighting their crucial relationship.
Malaria incidence in Maputo province does not pre-

sent an independent spatial pattern in relation to the
seasonal climatic conditions in years 2001 and 2002.
The change in any of the climatic variable has lead to a
corresponding modification of incidence of malaria and
its spatial pattern in the region. These findings may be
useful for the planning of malaria control activities, as
they may induce the design and implementation of
more reliable malaria policy and intervention in the
region.
Estimation of explanatory coefficients of the model

indicated that temperature had a strong impact on
malaria incidence in the region.

Although the climatic factors were assumed constant
over the whole area and for each season, the study
reveals the importance of spatial analysis in the research
of interactions of tropical disease as malaria and the two
environmental factors, rainfall and temperature in
Maputo province. Furthermore, the investigation of
associations of malaria incidence risk and environmental
climatic factors in Maputo province and Mozambique is
very important as it may bring more knowledge on the
epidemiology distribution map of malaria. However,
there remain some unmeasured factors that might relate
to malaria incidence in Maputo province (type of hous-
ing, proximity to water bodies, etc.), which were cap-
tured in the model by structured and unstructured
effects.
Studies that look at the relationship of malaria inci-

dence and environmental variables in Maputo province
are significant step towards the development of local
surveillance malaria systems. They should be extended
to the analysis of large malaria, climate and other data-
sets, and also include a temporal dimension.

Additional file 1: Contains 2001 maps of RR, structured and
unstructured random effects for both seasons.

Additional file 2: Contains 2002 maps of RR, structured and
unstructured random effects winter season.

Additional file 3: Contains 2002 maps of RR, structured and
unstructured random effects for summer season.
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