
R classes and methods for SNP array data

Robert B. Scharpf and Ingo Ruczinski

Abstract
The Bioconductor project is an “open source and open development software project for the analysis
and comprehension of genomic data” Gentleman et al. (2004), primarily based on the R programming
language. Infrastructure packages, such as Biobase, are maintained by Bioconductor core developers,
and serve several key roles to the broader community of Bioconductor software developers and users.
In particular, Biobase introduces a S4 class, the eSet, for high dimensional assay data. Encapsulating
the assay data as well as meta-data on the samples, the features, and the experiment in the eSet class
definition ensures propagation of the relevant sample and feature meta-data throughout an analysis.
Extending the eSet class promotes code reuse through inheritance, interoperability with other R
packages, and is less error prone. Recently proposed class definitions for high throughput SNP arrays
extend the eSet class. This chapter highlights the advantages of adopting and extending Biobase
class definitions through a working example of one implementation of classes for the analysis of
high throughput SNP arrays.

Keywords
SNP array; copy number; genotype; S4 classes

Introduction
The Bioconductor project is an “open source and open development software project for the
analysis and comprehension of genomic data”, primarily based on the R programming
language, and provides open source software for researchers in the fields of computational
biology and bioinformatics-related disciplines Gentleman et al. (2004). Infrastructure packages
such as Biobase settle basic organizational issues for high throughput data and facilitates
interoperability of R packages that utilize this infrastructure. Transparency and reproducibility
are emphasized in Bioconductor through package vignettes.

A key element of infrastructure for high throughput genomic data is the eSet, a virtual class
for organizing high-throughput genomic data defined in Biobase. An instance of an eSet-
derived class contains the high throughput assay data and the corresponding meta-data on the
experiment, samples, covariates, and features (e.g., probes) in a single object. While much of
the development of the eSet has been in response to high-throughput gene expression
experiments that measure RNA (or cDNA) abundance, the generality of the eSet class enables
the user to extend the class to accommodate a variety of high-throughput technologies. Here,
we focus on single nucleotide polymorphism (SNP) microarray technology, and the eSet-
derived classes specific to this technology.

SNP microarrays provide estimates of genotype and copy number at hundreds of thousands of
SNPs along the genome, and several recent papers describe approaches for genotype (Di et al.
(2005); Rabbee and Speed (2006); Affymetrix (2006); Carvalho et al. (2007)) and copy number
estimation (Nannya et al. (2005); Huang et al. (2006); Laframboise et al. (2006); Carter
(2007)). In addition to probes targeting the polymorphic regions of the genome, the latest

NIH Public Access
Author Manuscript
Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

Published in final edited form as:
Methods Mol Biol. 2010 ; 593: 67–79. doi:10.1007/978-1-60327-194-3_4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Affymetrix and Illumina platforms contain a set of non-polymorphic probes for estimating
copy number.

The S4 classes and methods proposed here are organized around the multiple levels of SNP
data. In particular, we refer to the raw files containing probe intensities as the features-level
data and the processed data containing summaries of genotype calls and copy number as SNP-
level data. Finally, there is a third level of analytic data obtained from methods that smooth the
SNP-level summaries as a function of the physical position on the chromosome, such as hidden
Markov models (HMMs). Algorithms at the third tier are useful for identifying genomic
features such as deletions (hemizygous or homozygous), amplifications (more than 2 copies),
and copy-neutral loss of heterozygosity.

This chapter is organized as follows. We begin with a brief overview of S4 classes, illustrating
concepts such as inheritance using minimal class definitions for the high throughput SNP data.
With these minimal definitions in place, we discuss their shortcomings and motivate the
development of the current class definitions. We conclude with an example that illustrates the
following workflow: (i) creating an instance of a SNP-level class from matrices of genotype
calls and copy number, (ii) plotting the SNP-level data as a function of physical position along
the chromosome, (iii) fitting a hidden Markov model to identify alterations in copy number or
genotype, and (iv) plotting the predicted states from the hidden Markov model alongside the
genomic data.

S4 Classes and Methods
In the statistical environment R, an object can be a value, a function, or a complex data structure.
To perform an action on an object, we write a function. For instance, we could write a function
to calculate the row means of a matrix. When the object and functions become complex, classes
and methods become useful as an organizing principle. A S4 class formally defines the
ingredients of an object. A method for a class tells R which function should be performed on
the object. A useful property of classes and methods is inheritance. For instance, a matrix is
an array with only two dimensions: rows and columns. Using the language of classes, we say
that array is a parent class (or superclass) that is extended by the class matrix. Inheritance
refers to the property that any methods defined for the parent class are available to the children
of the parent class. In this section, we will discuss two approaches that can be used to construct
classes that extend a parent class, illustrate the concept of inheritance by minimally defining
S4 classes for storing estimates of genotype and copy number, provide examples of how to
construct methods to access and replace elements of an instantiated class, and show how
methods that check the validity of an instantiated objects can be used to reduce errors. This
section provides a very brief overview of S4 classes and methods, see Chambers (1998) for a
detailed description. The classes defined in this section are solely for the purpose of illustration
and are not intended to be used for any analytic data.

Initializing classes
To construct classes for SNP-level summaries of genotype calls and copy number estimates
after pre-processing, we can use the following classes as minimal definitions:

> setClass(“MinimalCallSet”, representation(calls = “matrix”))

[1] “MinimalCallSet”

Scharpf and Ruczinski Page 2

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

> setClass(“MinimalCopyNumberSet”, representation(copyNumber = “matrix”))

[1] “MinimalCopyNumberSet”

An instance of MinimalCallSet contains a slot for the matrix of genotype calls, and an
instance of MinimalCopyNumberSet contains a slot for the matrix of copy number estimates.

Extending classes
A parent class of MinimalCallSet and MinimalCopyNumberSet, called SuperSet, is
created by the function setClassUnion:

> setClassUnion(“SuperSet”, c(“MinimalCallSet”, “MinimalCopyNumberSet”))

[1] “SuperSet”

> showClass(“SuperSet”)

Virtual Class “SuperSet”
No Slots, prototype of class “NULL”
Known Subclasses: “MinimalCallSet”, “MinimalCopyNumberSet”

> extends(“MinimalCallSet”, “SuperSet”)

[1] TRUE

MinimalCallSet and MinimalCopyNumberSet extend SuperSet. Note that SuperSet is
a virtual class, and therefore we cannot instantiate an object of class SuperSet. However,
instantiating one of the derived classes requires only a matrix of the SNP-level summaries.
Using a recent version of R (≥ 2.7), one may obtain an example dataset from the VanillaICE
R package.

> source(“http://www.bioconductor.org/biocLite.R”)
> biocLite(“VanillaICE”, type = “source”)
> library(VanillaICE)
> data(sample.snpset)
> gt <- calls(sample.snpset)[1:3, 1:3]
> gt[gt == 1] <- “AA”
> gt[gt == 2] <- “AB”
> gt[gt == 3] <- “BB”
> cn <- copyNumber(sample.snpset)[1:3, 1:3]
> colnames(cn) <- colnames(gt) <- sapply(colnames(gt), function(x) strsplit
(x, “_”)[[1]][1])
> callset <- new(“MinimalCallSet”, calls = gt)
> cnset <- new(“MinimalCopyNumberSet”, copyNumber = cn)
> attributes(callset)

$calls
NA17101 NA17102 NA17103

Scharpf and Ruczinski Page 3

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.bioconductor.org/biocLite.R

SNP_A-1507972 “AB” “BB” “AB”
SNP_A-1641761 “AB” “AB” “AB”
SNP_A-1641781 “AB” “AA” “AA”
$class
[1] “MinimalCallSet”
attr(,“package”)
[1] “.GlobalEnv”

> attributes(cnset)

$copyNumber
NA17101 NA17102 NA17103
SNP_A-1507972 3.176972 2.775924 3.051108
SNP_A-1641761 1.705276 1.793427 1.647903
SNP_A-1641781 2.269756 1.741290 1.806562
$class
[1] “MinimalCopyNumberSet”
attr(,“package”)
[1] “.GlobalEnv”

As MinimalCallSet and MinimalCopyNumberSet extend SuperSet, methods defined at
the level of the parent class are inherited. For instance, we define show, and call this function
on the instantiated objects of MinimalCallSet and MinimalCopyNumberSet.

> setMethod(“show”, “SuperSet”, function(object) attributes(object))

[1] “show”

> show(callset)

$calls
NA17101 NA17102 NA17103
SNP_A-1507972 “AB” “BB” “AB”
SNP_A-1641761 “AB” “AB” “AB”
SNP_A-1641781 “AB” “AA” “AA”
$class
[1] “MinimalCallSet”
attr(,“package”)
[1] “.GlobalEnv”

> show(cnset)

$copyNumber
NA17101 NA17102 NA17103
SNP_A-1507972 3.176972 2.775924 3.051108
SNP_A-1641761 1.705276 1.793427 1.647903
SNP_A-1641781 2.269756 1.741290 1.806562
$class
[1] “MinimalCopyNumberSet”

Scharpf and Ruczinski Page 4

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

attr(,“package”)
[1] “.GlobalEnv”

The contains argument in the function setClass can be used to extend an existing parent
class. For instance,

> setClass(“MinimalSnpSet”, contains = “SuperSet”, representation(calls =
“matrix”,
+ copyNumber = “matrix”
))

[1] “MinimalSnpSet”

By defining methods that access specific elements of a class at the level of the parent class, it
is not necessary to define these methods for any of the derived classes.

Signatures
The signature of a generic function is a named list of classes that determines the method that
will be dispatched. Consider the generic function foo in the following code chunk. The method
that is dispatched when foo(object) is called depends on the class of object.

> setGeneric(“foo”, function(object) standardGeneric(“foo”))

[1] “foo”
>

setMethod(“foo”, signature(object = “ANY”), function(object) message(“message
1”))

[1] “foo”
>

setMethod(“foo”, signature(object = “matrix”), function(object) message
(“message 2”))

[1] “foo”

> foo(1)
> foo(as.matrix(1))

More precisely, the dispatched method depends on the ‘distance’ of the class of the argument
to the generic function and the signature of the method. For example, if we define a new class
A that extends class matrix, message 2 will be printed as the distance between the object
and class matrix is 1, whereas the distance between A and ANY is greater than 1.

Scharpf and Ruczinski Page 5

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

> setClass(“A”, contains = “matrix”)

[1] “A”

> x <- as(matrix(1), “A”)
> foo(x)
> setMethod(“foo”, signature(object = “A”), function(object) message(“message
3”))

[1] “foo”

> foo(x)

[1] “genotypeCalls”
[1] “genotypeCalls”
NA17101 NA17102 NA17103
SNP_A-1507972 “AB” “BB” “AB”
SNP_A-1641761 “AB” “AB” “AB”
SNP_A-1641781 “AB” “AA” “AA”

In addition to defining methods that access information from an object, one may define a
method that replaces information in an object. An example of such a method follows:

> setGeneric(“genotypeCalls<-”, function(object, value) standardGeneric
(“genotypeCalls<- ”))

[1] “genotypeCalls<-”

> setReplaceMethod(“genotypeCalls”, c(“SuperSet”, “matrix”), function(object,
value) {
+ object@calls <- value
+ return(object)
+ })

[1] “genotypeCalls<-”

Validity methods
Validity methods can be useful to avoid committing errors when instantiating a class that can
have unfortunate consequences on downstream analyses. For instance, for objects of class
MinimalSnpSet it is useful to require that the row names and column names of the copy
number and genotype matrices are identical. Therefore, we can define a validity method for
the class MinimalSnpSet that checks whether the names are identical and, if not, throws an
error.

> setValidity(“MinimalSnpSet”, function(object) {

Scharpf and Ruczinski Page 6

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

+ valid <- identical(rownames(object@calls), rownames(object@copyNumber))
+ if (!valid)
+ stop(“rownames are not identical”)
+ valid <- identical(colnames(object@calls), colnames(object@copyNumber))
+ if (!valid)
+ stop(“colnames are not identical”)
+ return(msg)
+ })

Class “MinimalSnpSet”
Slots:
Name: calls copyNumber
Class: matrix matrix
Extends: “SuperSet”

> colnames(gt) <- letters[20:22]
> tryCatch(new(“MinimalSnpSet”, calls = gt, copyNumber = cn), error = function
(e) print(e))

<simpleError in validityMethod(object): colnames are not identical>

SNP-level Classes and Methods
When constructing S4 classes for the purpose of analysing high throughput SNP data, the
following considerations are useful:

1. Develop as little new code as possible, reusing code that has been extensively tested
and documented in other packages.

2. The SNP-level summaries that are available as assay data may depend on the pre-
processing algorithm or the particular SNP microarray technology.

3. Attaching meta-data on the samples, features, and experiment to the object storing
the assay data (as is commonly done with eSet derived classes) is useful for ensuring
that the meta-data is attached to the assay data throughout an analysis.

4. Adopting standard data structures defined in widely used packages such as Biobase
promotes interoperability of R packages that perform complementary tasks.

The schematic in Figure 1 illustrates the relationships of our implementation of SNP-level
classes in the package oligoClasses. We briefly discuss each of these classes below.

eSet: eSet is a virtual class defined in the R package Biobase Gentleman et al. (2004) and
provides a basic container for high-throughput genomic data. Slots in eSet are defined for
assay data (assayData: e.g., genotype calls), characteristics of the samples (slot
phenoData: e.g., phenotype), characteristics of the features (slot featureData: e.g., the
name of the feature) and experimental data (slot experimentData: e.g., details of the
laboratory and experimental methods). Via inheritance, each of the SNP-derived classes
contain these components; accessors and replacement methods defined for the eSet can be
readily applied to the eSet-derived classes.

SnpLevelSet. SnpLevelSet is a virtual class that extends eSet directly. Note that all SNP-
level classes in Figure 1 extend SnpLevelSet directly. To understand why we define a virtual
superclass for SNP-level data (when eSet is already available), consider that many methods

Scharpf and Ruczinski Page 7

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

are likely to be applicable to all SNP-derived classes, but perhaps not eSet-derived classes
such as the ExpressionSet. For instance, the plotting methods in SNPchip and the hidden
Markov model in VanillaICE rely on the chromosome and physical position of the SNP. While
this information is critical for statistical methods such as a HMM that smooths SNP-levels
summaries as a function of physical position on the chromosome, it may be less useful or of
no use for gene expression microarrays. Furthermore, because accessors for chromosome and
physical position are useful for all of the SNP-derived classes, defining these accessors at the
level of SnpLevelSet eliminates the need to define accessors for each of the derived classes.
Of course, the flexibility to define methods specific to each of the derived classes remains.

SnpLevelSet progeny: Progeny of SnpLevelSet, including SnpCallSet,
SnpCopyNumberSet, and oligoSnpSet, are defined according to the elements in the
assayData slot. Elements of the assayData in SnpCallSet include calls (genotype calls)
and callsConfidence (confidence scores for the genotype calls), whereas assayData
elements in SnpCopyNumberSet are copyNumber and cnConfidence (confidence scores
for copy number estimates). The assay data of an oligoSnpSet is the union of the
assayData elements in SnpCallSet and SnpCopyNumberSet.

Example
We suggest the Bioconductor package oligo for pre-processing high-throughput SNP array
data for the various Affymetrix platforms (100k, 500k, 5.0, and 6.0). In addition to genotype
calls, the crlmm function in oligo provides confidence scores of the genotype calls that can be
propagated to higher level analyses, such as the hidden Markov models discussed in the
following section. A method for estimating copy number in oligo is currently under
development. In this section, we assume that the user has obtained SNP-level summaries of
genotype and copy number by some means. We show how to create an instance of
oligoSnpSet from matrices of genotype calls and copy number estimates, plot the SNP-level
summaries versus physical position on the genome, and fit a HMM to identify alterations in
copy number or genotype.

Instantiating an oligoSnpSet object
To create an instance of oligoSnpSet, we take advantage of an example provided with the
Bioconductor package VanillaICE, using only the matrices of copy number estimates, cn, and
genotype calls, gt. The data we extract from the VanillaICE package is simulated data for a
chromosome 1 on the Affymetrix 100k platform. Note that the matrices are organized such
that the columns are samples and the rows are SNPs. While the elements of cn can be any
positive number, the elements of gt are the integers 1, 2, 3, and 4 corresponding to the
genotypes AA, AB, BB, and NA (not available), respectively. The row names (here, Affymetrix
identifiers for the SNP) and column names (sample identifiers) of cn and gt must be identical.
Confidence scores for the copy number estimates and genotype calls, when available, are stored
similarly.

> library(VanillaICE)
> data(chromosome1)
> copynumber <- copyNumber(chromosome1)
> calls <- calls(chromosome1)
> cnConf <- callsConf <- matrix(NA, nrow = nrow(copynumber), ncol = ncol
(copynumber),
+ dimnames = list(rownames(copynumber), colnames(copynumber)))

Scharpf and Ruczinski Page 8

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

> snpset <- new(“oligoSnpSet”, copyNumber = copynumber, calls = calls,
cnConfidence = cnConf,
+ callsConfidence = callsConf, annotation =
“pd.mapping50k.hind240,pd.mapping50k.xba240”
)
> validObject(snpset)

[1] TRUE

The annotation slot is important for accessing the appropriate annotation package (available
at Bioconductor). In this example, the SNPs originate from two Affymetrix–platforms{ the
50k Xba and 50k Hind chips. The annotation packages can be installed from Bioconductor
with the following command:

> source(“http://www.bioconductor.org/biocLite.R”)
> biocLite(c(“pd.mapping50k.hind240”, “pd.mapping50k.xba240”))

Because the plotting methods and the HMM both frequently access the chromosome and
physical position of the SNPs in the object, it is generally more convenient to store this
information in the featureData slot. The position and chromosome methods first check
the variable labels in the featureData and, if not present, retrieve this information from the
annotation packages.

> featureData(snpset)$position <- position(snpset)
> featureData(snpset)$chromosome <- chromosome(snpset)

Visualizing the data
The Bioconductor package SNPchip provides several useful methods for visualizing objects
instantiated from one of the derived classes of SnpLevelSet (Scharpf et al., 2007). Similar
to the R package lattice, the plotting method does not plot the data, rather it returns an object
of class ParSnpSet that contains all of the default graphical parameters used to plot an instance
of oligoSnpSet. The show method called on an object returned by plotSnp produces a plot.
The following command plots the snpset object using the default graphical parameters.

> show(plotSnp(snpset))

The resulting plot, together with the assessment of DNA copy number alterations, is shown in
Figure 2.

Identifying chromosomal alterations
The simulated data used in this example contains 5 alterations that we utilize as benchmarks
when testing the HMM model in the VanillaICE package. Details on the simulation and on the

Scharpf and Ruczinski Page 9

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.bioconductor.org/biocLite.R

HMM model are described elsewhere (Scharpf et al., 2008). In order to fit the HMM, we must
specify the hidden states and compute the emission and transition probabilities. We assume
that the copy number estimates are Gaussian on the log 2 scale. To calculate the emission
probabilities for copy number, we require specifying the location parameter of the Gaussian
distribution (on the copy number scale) for each of the hidden states. If confidence scores for
the copy number estimates are not available, the scale parameter is computed using a robust
estimate of the log 2 copy number distribution and is assumed to be the same for each state.
For genotype calls, one must specify the probability of a homozygous genotype call (AA or
BB) for each of the hidden states. The transition probabilities, using an estimate of genomic
distance, are SNP-specific.

> options <- new(“HmmOptions”, states = c(“D”, “N”, “L”, “A”), snpset =
snpset,
+ copyNumber.location = c(1, 2, 2, 3), probHomCall = c(0.99, 0.7, 0.99, 0.7))
> params <- new(“HmmParameter”, states = states(options),
initialStateProbability = 0.99)
> cn.emission <- copyNumber.emission(options)
> gt.emission <- calls.emission(options)
> emission(params) <- cn.emission + gt.emission
> genomicDistance(params) <- exp(-2*physicalDistance(options)/(100*1e+06))
> transitionScale(params) <- scaleTransitionProbability(options)
> fit <- hmm(options, params)
> class(fit)

The object returned by the hmm method is an instance of the class HmmPredict.
HmmPredict extends SnpLevelSet directly. The following code can be used to plot the SNP-
level summaries of genotype and copy number alongside the predicted states from the HMM.

> gp <- plotSnp(snpset(options), fit)
> gp$col <- c(“grey60”, “black”, “grey60”)
> gp$cex <- c(2, 1.5, 2)
> gp$hmm.ycoords <- c(0.6, 0.7)
> gp$ylim <- c(0.4, 4.5)
> gp$xlim[1] <- -10000
> gp$abline <- TRUE
> gp$abline.h <- 0.9
> gp$abline.col <- “black”
> gp$cytoband.ycoords <- c(0.4, 0.45)
> gp$col.predict <- c(“black”, “white”, “grey60”, “grey80”)
> print(gp)
> legend(95*1e+06, 0.9, fill = gp$col.predict[-2], legend = c(“1 copy”, “copy-
neutral LOH”,+ “3+ copies”), bty = “n”, title = “predicted states”)

Scharpf and Ruczinski Page 10

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Closing Remarks
The Bioconductor project has several infrastructure packages that are useful for organizing and
annotating genomic data. In particular, the Biobase package introduces the virtual class
eSet that provides an organization for high throughput assay data set and the corresponding
meta-data on the samples, features, and experiment. Extensions of the eSet class to a variety
of different platforms and architectures are feasible. As our focus is on S4classes and methods
for high throughput SNP data, we discuss the classes that are currently in place and the
considerations that motivated these definitions. We emphasize the importance of using
standardized data structures and the ease by which code can be reused through inheritance,
both of which are facilitated by utilizing S4 classes and methods. The visualization methods
in the SNPchip package and the HMM in the VanillaICE package serve as useful illustrations
of how one can build on these definitions.

Acknowledgments
This work was supported by NSF grant DMS034211 and training grant 5T32HL007024 from the National Heart,
Lung, and Blood Institute (RBS), and NIH grant R01 GM083084 (IR).

References
Affymetrix. BRLMM: an improved genotype calling method for the genechip human mapping 500k array

set. Affymetrix, Inc. White Paper; 2006. Tech. rep.
Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat

Genet 2007;39(7 Suppl):S16–S21. [PubMed: 17597776]
Carvalho B, Bengtsson H, Speed TP, Irizarry RA. Exploration, normalization, and genotype calls of high-

density oligonucleotide SNP array data. Biostatistics 2007;8(2):485–499. [PubMed: 17189563]
Chambers, JM. Programming with Data: a guide to the S language. Springer-Verlag; New York: 1998.
Di X, Matsuzaki H, Webster TA, Hubbell E, Liu G, Dong S, Bartell D, Huang J, Chiles R, Yang G, mei

Shen M, Kulp D, Kennedy GC, Mei R, Jones KW, Cawley S. Dynamic model based algorithms for
screening and genotyping over 100 K SNPs on oligonucleotide microarrays. Bioinformatics 2005;21
(9):1958–1963. [PubMed: 15657097]

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry
J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki
G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J. Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol 2004;5(10):R80. [PubMed: 15461798]

Huang J, Wei W, Chen J, Zhang J, Liu G, Di X, Mei R, Ishikawa S, Aburatani H, Jones KW, Shapero
MH. CARAT: a novel method for allelic detection of DNA copy number changes using high density
oligonucleotide arrays. BMC Bioinformatics 2006;7:83. [PubMed: 16504045]

Laframboise T, Harrington D, Weir BA. PLASQ: A Generalized Linear Model-Based Procedure to
Determine Allelic Dosage in Cancer Cells from SNP Array Data. Biostatistics. 2006

Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A, Kurokawa M, Chiba S, Bailey DK,
Kennedy GC, Ogawa S. A robust algorithm for copy number detection using high-density
oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res 2005;65(14):6071–
6079. [PubMed: 16024607]

Rabbee N, Speed TP. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 2006;22
(1):7–12. [PubMed: 16267090]

Scharpf RB, Parmigiani G, Pevsner J, Ruczinski I. Hidden Markov models for the assessment of
chromosomal alterations using high-throughput SNP arrays. Annals of Applied Statistics. 2008 (in
press).

Scharpf RB, Ting JC, Pevsner J, Ruczinski I. SNPchip: R classes and methods for SNP array data.
Bioinformatics 2007;23(5):627–628. [PubMed: 17204461]

Scharpf and Ruczinski Page 11

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1.
Classes for SNP-level data, as defined in the Bioconductor package oligoClasses. Note that
eSet and SnpLevelSet are virtual classes.

Scharpf and Ruczinski Page 12

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Simulated data for a chromosome 1 on the Affymetrix 100k platform. The x-axis denotes the
loci along the chromosome, the y-axis denotes the copy number estimates. Homozygous
genotype calls are plotted in light grey, heterozygous genotype calls are plotted in dark grey.
Also shown is the inference for DNA copy numbers and alterations, using a hidden Markov
model. This HMM captured the DNA alterations we simulated, namely (from left to right) a
region of copy-neutral loss of heterozygosity, an amplification, and three deletions of various
sizes on the q-arm.

Scharpf and Ruczinski Page 13

Methods Mol Biol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

