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Abstract
The ability to perform ab initio electronic structure calculations that scales linearly with the
system size is one of the central aims in theoretical chemistry. In this study, the implementation of
the divide-and-conquer (DC) algorithm, an algorithm with the potential to aid the achievement of
true linear scaling within Hartree-Fock (HF) theory is revisited. Standard HF calculations solve
the Roothaan-Hall equations for the whole system; in the DC-HF approach, the diagonalization of
the Fock matrix is carried out on smaller subsystems. The DC algorithm for HF calculations was
validated on polyglycines, polyalanines and eleven real three-dimensional proteins of up to 608
atoms in this work. We also found that a fragment-based initial guess using molecular
fractionation with conjugated caps (MFCC) method significantly reduces the number of SCF
cycles and even is capable of achieving convergence for some globular proteins where the simple
superposition of atomic densities (SAD) initial guess fails.
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Introduction
Ab initio quantum mechanical methods have been developed over the past several decades
and successfully applied to the study of the chemical properties for small to moderate-sized
molecules. The routine application of these full quantum mechanical calculations on
macromolecules (molecules containing greater than 500 atoms) continues to pose a great
challenge for theoretical chemists. The major limitation of ab initio methods is the scaling
problem, since the computational cost of ab initio methods increases considerably as the size
of the molecule increases. For instance, Hartree-Fock (HF)1 and Density Functional Theory
(DFT)2 scale as O(N4), post-Hartree-Fock MP23 scales as O(N5) and the coupled
cluster(CC)4-9 method that includes single and double excitations (CCSD) scales as O(N6).
In modern HF calculations, the computational cost for the 2-electron integrals can be
reduced from O(N4) to O(N2) using a simple screening technique10. Hence, the dominant
step for large molecules becomes the matrix diagonalization, which scales as O(N3). In this
study, our goal was to reduce the computational cost of the diagonalization step in HF
calculations to linear with system size.

The state-of-the-art linear-scaling algorithms, which make the computational cost scale
linearly O(N) with the system size, have attracted the focus of many theorists during the past
decade.11-21 Much effort has been devoted to the development of linear-scaling methods in
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order to compute the total energy of large molecular systems at the Hartree-Fock (HF) or
density functional theory (DFT) level.12,15,18,22-26 One of the challenges is to speed up the
calculation of long-range Coulomb interactions when assembling the Fock matrix elements.
Fast multipole based approaches have successfully reduced the scaling in system size to
linear14,16-18,25 and made HF and DFT calculations affordable for larger systems when
small to moderate sized basis sets are utilized. The more recently developed Fourier
Transform Coulomb method of Fusti and Pulay27,28 reduced the steep O(N4) scaling in basis
set size to quadratic and makes the calculations much more affordable with larger basis sets.
29 There is also a class of fragment-based methods for quantum calculation of protein
systems including the divide and conquer (D&C) method of Yang22, Yang and Lee,23 Dixon
and Merz,30 Gogonea et al.,31 Shaw and St-Amant,32 and Nakai and co-workers,33-36 the
adjustable density matrix assembler (ADMA) approach method of Exner and Mezey,26,37-39

the fragment molecular orbital (FMO) method of Kitaura and co-workers,13,40,41 and the
molecular fractionation with conjugate caps (MFCC) approach developed by Zhang and co-
workers.42,43 Most applications of these methods to protein systems have been largely
limited to semiempirical, HF and DFT calculations. Among these approaches, FMO has
been applied to higher level ab initio calculations such as second-order Møller-Plesset
perturbation theory (MP2)44 and coupled cluster theory (CC).45 Nakai and co-workers have
recently proposed DC-MP233,36,46 and DC-CCSD47 approaches; however, only systems of
linear chains or near-linear chains have been tested so far for the divide-and-conquer
algorithm for ab initio calculations.

In the DC algorithm, the total system is divided into small fragments. Atoms within
adjustable buffer regions surrounding each fragment are included in the calculations to
preserve the chemical environment of the divided subsystem. A set of local Roothaan-Hall
equations is then solved for each subsystem and an approximate full density matrix of the
entire molecular system is built up from subsystem contributions. By solving the HF self-
consistent field (SCF) equation iteratively, the final converged full density matrix is used to
obtain the total energy of the entire system. In this manner, linear scaling of the Fock matrix
diagonalization step is achieved as a result of the fact that a set of smaller subsystem Fock
matrices is diagonalized in the DC-HF approach rather than the global Fock matrix
diagonalization for traditional HF calculations. Furthermore, divide-and-conquer
calculations may be efficiently parallelized because the individual subsystem calculations
are solved separately. In the DC-HF approach, the memory usage will increase linearly as
the size of the system increases, which is also an important feature of this approach.

The aim of our current research is to further develop and validate the divide-and-conquer
(DC)22,23,30,32,46-48 methodology to aid in the application of ab initio methods to
biomacromolecules. In this study, our goal is to validate divide-and-conquer algorithm for
Hartree-Fock calculations on globular proteins. Moreover, we propose a fragment-based
initial guess using molecular fractionation with conjugated caps (MFCC) method to reduce
the number of SCF cycles, and different division schemes are compared.

Computational Approaches
Divide-and-Conquer Approach on the Hartree-Fock calculations

In protein systems, the divide-conquer approach is based on the chemical locality; this
assumes that local regions of a protein are only weakly influenced by the atoms that are far
away from the region of interest. The whole system is divided into fragments called core
regions (Coreα). A buffer region (Bufferα) is assigned for each core region to account for the
environmental effects. The combination of every core region and its buffer region
constitutes each individual subsystem (Rα) as illustrated in Figure 1. Local MOs of each
subsystem are solved by the Roothaan-Hall equation
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(1)

where Fα and Sα are local Fock matrix and local overlap matrix, respectively.

(2)

After the local MO coefficient matrices Cα are obtained, the total density matrix of the
whole system is given by

(3)

where  is the partition matrix,

(4)

and  is the local density matrix defined by

(5)

where  is a smooth approximation to the Heaviside step function:

(6)

εF is determined through the normalization of the total number of electrons of the whole
system.

(7)

After the density matrix is converged, the total HF energy is given as

(8)

where  is the local one-electron core Hamiltonian matrix similar to the definition of local
Fock matrix in equation 2.
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For HF calculations on large systems, the construction of the Coulomb matrix and exchange
matrix along with the diagonalization of the Fock matrix constitute the three most time-
consuming steps. The Hamiltonian matrix diagonalization intrinsically scales as O(N3). In
the divide-and-conquer scheme the diagonalization calculation is performed on each
submatrix, which will naturally make the SCF diagonalization step scale linearly with the
number of subsystems. However, it is important to realize that the divide-and-conquer
algorithm does not help to reduce the scale of computation of the Coulomb matrix and
exchange matrix. The continuous fast multipole method (CFMM)14,16-18,25,49-51 and the
linear exchange K approach (LinK)52,53 provide ways in which the Coulomb matrix and
exchange matrix can be made linear-scaling, respectively.

MFCC Initial Guess
Here we introduce a fragment-based initial guess for ab initio calculations using the
molecular fractionation with conjugate caps (MFCC) algorithm as described
elsewhere42,54,55. In the spirit of the MFCC approach, the full density matrix of the protein
can be assembled by a linear combination of fragment density matrices

(9)

where  is the density matrix element of the ith protein fragment,  is the density
matrix element of the jth conjugate cap. Nf and Nc are the total number of the protein
fragments and conjugate caps, respectively. The MFCC partition scheme to cut a protein
into amino-acid fragments and conjugate caps is shown in Figure 2. First, a series of single
point HF calculations on all the fragments and conjugate caps are performed, then the full
density matrix of the protein obtained using the converged fragment density matrices based
on equation 9 is taken as the initial guess for the subsequent divide-and-conquer HF
calculations. All the ab initio calculations were implemented in an in-house developed
quantum chemistry package QUICK.56

Results and Discussion
Accuracy and Timing Comparisons

In this section we assess the DC-HF approach performance by performing calculations on
two types of simple systems: extended polyglycine (gly)n and an alpha-helix of polyalanine
(α – (ala)n see Figure 3). All the calculations discussed here use the 6-31G* basis set. A
buffer radius of Rb = 5.0 Å was adopted for all DC-HF calculations. Within this definition
we include all the residues that contain any atoms within 5Å from the core region as part of
the buffer region. A comparison of the CPU time required to solve the SCF equations on the
extended polyglycine (gly)n (n=6~40) using the standard HF and DC-HF approaches is
shown in Figure 4. As expected, the computational scale for the DC-HF diagonalization
calculation is O(N), in contrast to O(N2.9) for the traditional HF SCF diagonalization on the
full Fock matrix of the entire system. Moreover, since the polyglycine is extended, the basis
set crossover point is between 485 and 749. Figure 5 shows the deviation of DC-HF energy
compared to the full system calculation on extended polyglycine systems. The error
becomes larger as the size of the system increases; however, all of the deviations are within
0.04 kcal mol−1. This good accuracy suggests that we can employ the divide-and-conquer
scheme to study large, 3-dimensional systems. The computational cost and accuracy of DC-
HF for α – (ala)n (n=10~40) systems are illustrated in Figures 6 and 7, respectively. Because
of the helix structure, each subsystem contains a larger number of residues than in the
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extended system using the same buffer size. As illustrated in Figure 6, the crossover point is
around 1789, which is over 2-times larger than for the polyglycine example. Each DC-HF
diagonalization SCF cycle in this example scales as O(N1.1), in contrast to O(N2.7) for the
traditional HF diagonalization cost. Furthermore, the total energy errors for the α -helical
polyalanines are slightly larger than those for the extended polyglycine systems (see Figure
7), but theay are still in a good agreement with the full system calculations since the largest
error is less than 0.7 kcal mol−1 for α – (ala)40.

In the current DC-HF approach, the scale for the computation of the Coulomb matrix is still
O(N2) after prescreening the two-electron integrals10. When we apply equation 2 to
construct the subsystem Fock matrix, the long-range Coulomb interactions between the local
subsystem and distant atoms cannot be circumvented, thus, it should be emphasized that the
D&C algorithm itself does not reduce the scale of Coulomb and exchange matrix
evaluations and other approaches are necessary to achieve this result (e.g.,
CFMM)14,16,17,49.

MFCC Initial Guess for Div&Con HF calculations
Next we compare the number of SCF cycles necessary to reach convergence when the SAD
(superposition of atomic densities) and MFCC initial guesses are used in the divide and
conquer scheme using the 6-31G* basis set (see Table 1). The convergence criterion in all
examples was set to 10−6 a.u. on the root-mean-squared change of the density matrix
elements and 10−4 a.u. for the maximum change of the density matrix elements. Nakai and
co-workers35 and Shaw and St-Amant32 have noted that DIIS causes SCF calculations to
oscillate at the final stage of the SCF convergence process due to the slight errors introduced
by the DC approximation for assembling the density matrix (see equation 3). In our HF DC
calculations, the DIIS technique was turned off when the root-mean-squared change of the
density matrix elements reaches 10−4 a.u.. We also found that although DIIS works in the
early stages of the SCF procedure, we get the best performance when only two previous
Fock matrices were stored in the DIIS calculations. One can see from Table 1 that the HF
DC calculations usually requires more SCF cycles than the non-DC runs, however, for the
polyglycine and polyalanine systems, the MFCC initial guess helps to reduce the number of
SCF cycles in both DC and non-DC cases.

Residue-centric Core Region versus Atom-centric Core Region
Previously, all the calculations used a residue based definition for the core region. We have
also examined an atom based subsetting strategy for the core region in polyglycines and
polyalanines. One can see from Table 2, the converged total energies using atom-centric
core region were almost identical to those using a residue-based cutoff. Indeed, the overall
mean unsigned deviation is as low as 0.054 kcal mol−1. This is an attractive aspect of the
divide and conquer approach since it allows for parallelization at the atom level rather than
at the much larger reside based cutoff scheme.

Validation on Three-dimensional Protein Systems
No previous studies have utilized the divide-and-conquer HF approach on three-dimensional
globular proteins. In order to address this point, we have validated the accuracy of divide-
and-conquer HF/6-31G* calculations on eleven real proteins. The systems ranged from 304
atoms to 608 atoms and are listed in Table 3. The proteins consisted of α – helical structures
(see Figure 8a) or are mixed α – β – structures (see Figure 8b). As shown in Table 3, the
largest deviation is 2.25 kcal mol−1 and the overall mean unsigned deviation is only 0.97
kcal mol−1 compared to standard full system calculations. Importantly, the observed error is
large than what was observed for the 0ne-dimensional examples, but is still within
acceptable limits. This study sets the stage for the wide application of divide-and-conquer
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calculations on real protein systems. Furthermore, we have found that for five proteins, the
divide-and-conquer HF calculations are not able to reach convergence using the simple SAD
initial guess, while all the cases converged using the MFCC initial guess. Therefore, we
conclude that the quality of initial guess plays an important role in insuring the convergence
of divide-and-conquer calculations. Fragment-based electron density provides a much better
quality initial guess with linear-scaling computational cost and, ultimately, much less
computational time when compared to full system calculations.

Conclusions
In this study, the divide-and-conquer HF theory was revisited in order to examine its
potential to study three-dimensional constructs and a new and effective initial guess scheme
was introduced. We first validated the accuracy of the divide-and-conquer HF/6-31G*
calculations on eleven three-dimensional globular proteins. The overall mean unsigned error
was within 1 kcal mol−1 when compared to standard full system calculations. Furthermore,
we found that the fragment-based initial guess using the MFCC approach reduces the
number of SCF cycles for polyglycine and polyalanine systems. Moreover, the MFCC initial
guess facilitated SCF convergence for several of the globular proteins, where the SAD initial
guess was unable to yield a converged wavefunction.

Acknowledgments
We thank the NIH (GM GM044974) for financial support of this research. Computing support from the University
of Florida High Performance Computing Center is gratefully acknowledged.

References
1. Szabo, A.; Ostlund, NS. Modern quantum chemistry : introduction to advanced electronic structure

theory. 1st. ed.. McGraw-Hill; New York: 1989.
2. Parr, RG.; Yang, WT. Annual Review of Physical Chemistry. Vol. 46. 1995. p. 701
3. Møller, C.; Plesset, MS. Physical Review. Vol. 46. 1934. p. 0618
4. Bartlett RJ, Musial M. Reviews of Modern Physics 2007;79:291.
5. Čížek J. Journal of Chemical Physics 1966;45:4256.
6. Crawford TD, Schaefer HF. Reviews in Computational Chemistry, Vol 14 2000;14:33.
7. Kállay M, Gauss J. Journal of Chemical Physics 2005;123:214105. [PubMed: 16356037]
8. Kállay M, Surján PR. Journal of Chemical Physics 2001;115:2945.
9. Bomble YJ, Stanton JF, Kállay M, Gauss J. Journal of Chemical Physics 2005;123:054101.

[PubMed: 16108625]
10. Strout DL, Scuseria GE. Journal of Chemical Physics 1995;102:8448.
11. Schwegler E, Challacombe M. Journal of Chemical Physics 1996;105:2726.
12. Goedecker S. Reviews of Modern Physics 1999;71:1085.
13. Fedorov DG, Kitaura K. Journal of Physical Chemistry A 2007;111:6904.
14. Challacombe M, Schwegler E. Journal of Chemical Physics 1997;106:5526.
15. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz BD, Cao YX. Journal

of Physical Chemistry A 1999;103:1913.
16. White CA, Johnson BG, Gill PMW, Head-Gordon M. Chemical Physics Letters 1994;230:8.
17. White CA, Johnson BG, Gill PMW, Head-Gordon M. Chemical Physics Letters 1996;253:268.
18. Scuseria GE. Journal of Physical Chemistry A 1999;103:4782.
19. Korchowiec J, Lewandowski J, Makowski M, Gu FL, Aoki Y. Journal of Computational

Chemistry 2009;30:2515. [PubMed: 19373839]
20. Jiang N, Ma J, Jiang YS. Journal of Chemical Physics 2006;124:114112. [PubMed: 16555879]
21. Daniels AD, Scuseria GE. Journal of Chemical Physics 1999;110:1321.

He and Merz Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2011 January 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



22. Yang WT. Physical Review Letters 1991;66:1438. [PubMed: 10043209]
23. Yang WT, Lee TS. Journal of Chemical Physics 1995;103:5674.
24. Kohn W. Physical Review Letters 1996;76:3168. [PubMed: 10060892]
25. Strain MC, Scuseria GE, Frisch MJ. Science 1996;271:51.
26. Exner TE, Mezey PG. Journal of Physical Chemistry A 2002;106:11791.
27. Fusti-Molnar L. Journal of Chemical Physics 2003;119:11080.
28. Fusti-Molnar L, Pulay P. Journal of Chemical Physics 2002;117:7827.
29. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV,

Levchenko SV, O'Neill DP, DiStasio RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert
JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath
PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD,
Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ,
Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA,
Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL, Zhang W,
Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, Kong J,
Krylov AI, Gill PMW, Head-Gordon M. Physical Chemistry Chemical Physics 2006;8:3172.
[PubMed: 16902710]

30. Dixon SL, Merz KM. Journal of Chemical Physics 1996;104:6643.
31. Gogonea V, Westerhoff LM, Merz KM. Journal of Chemical Physics 2000;113:5604.
32. Shaw DM, St-Amant A. Journal of Theoretical & Computational Chemistry 2004;3:419.
33. Kobayashi M, Nakai H. International Journal of Quantum Chemistry 2009;109:2227.
34. Akama T, Fujii A, Kobayashi M, Nakai H. Molecular Physics 2007;105:2799.
35. Akama T, Kobayashi M, Nakai H. Journal of Computational Chemistry 2007;28:2003. [PubMed:

17455367]
36. Kobayashi M, Akama T, Nakai H. Journal of Chemical Physics 2006;125:204106. [PubMed:

17144689]
37. Exner TE, Mezey PG. Journal of Computational Chemistry 2003;24:1980. [PubMed: 14531052]
38. Exner TE, Mezey PG. Journal of Physical Chemistry A 2004;108:4301.
39. Exner TE, Mezey PG. Physical Chemistry Chemical Physics 2005;7:4061. [PubMed: 16474870]
40. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K. Chemical

Physics Letters 2002;351:475.
41. Fedorov DG, Kitaura K. Chemical Physics Letters 2006;433:182.
42. Zhang DW, Zhang JZH. Journal of Chemical Physics 2003;119:3599.
43. He X, Zhang JZH. Journal of Chemical Physics 2005;122:031103.
44. Fedorov DG, Ishimura K, Ishida T, Kitaura K, Pulay P, Nagase S. Journal of Computational

Chemistry 2007;28:1476. [PubMed: 17330884]
45. Fedorov DG, Kitaura K. Journal of Chemical Physics 2005;123:134103. [PubMed: 16223271]
46. Kobayashi M, Imamura Y, Nakai H. Journal of Chemical Physics 2007;127:074103. [PubMed:

17718602]
47. Kobayashi M, Nakai H. Journal of Chemical Physics 2008;129:044103. [PubMed: 18681630]
48. Dixon SL, Merz KM. Journal of Chemical Physics 1997;107:879.
49. Schwegler E, Challacombe M. Journal of Chemical Physics 1999;111:6223.
50. Burant JC, Strain MC, Scuseria GE, Frisch MJ. Chemical Physics Letters 1996;248:43.
51. Shao YH, White CA, Head-Gordon M. Journal of Chemical Physics 2001;114:6572.
52. Ochsenfeld C. Chemical Physics Letters 2000;327:216.
53. Ochsenfeld C, White CA, Head-Gordon M. Journal of Chemical Physics 1998;109:1663.
54. Chen XH, Zhang JZH. Journal of Chemical Physics 2006;125:044903.
55. Chen XH, Zhang YK, Zhang JZH. Journal of Chemical Physics 2005;122:184105. [PubMed:

15918692]
56. He, X.; Ayers, K.; Brothers, E.; Merz, KM. QUICK. University of Florida; Gainesville; FL: 2008.

He and Merz Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2011 January 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Graphical representation of the subsetting scheme used in divide-and-conquer calculations.
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Figure 2.
The MFCC scheme in which the peptide bond is cut (a) and the fragments are capped with
Ccap and its conjugate Ccap* (b). The atomic structure of the concap is shown in (c). The
concap is defined as the fused molecular species of Ccap* –Ccap.
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Figure 3.
The subsetting schemes for divide-and-conquer calculations on the extended polyglycine
(Gly)n (upper) and polyalanine in an α – helical structure (α – (Ala)n, bottom).
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Figure 4.
The average computational time to diagonalize the Fock matrix in each SCF cycle using
traditional HF and DC-HF for a series of extended polyglycines at the HF/6-31G* level.
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Figure 5.
The accuracy of the total energy calculated by the DC-HF approach on extended polyglycine
systems compared to full system calculations.
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Figure 6.
Similar to Figure 4, but for the polyalanine systems in an α – helical structure α – (Ala)n.
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Figure 7.
Similar to Figure 5, but for the polyalanine systems in an α – helix structure α – (Ala)n.
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Figure 8.
Two representative three-dimensional protein structures studied in this work. a) PDB id:
2PPZ

He and Merz Page 15

J Chem Theory Comput. Author manuscript; available in PMC 2011 January 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

He and Merz Page 16

Table 1

Number of SCF cycles needed to reach convergence for the SAD and MFCC initial guess at the HF/6-31G*
level.

Div&Con Non-Div&Cona)

System SAD initial guess MFCC initial guess SAD initial guess MFCC initial guess

Gly6 18 10 12 7

Gly10 18 11 12 7

Gly20 18 10 12 6

Gly30 18 10 12 6

Gly40 18 8 12 7

α-(Ala)10 18 15 12 9

α-(Ala)20 16 12 12 9

α-(Ala)30 16 12 12 8

α-(Ala)40 15 12 12 8

a)
In the SCF procedure of non-Div&Con case, every 10 previous Fock matrices were stored in the DIIS calculations; while for the Div&Con case,

every 2 previous Fock matrices were stored in the DIIS calculations until the root-mean-squared change of the density matrix elements reaches

10−4 a.u., after that, the DIIS technique was turned off.
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Table 2

The converged total energies (a.u.) (at the HF/6-31G* level) using two different subsetting schemes: residue-
based with buffer of 5Å and atom-based with a buffer of 7Å. (MUD: mean unsigned deviation)

System Residue-centric Core Region Atom-centric Core Region Deviation (kcal mol−1)

Gly10 −2314.783296 −2314.783272 −0.015

Gly20 −4382.595749 −4382.595726 −0.014

Gly30 −6450.407962 −6450.407938 −0.015

Gly40 −8518.221662 −8518.221679 0.011

α-(Ala)20 −5164.086850 −5164.086911 0.038

α-(Ala)30 −7622.660188 −7622.660373 0.116

α-(Ala)40 −10081.238571 −10081.238839 0.168

MUD 0.054
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