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Abstract
Optical sensing platforms based on anti-resonant reflecting optical waveguides (ARROWs) with
hollow cores have been used for bioanalysis and atomic spectroscopy. These integrated platforms
require that hollow waveguides interface with standard solid waveguides on the substrate to couple
light into and out of test media. Previous designs required light at these interfaces to pass through
the anti-resonant layers. We present a new ARROW design which coats the top and sides of the
hollow core with only SiO2, allowing for high interface transmission between solid and hollow
waveguides. The improvement in interface transmission with this design is demonstrated
experimentally and increases from 35% to 79%. Given these parameters, higher optical throughputs
are possible using single SiO2 coatings when hollow waveguides are shorter than 5.8 mm.

1. Introduction
Hollow waveguides are interesting in the field of integrated optics because they allow for light
guiding in low index media. Because light guiding does not rely on total internal reflection,
hollow waveguides can be filled with water (n=1.33) or air (n=1.0), expanding the possibilities
of studies in chemistry, biology, and physics. Some of the applications for which hollow
waveguides are best suited include spectroscopy and labs-on-a-chip. Hollow waveguides have
been created using Teflon AF [1,2], nanoporous waveguides [3], photonic crystals [4,5], and
Bragg waveguides [6]. However, all of these approaches present difficulties to planar
integration based on standard silicon processing, which is appealing because of lower
fabrication costs.

Anti-resonant reflecting optical waveguides (ARROWs) were recently introduced as an
attractive approach to realizing hollow waveguides [7,8]. Solid-core ARROWs were first
demonstrated by Duguay and are made by surrounding a guiding core with layers of different
refractive indexes and thicknesses determined by the anti-resonance condition [9].

We fabricate hollow ARROW waveguides by surrounding a sacrificial core with ARROW
layers of silicon nitride (SiN) and silicon dioxide (SiO2), and all steps are based on standard
silicon processing techniques [10]. We have previously demonstrated ARROW based sensing
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platforms, such as the one shown in Fig. 1, used for single particle and molecule detection,
manipulation, and analysis in sub-picoliter volumes [11].

In order to make larger-scale integrated networks of hollow ARROW waveguides for labs-on-
a-chip, the total optical throughput from one edge of the chip to the other must be improved.
In this paper, we present a new ARROW design which simplifies design and fabrication,
resulting in consistently high optical transmission. This paper will discuss the design,
fabrication, and experimentally determined loss of this new design.

2. Transmission through ARROW based chips
One metric to characterize ARROW based chips is edge to edge throughput, T. Transmission
through an ARROW based chip is determined by several loss mechanisms, as shown in Fig.
2(a). First, light from an optical fiber must be coupled into a standard solid waveguide at the
edge of the chip. The modes in the round core of the fiber do not perfectly match the modes
supported by the solid waveguide, and the edge coupling efficiency, κe1, accounts for this.

The second loss mechanism is the propagation loss in the solid-core waveguide, αs. Additional
loss occurs at the interface between solid and hollow waveguides, quantified by the interface
coupling efficiency, κi. Finally, the hollow-core waveguide has its own propagation loss, αh.
For edge-to-edge throughput, the hollow-to-solid interface loss, the solid-core loss, and the
coupling loss on the far side of the chip, κe2, must also be included. Since an objective is used
to collect the output, κe2 ≈ 0.96 for a good-quality facet. The total throughput is given by Eq.
(1) where ls and lh are the total lengths of the solid- and hollow-core waveguides, respectively.

(1)

We attribute αs to material absorption and light scattering due to waveguide roughness, and
κe1 depends primarily on cleaved facet quality and mode mismatch. In terms of waveguide
design, the most promising areas for increasing throughput are reducing αh and increasing κi.
Design variations to reduce αh have been discussed previously [12]. In theory, design
optimization is also possible to create solid-to-hollow interfaces with κi ≈ 1 [13]. In practice,
however, κi has been much lower for several reasons. First, it is difficult to achieve perfect
mode coupling because of mode mismatch. Horizontal alignment of the solid and hollow cores
is achieved through lithography and is limited by alignment tolerances of approximately 1
μm. For a regular ARROW transition, the mode centers in the solid and hollow cores are
vertically aligned, but the modes are mismatched because of the additional ARROW layers
below the solid core, as shown in Fig. 2(a). Second, the interface geometry contributes to the
interface loss. Any roughness on the sacrificial core sidewall will increase the interface loss
due to scattering, and any slant of the sidewall will increase the loss from the ideal, normal-
interface case. Finally, the inherent roughness and non-idealities of the PECVD ARROW
layers themselves contribute to the interface loss. As discussed previously, PECVD layers
unevenly coat the vertical and horizontal surfaces of the rectangular sacrificial core, leading
to thickness variations in the vertical ARROW layers at the interface [12], which make it very
difficult to achieve the ideal of κi = 1.

3. Single over-coating (SOC) ARROW
In order to eliminate the dependence on layer thickness fluctuations introduced by the
fabrication process, the top ARROW layers can be removed and replaced with a single over-
coating. Such a structure, shown in Fig. 2(b), would allow for light to pass directly from the
solid waveguide to the hollow core of the ARROW waveguide. Assuming ideal geometries,
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materials, and mode coupling at the interface, the transmission from solid to hollow waveguides
for this structure can be as high as 99.8% for a SiO2 top layer with a water-filled core, as
predicted by the Fresnel transmission coefficient with the normal incidence approximation.
This is close to ideal and much less dependent on fabrication variations than the regular
ARROW design. This design also improves mode coupling efficiency at the interface because
eliminating the top ARROW layers reduces the mode mismatch.

As shown in Fig. 2(b), the SOC design employs the usual bottom ARROW layers for
confinement below the waveguide, but confinement above the waveguide is provided by total
internal reflection off of the air-oxide interface. The thick top SiO2 layer can also function as
an ARROW layer for confinement if the thickness satisfies the ARROW condition [9].

One concern with this type of ARROW waveguide is how lossy the hollow waveguide will be
because of the lack of multiple ARROW layers next to the core. Using an analytical method
[14], the minimum loss is determined to be αh = 0.49 cm−1 for regular ARROWs and αh = 2.47
cm−1 for SOC ARROWs for horizontally polarized 532 nm light. On our integrated ARROW
based sensor platforms, the typical hollow waveguide length is lh = 4 mm. Based on these
theoretical predictions and only considering αh and κi on both ends of the waveguide, we are
able to make predictions on how the SOC and regular ARROWs will compare for total
throughput. As long as κi for a SOC ARROW is greater than 55%, the SOC ARROW will have
greater overall throughput for this hollow-core length.

4. SOC ARROW fabrication
Fabrication of a SOC ARROW sensor platform, shown in Fig. 3, begins with etching into the
silicon substrate to form a pedestal that the solid and hollow waveguides will later be formed
upon. This silicon pedestal is necessary to surround the hollow core on three sides with a
terminal layer of air, thereby improving optical confinement. KOH wet etching produces a
pedestal with a very smooth surface, but it is also possible to form the pedestal through dry
etching. After this, Plasma-Enhanced Chemical Vapor Deposition (PECVD) is used to deposit
alternating layers of SiO2 and SiN. Next, the sacrificial core material is deposited and patterned
using standard contact lithography. While SU-8 (MicroChem) is used here, a variety of
materials can be used to produce different core geometries [10]. After the core, the single over-
coating of PECVD SiO2 is deposited. Next, standard solid ridge waveguides are etched into
the top layer using Reactive Ion Etching (RIE) to provide interfacing with the hollow
waveguides. Finally, the sacrificial core is removed with an acid etch. An SEM cross section
of a completed hollow SOC ARROW that was fabricated with this method is also shown in
Fig. 3. Non-SOC ARROW sensor platforms are fabricated in a similar way, except they begin
with a planar substrate and multiple top ARROW layers are used instead of the single over-
coating.

5. Optical characterization
Two different loss measurement techniques were used to characterize the losses of the two
ARROW based sensor platforms shown in Fig. 2. Both devices had core dimensions of 5 × 12
μm and were tested with a frequency-doubled Nd:YAG laser at 532 nm. For the ARROW
platform, the dielectric layers were (starting from the substrate - all values in nm): SiO2/SiN/
SiO2/SiN/SiO2/SiN-core-SiN/SiO2/SiN/SiO2/SiN/SiO2
(268/100/268/100/268/100-5000-132/286/146/300/128/3016). For the SOC ARROW
platform, the layers were: SiO2/SiN/SiO2/SiN/SiO2/SiN-core-SiO2
(268/100/268/100/268/100-5000-5000). Both designs used SiO2 layers with a refractive index
of 1.46, SiN layers with an index of 2.05, and water cores (n = 1.33).
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The solid waveguide loss for both platforms was determined using the standard cutback
method. This method yielded αs = 0.79 cm−1 for regular ARROWs and αs = 0.67 cm−1 for
SOC ARROWs. For the hollow waveguides, we used the method of optically induced particle
transport [15], using 1 μm-diameter polystyrene spheres (n=1.59, Duke Scientific) in water.
This method involved measuring the particle's displacement over time and extracting the
waveguide loss from this data. The hollow-core loss was as low as αh = 0.59 cm−1 for regular
ARROWs and αh = 3.4 cm−1 for SOC ARROWs. Figure 4(b) shows the data for the SOC
ARROW loss measurements (note 31 out of 1795 points shown for clarity).

The discrepancy between these measured losses and those predicted can be attributed to several
sources. First, although ARROWs have a broad transmission spectrum, these ARROW designs
have higher loss at 532 nm than at the design wavelength of 633 nm. The 532 nm light was
used for testing because the non-destructive characterization method of optically induced
particle transport requires a high power laser. Second, the inherent roughness and voids in the
PECVD films increase the losses due to scattering. Third, the films do not deposit uniformly,
creating crevices at the corners, and the nonideal geometry has higher loss. Finally, for the
SOC ARROW, since the pedestals are wider than the cores to allow for alignment, shoulders
are created in the top SiO2 (see Fig. 3) which cause light to be coupled into the cladding and
increase the loss. Simulations show that these shoulders are the main contributors to SOC
ARROW loss.

The solid-to-hollow waveguide interface coupling, κi, was determined after measuring the total
edge-to-edge throughput, T, for the samples. By deducting the coupling loss and the solid and
hollow waveguide loss contributions from the total throughput, we were able to ascertain the
interface transmission efficiency using Eq. (1). For regular ARROWs, the interface
transmission efficiency was 35 ± 9%, while for SOC ARROWs, it was 79 ± 19%. Therefore,
the hollow waveguide insertion loss has been improved by a factor of about 2.26.

6. Conclusion and summary
Based on the data reported, we see that SOC ARROWs have greater hollow waveguide losses
but higher solid-hollow waveguide interface transmission efficiencies than the regular
ARROWs. Figure 5 compares the throughput for ARROW platforms for the two designs,
including hollow waveguide loss and interface transmission and assuming κe1 × κe2 = 0.55,
αs = 0.67 cm−1, and ls = 4 mm for both designs.

Figure 5 shows that the total throughput for the SOC ARROW is higher for short hollow
waveguide lengths for which interface coupling dominates over hollow-core waveguide loss.
However, for hollow waveguides longer than about 5.8 mm, the throughput is higher for regular
ARROWs. For otherwise identical samples, Eq. (1) can be used to define a crossover length,
lc, where the loss for SOC ARROWS becomes greater than for regular ARROWs:

 (here 5.8 mm). For the current integrated ARROW
platforms using a hollow-core waveguide length of 4 mm, we have demonstrated a current
system throughput improvement of 1.7 times with the use of a SOC ARROW.

One option to reduce the loss of the SOC ARROWs is to remove the shoulders to create a more
ideal geometry. Another option to increase the overall throughput is to create a hybrid between
the two designs. This can be accomplished by using the SOC structure at the solid-hollow
interfaces while using the complete ARROW structure for most of the length of the hollow
waveguide. This approach would take advantage of the high interface transmission efficiency
of the SOC ARROW and the low hollow waveguide loss of the ARROW. While it is possible
to fabricate such waveguides, the fabrication presents some challenges. Two options for
making these hybrid waveguides are etching or using a lift-off technique to remove the top
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ARROW layers at the interfaces while leaving the layers intact over most of the length of the
hollow waveguide. Then, a thick SiO2 layer can be deposited that would function as the top
ARROW layer for both structures.
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Fig. 1.
(a) ARROW based platform for sensing applications. (b) Actual device.
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Fig. 2.
Transmission through ARROW based chips with associated losses and efficiencies (a) for
ARROWs and (b) for SOC ARROWs.
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Fig. 3.
SOC ARROW Fabrication steps: (a) Pedestal etched into Si substrate. (b) ARROW layers
deposited. (c) Sacrificial material deposited. (d) Top ARROW layer deposited. (e) Ridge
waveguide etched into top layer. (f) Sacrificial core removed. (g) SEM image of fabricated
device.
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Fig. 4.
SOC ARROW loss measurements: (a) solid-core waveguide (b) liquid-core waveguide.
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Fig. 5.
Chip throughput versus hollow waveguide length for ARROWs and SOC ARROWs.
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