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Abstract
Non-invasive molecular imaging approaches include nuclear, optical, MRI, CT, ultrasound and
photoacoustic imaging, which require accumulation of a signal delivered by a probe at the target site.
Monoclonal antibodies (mAbs) are high affinity molecules that can be used for specific, high signal
delivery to cell surface molecules. However, their long circulation time in blood makes them
unsuitable as imaging probes. Efforts to improve antibodies pharmacokinetics without compromising
affinity and specificity have been made through protein engineering. Antibody variants that differ in
antigen binding sites and size have been generated and evaluated as imaging probes to target tissues
of interest. Fast clearing fragments such as single-chain Fv (scFv; 25 kDa) with one antigen binding
site (monovalent) demonstrated low accumulation in tumors due the low exposure time to the target.
Using scFv as building block to produce larger, bivalent fragments such as scFv dimers (diabodies,
50 kDa) and scFv-fusion proteins (80 kDa minibodies and 105 kDa scFv-Fc) resulted in higher tumor
accumulation due to their longer residence time in blood. Imaging studies with these fragments
following radiolabeling have demonstrated excellent, high contrast images in gamma cameras and
PET scanners. Several studies have also investigated antibody fragments conjugated to fluorescence
(near infrared dyes), bioluminescence (luciferases) and quantum dots for optical imaging and iron
oxides nanoparticles for MRI. However, these studies indicate that there are several factors that
influence successful targeting and imaging. These include stability of the antibody fragment, the
labeling chemistry (direct or indirect), whether critical residues are modified, the number of antigen
expressed on the cell, and whether the target has a rapid recycling rate or internalizes upon binding.
The preclinical data presented are compelling and it is evident that antibody-based molecular imaging
tracers will play an important future role in the diagnosis and management of cancer and other
diseases.

INTRODUCTION
Monoclonal antibodies (mAbs) have long been considered attractive candidates for targeted
therapy and diagnostics due to their highly specific targeting ability. However, despite
considerable efforts in developing mAb-based therapeutics for more than 30 years, initial
progress was slow because poor performance of rodent mAbs in humans [i.e. human anti-
mouse antibody (HAMA) responses, short half-lives and inability to trigger human effector
functions]. With the advances in protein engineering techniques, genetics and proteomics, the
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pharmaceutical industry has embraced mAbs as a new group of targeted drugs which has led
to numerous FDA approved therapeutic mAbs.

For diagnostic imaging, only a handful of mAbs have been approved in the United States for
single photon emission computed tomography (SPECT) imaging (Table 1). Most of these are
no longer marketed in the US; only ProstaScint, LeukoScan, Bexxar and Zevalin are currently
used in the clinic. Since these imaging agents are derived from murine mAbs, repeated use in
humans limited except in patients with low grade B-cell lymphomas; a disease characterized
by reduced host-immune recognition. In addition to straight diagnositic applications, antibody
imaging can provide targeting and dosimetry information that can guide therapy. For example,
both 131In-labeled Bexxar and 111In-labeled Zevalin can be used in combination with 90Y
and 131I radioimmunotherapy, respectively, in patients with B-cell lymphomas. Image-guided
therapies would be beneficial to other malignancies as well, and antibodies, due to their
biological specificity, continue to be a promising avenue for developing new imaging probes
for targeted treatment planning and monitoring.

The discipline of molecular imaging is one of the most rapidly growing areas of science. It
offers the ability to visualize, characterize and measure processes on molecular and cellular
levels non-invasively in living systems. The key players for obtaining this information are the
molecular imaging agent (probe or tracer) and the target which can be intracellular or cell
surface proteins. Radiolabeled probes for SPECT or positron emission tomography (PET),
offer visualization of physiological and biochemical changes. Conventional imaging
modalities on the other hand [radiography, ultrasonography (US), computed tomography (CT)
and magnetic resonance imaging (MRI)], offer visualization of non-specific changes related
to morphology. PET is a highly sensitive radiotracer imaging modality with only 10−11 –
10−12 mol/L levels of probe required for detection 1. Although numerous tracers for imaging
cancers by PET have been developed, only the glucose analogue [18F]fluoro-2-D-
deoxyglucose (FDG) which is a substrate for hexokinase in glucose metabolism, and [18F]
fluoride ions such as 18F-NaF2 for bone imaging (incorporated in the hydroxyapatite crystals
in bone) are approved by FDA as PET probes. The major issues associated with FDG are non-
specific and elevated uptake in inflammatory or infectious lesions, and variable physiological
uptakes in normal tissues/organs that can be confused with malignant neoplasm 2. In addition,
lack of uptake in metabolically inactive malignant tissues will fail to be detected by FDG-PET.
One approach to overcome the limitations of FDG-PET is to use targeting molecules/ligands
that can specifically localize to cell-surface markers such as growth factor receptors, adhesion
molecules, and differentiation and activation markers. Targets that have been subjected to
intense research for oncological molecular imaging include angiogenesis 3, apoptosis 4, signal
transduction and protein interaction networks 5, receptor- or enzyme-based 6, 7 and metabolic
imaging 8 as well as inquiries about multidrug-resistance 9, 10 and gene delivery and expression
11. Identification and validation of novel molecular markers have introduced several new
targeted drugs into the clinic. Additionally, technical advances in instrumentation have enabled
the combination of anatomy and molecular events into a single image through fused imaging
modalities such as PET/CT, PET/MRI and SPECT/CT.

Today’s antibody engineering technologies enable routine production of novel fully human or
humanized mAbs from display libraries or from immunized transgenic mice carrying human
immunoglobulin genes. Despite the development of non-immunogenic antibodies, only
HumaSPECT (not approved in US) is human amongst the diagnostic mAbs/Fab listed in Table
1. A major disadvantage of using intact antibodies as imaging probes is that they circulate in
the blood for several days. Early studies of antibody-based imaging agents showed that blood
clearance was inversely related to the size of the protein i.e. clearance rate of Fab or Fab’ > F
(ab’)2 > IgG 12, 13. For this reason Fab fragments, produced by proteolytic digested mAbs were
developed into imaging agents (Table 1). However, the disadvantage of this fragment is that
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it has only one antigen binding site (monovalent), which reduces the overall functional affinity
(avidity) of the antibody. The production of genetically engineered antibody fragments of
different sizes and valencies started with the introduction of a single-chain variable fragment
(scFv, 25 kDa) (Figure 1) 14, 15. Using scFv as building block, larger antibody fragments such
as diabodies (dimers of scFv, 50 kDa), minibodies (dimers of scFv-CH3, 80 kDa) and scFv-Fc
dimers (105 kDa) have been generated (Figure 1) 16. These fragments have exhibited better
tumor penetration, faster clearance kinetics and excellent tumor to blood ratios, which are
desirable properties for an imaging probe. The blood clearance and tumor uptake curves of
radioiodinated anti-carcinoembyonic antigen (CEA) scFv, diabody, minibody and a rapid
clearing scFv-Fc fragment are shown in Figure 2. The rapid elimination has been attributed to
their size and lack of interaction with the neonatal Fc receptor (FcRn).

Once the optimal antibody-based vector has been generated they can be tagged with
radionuclides (PET, SPECT), magnetic nanoparticles (MRI) or fluorescence/bioluminescence
(optical) probes that enable a variety of imaging modalities. Although PET is more sensitive
than SPECT, the latter offer advantages such as broad availability and lower costs of
radioisotopes and γ-scanning instruments. In addition, since SPECT radionuclides emit
photons with different energies, several biomarkers can potentially be distinguished at the same
time, as opposed to PET radionuclides which all emit the same energy photons (511 keV). MRI
is a powerful imaging modality with regards to high spatial resolution (≤ 100 microns) and
tomographic capabilities, but the low signal sensitivity has been a major limitation for
molecular imaging. However, the recent development and the increased sensitivity of
magnetism-engineered iron oxide (MEIO) nanoprobes obtained when conjugated to Herceptin
may make antibody fragments attractive MRI imaging agents 17. The extremely high sensitivity
of optical imaging approaches (10−15 – 10−17 mol/L for bioluminescence; 10−9 – 10−12 mol/
L for fluorescence 18) for real-time imaging of small animal models provide low cost
alternatives to nuclear medicine imaging approaches. The major disadvantage of optical
imaging using visible light is poor tissue penetration (<1 cm) due to scatter and absorption of
light. Bioluminescence has some advantages over fluorescence, since signal is produced in the
presence of substrate (no excitiation light source is needed) and there is no background
autofluorescence. However, for optical imaging, tomographic imaging remains a challenge.
This review focuses on the use of engineered antibody fragments as probes or vectors for non-
invasive imaging of tumors, with an emphasis on nuclear medicine applications.

RECOMBINANT ANTIBODY FRAGMENTS FOR IMAGING
1. Monovalent single-chain Fv fragments

The scFv fragment consists of variable light (VL) and heavy (VH) domains joined by a flexible
peptide linker that can be 12–25 residues long (Figure 1). The resulting protein being 1/6 of
the size of an intact antibody (150 kDa) retains the specificity and affinity of the parental
antibody. Although the V domains can be in either orientation i.e. VL-linker-VH or VH-linker-
VL, the orientation can affect expression 19, 20, stability and antigen binding activity 21. Early
biodistribution and imaging studies in planar gamma cameras revealed that although scFv
molecules cleared very rapidly from blood, they were able to localize efficiently to their target
22–27. However, issues with direct iodination such as loss of immunoreactivity and
deiodination reduce the signal in the target tissue. For this reason scFv molecules have been
radiolabeled with radiometals and other radionuclides. Several groups have used
technetium-99m for two reasons: 1) its short physical half-life (6 h) is compatible with the
short biological half-life of scFv, and 2) carrier-free 99mTc is generator produced and readily
available in hospital nuclear medicine departments. Genetic engineering approaches for site-
specific 99mTc-labeling have been created by C-terminal addition of a cystinyl peptide (G)4C
28 or a cys-his6 peptide 29 for chelation chemistry, metallothionein-myc peptide for direct
radiolabeling 27 and his6 tag for using Tc(I)-carbonyl complex 30. Radiometal labeling of scFv
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with 177Lu and 111In following conjugation to DOTA or DTPA, respectively 31, 32 resulted
in elevated kidney retention and only a few %ID/g in the tumor in xenograft-bearing mice.
When a disulfide stabilized anti-Tac scFv (dsFv) radiolabeled with 18F was evaluated in
ATAC4 tumor bearing mice, maximum retention in the tumor was 4.2% ID/g at 45 min p.i.
and maximum retention in the kidneys was 303% ID/g at 15 min p.i. 33. Thus, kidneys are the
dose-limiting organ of this fragment. Fluorescence imaging using fluorescent-conjugated scFv
molecules for non-radioactive immunedetection of tumors has also been investigated 34, 35.
Using cyanine fluorochromes Cy7 (infrared) and Cy5.5.18 (far infrared) rapid secretion via
the renal route was observed early whereas strong accumulation of fluorescence in tumor was
evident at 24 h p.i.

The major limitations of scFv molecules are low functional affinity and short in vivo half-life
(Figure 2) due to their valency and small size, respectively. Consequently, rapid dissociation
from the target antigen due to monovalent binding will result in modest retention time in the
target and potentially poor image quality 36. Still they remain attractive candidates as they can
easily and cost effectively be expressed in bacteria. To extend the in vivo half-life, scFv
molecules have been conjugated to polyethylene glycol (PEG) polymers and human serum
albumin (HSA). Following site-specific PEGylation of 5, 20 and 40 kDa maleimide–PEG
polymers to a scFv, prolonged biological half-lives in vivo correlating to the molecular mass
of the polymer was observed 37. HSA has a serum half-life of 19 days and Yazaki et al 38 fused
HSA to anti-CEA T84.66 scFv molecule and evaluated the fusion molecule by both SPECT
and PET using different radionuclides. SPECT images with 125I and 111In-DOTA-labeled
scFv-HSA demonstrated rapid clearance and excellent tumor uptake. PET imaging was carried
out with one tumor bearing mouse injected with 64Cu-DOTA-scFv-HSA. In this animal, tumor
localization was evident at 4 h which reached highest intensity at 24 h p.i. The anti-CEA scFv-
HSA fusion protein primary clearance route was through the liver (MW = 90 kDa). It exhibited
significant slower blood clearance and a higher tumor uptake than the minibody 39. These
results are encouraging and be utilized as an alternative way to overcome the very rapid
clearance of scFv fragments.

2. Di- and multivalent single-chain Fv fragments
The monovalency of scFv is a significant limitation to tumor retention and numerous
approaches to genetically engineer monovalent scFv into multivalent fragments with greater
avidity have been pursued. Joining two anti-TAG-72 CC49 scFv molecules in tandem to
produce divalent sc(Fv)2 have resulted in spontaneous dimerization to a tetravalent [sc
(Fv)2]2 with affinity and tumor retention similar to the intact parental antibody, but with a more
rapid blood clearance 40. In vivo studies with 99mTc-CC49 sc(Fv)2 and [sc(Fv)2]2 demonstrated
longer blood clearance and higher tumor retention with the tetravalent [sc(Fv)2]2 41. Chemical
cross-linking of anti-TAG B72.3 scFv molecules using bis-maleimide cross-linkers have been
employed to produce dimers or trimers 42. Both exhibited rapid clearance and similar tumor
uptakes (~10% ID/g at 24 h p.i) in vivo, but high kidney retention was observed only with the
radiometal labeled dimer. In another study, SPECT imaging of tumor bearing mice injected
with a covalent linked 125I-sc(Fv)2 (divalent) against placental alkaline phosphatase (PLAP),
showed improved tumor uptake and longer retention time in the tumor compared to the
monomeric scFv 43. Similarly, improved tumor uptake over the 741F8 scFv monomer was
achieved when it was made into a dimer, bridged via a C-terminal gly4cys2 peptide 44.

Use of multimerization domains or sequences to produce high avidity scFv molecules has also
been explored. Streptavidin-scFv fusion for production of tetravalent and bifunctional scFv
molecules 45, 46 has largely been exploited for in vivo pretargeting approaches for delivery of
therapeutics conjugated to biotin 47–51. However, streptavidin-based pretargeting approaches
have two potential limitations: renal toxicity 50 and highly immunogenic streptavidin 52. PET
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imaging using 68Ga-DOTA-biotin-streptavidin revealed high blood-pool and renal activities
at 90 min p.i. 50. SPECT images of 67Ga-DOTA-biotin after pretargeting with succinylated
anti-TAG-72 CC49 scFv-streptavidin showed targeting to the tumor (3.8% ID/g at 24 h).
Biodistribution data showed that activities in blood and organs were below 1% ID/g and that
there was 30% reduction of kidney uptake relatively to the control. Recently two research
groups have used collagen derived sequences to produce scFv-trimers 53, 54. Fluorescent
imaging was carried out with anti-CEA MFE-23 and anti-laminin L36 scFv molecules fused
to the N-terminal collagen XVIII NC1 subdomain that forms non-covalent bound trimers of
collagen alpha chains 54. The so-called “trimerbodies” were labeled with the near-infrared
fluorochrome cyanine-5 (Cy5) and administered to tumor bearing mice. Strong signal was
observed in the tumors as early as 3 h p.i. that persisted to 48 h, whereas mice injected with
control trimerbody showed no signal in the tumors. Monomeric scFv showed localization to
tumor at 3 h only, but at a much lower level. Another domain that has been used used for
multimerization of scFv is the p53 tetramerization domain 55–58. Various versions of leucine
zippers or four-helix bundles have been fused to scFv C-terminus via IgG3 hinge region for
production of dimers 59, 60. In vivo studies with these dimers, demonstrated intermediate blood
clearance activity relatively to the monomer and the intact antibody 60. In a later study, tumor
targeting of mono-, di-, and tetrameric variants of anti-Her2 4D5 scFv was compared 58. C-
terminal helix-turn-helix domain and human p53 protein was used to make dimers and
tetramers, respectively. In vivo, the 99mTc-labeled tetramer demonstrated the longest serum
persistence and highest tumor accumulation (4.3% ID/g at 24 h p.i.). Other multimerization
domains that have been used are C4 binding protein to produce scFv octamers 61, and recently
dimeric and tetrameric scFv molecules fused to uteroglobin was described 62. However, these
have not been evaluated in vivo. The above in vivo studies provide compelling evidence that
the avidity effect is important for tumor retention. In addition, since blood clearance is inversely
related to the size, the larger sized antibody fragments all demonstrate slower clearance and
longer exposure to the target, thus improving tumor targeting and retention.

Conjugation of scFv to nanoparticles has also been described 63–65. One study used anti-Her2
quantum dot-conjugated immunoliposomes-based nanoparticles (QD-ILs) for optical imaging
of xenografts 64. These nanoparticles consisted of a liposomal core with incorporated PEG-
linked anti-HER2 scFv and QDs. In vivo studies revealed that the QD-ILs exhibited
intermediate clearance (T1/2 = ~2.9 h) relatively to free QDs (T1/2 <10 min) and free liposomes
(T1/2 = ~7.7 h). However, optical imaging showed that both targeted and non-targeted
nanoparticles exhibited equal tumor accumulation (~14% of total body fluorescence) at 24
hours p.i. The authors explained this was consistent with the enhanced permeability and
retention effect previously observed with long circulating liposomes. Thus, antibody mediated
in vivo targeting was not observed in this study. In another study, anti-MUC-1 scFv fragments
were conjugated to superparamagnetic iron oxide (SPIO) nanoparticles 63. At 24 hours after
injection, 5% ID/g was in the tumor as shown by whole-body autoradiography. In a recent
study, an anti-epidermal growth factor receptor (EGFR) scFv was conjugated to surface
functionalized QDs and magnetic iron oxide (IO) nanoparticles 65. In vivo targeting of both
nanoparticles following systemic delivery was demonstrated in an orthotopic pancreatic cancer
model. Frozen tissue sections of mice injected with anti-EGFR-scFv-QD were examined by
fluorescence microscopy, whereas mice injected with anti-EGFR-scFv-IO were evaluated by
MRI imaging. Higher tumor uptake than background activity was observed with both
nanoparticles. However, uptakes were also observed in the liver and spleen, although lower
than those seen with the non-targeting nanoparticles.

3. Diabody (scFv dimer)
The easiest approach to engineer scFv dimers and higher orders of multimers is shortening the
linker to <10 residues between the variable domains. The shorter linker opens up the scFv and
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forces it to cross-pair with another scFv molecule to form a non-covalent bound dimer that is
called diabody (Figure 1) 66. By reducing the linker length further (≤ 3 aa) non-covalently
bound scFv trimers and tetramers can be produced 67. However, the pattern of oligomerization
is not straight forward as it is influenced by the variable domain sequence and their orientation
in the scFv fragment 68. The stability of trimers and tetramers is an issue as demonstrated in
vivo with an 111In-labeled anti-Lewis Y trimeric/tetrameric “multimer” 69. Although tumor
retention at 6 hours p.i. was similar to that with the F(ab’)2 at 24 hours p.i, high renal
accumulation was observed which was probably due dissociation into monomers. The authors
conclude that instability will prevent development of these fragments into imaging agents.

Diabodies on the other hand form stable non-covalent dimers that have been shown to have a
slightly longer blood clearance than scFv molecules (Figure 2). The larger size (50 kDa) and
divalency have been attributed to their improved tumor uptake 70. Early SPECT imaging
studies with that 123I-labeled anti-CEA T84.66 diabody demonstrated that tumors could be
readily imaged at 6 h p.i 71. This fragment reached a maximum tumor uptake at 2 h of 13.68
(1.49)% ID with a tumor to blood ratio of 2.9. At 6 h the activity in the tumor was 9.23(0.44)%
ID/g and the tumor to blood ratio was 9.4. The uptake in the tumor at 24 h was similar to that
of another anti-CEA, CB/ior-CEA.1, diabody (5 aa linker) that showed accumulation of 3.1%
ID/g at 24 hours 72. The anti-CEA T84.66 diabody has been radiolabeled with several different
positron emitting radionuclides (18F, 64Cu, 124I) and evaluated in tumor-bearing mice by small
animal PET (Figure 3A). 124I –labeled diabody exhibited excellent, high contrast images with
target to background ratios of 3.95 at 4 h and 10.93 at 18 h 73. Less contrast was achieved
with 64Cu-DOTA diabody (Figure 3A). The anti-CEA diabody was also radiolabeled
with 18F using N-succinimidyl-4-18F-fluorobenzoate (18F-SFB) and evaluated by PET imaging
in xenografted mice 74. Clear delineation of the positive tumor was obtained as early as 1 hour
after injection of the 18F-FB-T84.66 diabody with clearance predominantly via the kidneys.
This study suggests that the diabody is compatible with a short lived radionuclide for same day
imaging.

Enzymes that can catalyze a light-producing reaction (a process called bioluminescence) are
known as luciferases. The light is produced following injection of a substrate for the enzyme.
Luciferases are mainly used as reporter genes with firefly luciferase being the most commonly
used for imaging 75. Other luciferases such as renilla luciferase (RLuc) and gaussia luciferase
(GLuc) from the sea pansy Renilla reniformis marine copepod Gaussia princeps, respectively,
have been fused to the anti-CEA diabody and evaluated by optical bioluminescence imaging
(Figure 3B) 76, 77. Signal in the tumor was observed from 2 to 24 h with the diabody-RLuc8
variant with the highest intensity at 4 to 8 hours p.i. 77. The tumors in mice injected with
diabody-GLucΔ15, also exhibited highest intensity at 4 hours p.i 76. However, although the
diabody-GLucΔ15 was brighter than diabody-RLuc8 in vitro, the overall in vivo performance
of diabody-GLucΔ15 was poorer than that of the diabody-RLuc8 with regards to stability,
tumor uptake and sustained targeting out to 24 hours p.i. Still, these studies show that diabodies
can be used as targeted vehicles to carry functional units for optical imaging of cell surface
targets.

Diabodies to several other targets have also been evaluated in vivo. The human anti-Her2 C6.5
diabody is another well-characterized antibody fragment that has demonstrated significant
tumor uptakes (~6.5 %ID/g and a tumor-to-blood ratio of about 9 at 24 hours p.i.) in xenograft-
bearing animals 70, 78. This diabody was radiolabeled with 124I using both direct and indirect
labeling methods 79, 80. PET images of mice bearing Her2-positive xenografts following
injection of directly radioiodinated diabody, showed excellent localization to tumors as well
as significant uptake in the thyroid and stomach which are the natural sites of iodine
metabolism. Indirectly labeled diabody with the water-soluble form of Bolton-Hunter reagent,
SHPP, on lysine residues attenuated the uptake of free, metabolized radioiodine in thyroid and
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stomach but did not enhance the uptake in the tumors 80. Animals injected with SHPP-labeled
diabody had a higher retention of radioactivity in non-targeted tissues than animals injected
with directly labeled diabody, resulting in a higher background signal in the images. However,
tumors were clearly delineated at 48 hours p.i. More recently, a humanized anti-PSCA diabody
was evaluated by PET imaging in mice bearing prostate xenografts following radioiodination
with 124I 81. In this study, activity in the tumor was observed at 4 hours with most of the activity
gone at 20 hours p.i., but the highest tumor-to-background-ratio was obtained at 12 hours p.i.
Better tumor accumulation in human prostate xenografts was recently achieved with 86Y-CHX-
A”-DTPA-antimindin/RG-1 19G9 diabody 82. At 48 h post injection, significant accumulation
of activity was seen in the tumors by PET, whereas no activity in the tumor was detected with
the scFv monomer. Diabodies against PSCA and Her2 have also been radiolabeled with 18F-
SFB and evaluated by PET in xenograft bearing mice 83, 84. Localization to tumors and high
contrast images were obtained by 4 to 6 hours p.i. suggesting that that the half lives of the
nuclide and the antibody fragment were compatible for early imaging.

One issue with radiolabeling smaller antibody fragments is that reactive residues may be
present in critical regions of the antibody. For this reason approaches for site specific
modification have been developed. The anti-ED-B domain of fibronectin L19 diabody and two
variants with different 99mTc binding motifs (i.e. Gly3CysAla or His6 peptide for direct site-
specific radiolabeling) C-terminally were evaluated in murine F9 teratocarcinoma tumor-
bearing mice 85. Although the in vitro binding to ED-B fibronection was the same, their
biodistribution differed. All three showed similar tumor uptakes of 7.7–9.4% ID/g at 3 hours
that was reduced to 2.8–5.7% ID/g at 24 hours p.i. The L19 Db that was randomly chemically
modified by a MAG2-type chelator and indirectly radiolabeled demonstrated slower blood
clearance than the L19 Db-Gly3CysAla which resulted in a higher background activity in the
scintigraphic images. The L19 Db-His6 showed elevated accumulation of radioactivity in the
kidneys (145% ID/g at 3 hours) in comparison to the other two Db variants (8.6 and 15.2% ID/
g at 3 hours). At 24 hours the activity of L19 Db-His6 in the kidney was reduced to 72.4% ID/
g versus 2.6 and 3.0% ID/g of the other two diabodies. The authors conclude that L19 Db-
Gly3CysAla showed the most favorable biodistribution and imaging properties which could
potentially be useful to image angiogenesis-associated ED-B fibronectin-expressing tumors.

Another approach has been to add a C-terminal cysteine, preceded by two glycines, to diabodies
for thiol-chemistry 86. Cys-diabodies against CEA, Her2, CD20 and PSCA have been
generated and shown that this fragment will exists exclusively as disulfide-bonded dimer that
can be reduced and chemically modified using a thiol-specific bifunctional chelating agent, for
attaching radionuclides 86, fluorophores 87 and for targeting nanoscale particles such as
quantum dots (Qdots) 88. The anti-CEA cys-diabody was evaluated in vivo following site
specific radiololabeling with 64Cu to a macrocyclic chelate DOTA peptide–hexanevinyl
sulfone (DOTA-GLGK-HVS) conjugated to the C-terminal cysteine 86. The 64Cu-DOTA-
GLGK-HVS Cys-diabody behaved similarly to its parental diabody with specific targeting to
tumors observed by PET imaging at 4 and 18 h post-injection. More recently an anti-CD20
cys-diabody was compared with its parental diabody by PET imaging following random
radiolabeling with 124I 89. Again, very similar biodistribution was observed for the two
fragments suggesting that the tethering of the C-termini of the diabody subunits did not affect
the in vivo tumor targeting and blood clearance properties. Thus, this format appears to be a
general platform for site-specific conjugation of antibody fragments with functional payloads.

4. Minibody (scFv-CH3 dimer)
To overcome the accumulation in the kidneys seen with the diabodies, larger fragments that
the exceeded the renal clearnce threshold (<60 kDa) have been designed (Figure 1). For
example, human immunoglobulin constant domains have been used to produce intermediate-
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sized antibody fragments with longer serum-half-lives (6–11 hours) (Figure 2). The first scFv
molecule that was joined to human IgG1 CH3 domain was derived from the anti-CEA T84.66
mAb and was referred to as a minibody 90. The fusion was either by a two amino acid spacer
(LD minibody) that formed non-covalent dimer or via the human IgG1 hinge and a flexible
linker peptide (FLEX minibody) that formed covalent dimers 90. The 123I-FLEX minibody
exhibited superior tumor targeting (32.9% ID/g) at 6 hours after injection, relatively to that of
the 123I-LD minibody (16.4% ID/g) which had substantially faster blood clearance kinetics.
At 6 hours, the tumor-to-blood ratio of FLEX-minibody was only 2 which increased to 64.9
at 48 hours p.i. Initial SPECT images with the anti-CEA 123I-minibody showed localization
to the tumors at 4 hours, and that the background was almost completely cleared at 19 hours
allowing distinct delineation of the tumors. As a result of these initial studies, the FLEX
minibody format was used in all subsequent studies.

ImmunoPET with the anti-CEA minibody is shown in Figure 3. This minibody demonstrated
its suitability as an imaging agent with rapid high-level accumulation of activity in xenografts
and rapid disappearance from the circulation 73, 91. Serial small animal PET imaging
with 64Cu-DOTA-minibody demonstrated rapid and specific localization to the positive tumor
with increasing accumulation of activity over time (from 2 to 24 hours p.i.) that was >20% ID/
g at 24 hours with a tumor-to-soft-tissue ratio of 6 91. As expected, high persistent activity in
the liver was also seen with activity moving into the GI-tract at the late time-point. PET images
with 124I-minibody produced excellent images at 18 hours p.i. with tumor uptakes of 21% ID/
g and tumor-to-background ratio of 26.2 73. The high ratio is due to the rapid clearance from
the blood combined with fast metabolism and clearance of radioiodine from non-targeted
tissues. In comparison to FDG scan, both radiometal labeled and radioiodinated minibody
produced a much cleaner and higher contrast image.

Minibodies have also been produced against Her2 and prostate stem cell antigen (PSCA)
expressed in breast and prostate cancers 92–94. Although both anti-Her2 and anti PSCA
minibodies demonstrated similar pharmacokinetics to the anti-CEA minibody and localized
specifically to tumors, they accumulation in tumors was considerable lower. Activity in the
tumor was about 5% ID/g at 12 to 24 h with anti-Her2 131I-10H8 minibody with tumor-to-
blood ratios of 1.1 at 12 h that increased to 3 at 48 hours 94. This lower activity was explained
by internalization of the minibody upon binding, followed by metabolism and rapid excretion
of radiolabel from the cells. Biodistribution with anti-Her2 111In-DOTA-10H8 minibody
demonstrated that the radioactivity remained in the tumor, increasing the tumor-to-blood ratio
to 13.3 at 48 hours p.i. 93. Unexpectedly, the kidneys contained higher activity than the liver
which was attributed to the presence of a cross-reactive antigen. A different minibody derived
from Herceptin (Herc. Mb) was evaluated by PET (Figure 4) 93. Although PET imaging with
anti-Her2 64Cu-DOTA-4D5v8 minibody showed targeting to positive tumor, only about 4%
ID/g was in the tumor from 4 to 48 hours p.i. Since the activities in the liver and kidneys were
3 to 4-fold higher, high background and less contrast were achieved with this fragment. When
this fragment was radioiodinated with 124I, less activity was seen in the tumor, whereas clear
delineation of the tumor was achieved with the anti-Her2 124I-C6.5 minibody (Figure 4). This
difference is probably due to different affinities of the fragments and that C6.5 internalization
rate varies in different cell lines 95. Biodistribution with the anti-PSCA 131I-2B3 minibody
resulted in accumulation of 9% ID/g in the tumor, and the tumor-blood-ratio was 2.8 at 21 hour
p.i. 92. Figure 4 shows PET imaging with the anti-PSCA 124I-2B3 minibody. Specific
localization to PSCA expressing LAPC-9 xenografts, with uptake of 5.2% ID/g and tumor-to-
blood ratio of 1.1 at 21 hours was achieved 92. This was close to the uptake (6.6% ID/g)
obtained with the intact parental antibody at 168 hours p.i. 96. Thus, in this tumor model early,
good contrast images of PSCA expressing xenografts were obtained with the minibody.
Recently, a minibody against CD20 antigen expressed on B-cell lymphoma was generated from
rituximab (Rituxan, Genentech) 97. This fragment differed from the above minibodies in that

Olafsen and Wu Page 8

Semin Nucl Med. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the 218 linker 98 was used between the variable domains, and the scFv was fused to the
complete human IgG4 hinge and CH3 domain. PET images with anti-CD20 64Cu- and 124I-
rituximab minibody (Rx. Mb) are shown in Figure 4. The 124I-rituximab minibody showed
excellent targeting (12.9% ID/g) to tumor with very little activity in negative tumor and other
tissues and a tumor to blood ratio of 7.5 at 21 hours, whereas less contrast was obtained with
the 64Cu-DOTA-Rx. Mb 97. These studies show that although the pharmacokinetics is similar
for this antibody fragment format in the different animal models, tumor uptake varies
depending on factors such as antigen expression, whether the target internalizes or not upon
antibody binding, radiolabel and specificity/affinity.

Another similar sized antibody fragment referred to as “small immunoproteins” (SIP)
consisting of scFv joined to the CH4 domain of the secretory isoform S2 of human IgE for
dimerization and further stabilized by a C-terminal disulfide bond has been generated 99. Tumor
targeting of anti-ED-B domain of fibronectin L19-SIP was 2–5 times higher than that of
(scFv)2, reaching a maximum uptake at 4–6 hours p.i. Accumulation of radioactivity in the
mouse embryonal teratocarcinoma F9 tumor model was 3–4 times higher (12–18% ID/g) than
in SKMEL-28 tumor model due to their difference in angiogenic activity. Although PET
imaging of 76Br-L19-SIP showed accumulation in F9 tumors from 5 to 48 h, persistent activity
in the blood and stomach due to debromination resulted a tumor to background ratio of <2 at
48 hours p.i 100. Recently, this fragment was radiolabeled with 124I and evaluated in mice
bearing human head and neck squamous cell carcinoma (HNSCC) FaDu xenografts 101. In this
model, tumor accumulation reached a maximum of approximately 11% ID/g at 6 hours p.i.,
and at 48 hours the tumor uptake was about 5% ID/g and the tumor to blood ratio was 13.5
which increased to 45.9 at 72 hours. This was in concordance with 131I-labeled L19-SIP
biodistribution, thus authors conclude that imaging with iodine-124 can be used to
predict 131I-L19-SIP biodistribution. Another SIP has been made from affinity matured human
anti-tenascin-C G11 mAb 102. However, only 0.85% of ID/g of 125I-G11-SIP accumulated in
U87 human glioblastoma zenografts at 24 hours p.i. which was similar to the tumor uptake
(0.71% ID/g) of 125I-labeled G11 scFv alone at 24 hours. The authors do not address this low
uptake and one can only speculate that such low uptake was due to instability of the protein,
low antigen expression in target and/or internalization of the G11-SIP with rapid
dehalogenation and secretion of the label in this tumor model.

Recently, a so-called “miniantibody” against mindin/RG-1 composed of IgE-CH4 dimerization
domain and IgG1 hinge and modified first β-strand peptide residues of IgG1 CH2 was evaluated
by PET following conjugation of CHX-A”-DTPA and radiolabeling with 86Y 82. At 24 hours
p.i. about 4% ID/g was in the blood and about 13% ID/g was localized to LNCaP (prostate
cancer) xenografts. At 72 hours p.i. the tumors were still visible and the background activity
was greatly reduced. When the same fragment was labeled with 111In, biodistribution studies
revealed that the activities in the tumors and blood at 48 hours were approximately 14% ID/g
and 1% ID/g, respectively. This resulted in a tumor to blood ratio that was better than that of
the intact antibody (2.2 to 1), but worse than that of the diabody (80 to 1) at 48 hours p.i. Thus,
the authors conclude that the diabody may be more suitable for radiodiagnostic applications.

5. scFv-Fc (scFv-CH2-CH3 dimers)
Larger antibody fragments that include the entire Fc region (Figure 1) have also been evaluated
by small animal PET imaging (Figure 5). However, the neonatal Fc receptor (FcRn) which
binds to the IgG Fc region is responsible for the prolonged serum half-life of intact antibodies
and imaging with intact antibodies requires days to clear from the blood in order to produce
high contrast images. However, clearance can be tailored by modifying the FcRn interaction
in the Fc region. This was elegantly shown in a study with anti-CEA T84.66 scFv-Fc fragments
103. Site-specific mutations of the IgG1 Fc residues involved in this interaction resulted in five
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variants (I253A, H310A, H435Q, H435R, and H310A/H435Q) that each exhibited distinct
blood clearances in mice that ranged from 83.4 to 7.96 hours, which was much faster than that
of the wild-type (~12 days). SPR analyses using human FcRn, also demonstrated binding of
scFv-Fc WT whereas no interaction was obtained with the scFv-Fc H310A/H435Q
fragment104. These fragments were also radioiodinated with 124I and evaluated by PET in
xenografted mice. Although the wild-type had the highest tumor uptake (42.5% ID/g at 48 h
p.i.) it also had the lowest contrast relatively to the intermediate clearing (I253A and H310A)
and the fast clearing (H310A/H435Q) scFv-Fc fragments. The blood clearance of the scFv-Fc
DM shown in Figure 2A, demonstrates that this fragment persists longer in the circulation than
the minibody fragment that results in high tumor uptake (Figure 2B). The PET images
of 124I- and 64Cu-DOTA- scFv-Fc H310A/H435Q also referred to as scFv-Fc double mutant
(scFv-Fc DM) show high, specific tumor uptakes in xenografts (Figure 5A). The
pharmacokinetics of radioiodinated versus radiometal-labeled I253A, H310A and H310A/
H435Q scFv-Fc variants were further evaluated in xenografted mice in order to predict their
therapeutic potential 105. Tumor uptakes were inversely related to blood clearance and hepatic
radiometal activity correlated with the blood clearance rate of the fragment i.e. faster clearance
resulted in higher activity. Based on the biodistribution data with 125I and 111In, it was predicted
that the fast clearing scFv-Fc DM would be able to deliver >7,000 cGy to the tumor with
favorable tumor to liver and kidney ratios when radiolabeled with 131I, whereas as for 90Y
therapy a slow clearing antibody would be the protein of choice as the liver/kidney activities
would be lower.

The scFv-Fc DM fragment has also been evaluated in other tumor models. An anti-Her2 scFv-
Fc DM fragment was evaluated by PET in xenografted mice following conjugation with DOTA
and radiolabeling with 64Cu 93. The scFv-Fc DM fragment exhibited over 2-fold improved
tumor targeting and reduced kidney activity relatively to the anti-Her2 minibody fragment
which was probably due to its slightly longer residence time in the blood. When this fragment
was labeled with 124I, very low activity was observed in the tumor. In another recent study, an
anti-CD20 scFv-Fc DM fragment with IgG4 Fc was evaluated in tumor bearing mice following
radioiodination with 124I (Figure 5B) 97. Although rapid tumor localization was observed, the
activities in the tumor and the blood were 2-fold lower than of the minibody. Such difference
was not observed with the anti-CEA (Figure 2A) and anti-Her2 fragments. Thus it appears to
be related to the change of IgG Fc isotype. Intact human IgG4 has been reported to clear faster
than human IgG1 in both humans and mice 106, 107. Consistent with this, a lower background
activity of the radioiodinated anti-CD20 scFv-Fc DM fragment than that of the anti-CEA scFv-
Fc DM at 18–20 hours p.i. was observed. Thus, the introduced mutations in IgG4 Fc may
accelerate the scfv-Fc fragment to clear faster than the minibody. Figure 5B also shows the
images obtained with 64Cu-DOTA scFv-Fc DM fragment.

A rapid method to generate scFv-Fc fragments targeting endothelial cell from binders isolated
from phage display libraries and in vivo evaluation by SPECT have been described 108. Using
this approach, three antibodies were identified that, when converted to scFv-Fc using mouse
IgG1 Fc, targeted the lungs in rats with uptakes of 30–40% ID/g at 1 and 2 hour p.i. Since the
blood activities were less than 2% ID/g, high contrast images were achieved early.

IMPACT OF ANTIBODY MODIFICATIONS ON IMAGING
From the numerous studies performed with the different engineered antibody fragments there
are several factors such as the molecular weight, Fc domains, valency and specificity that will
influence targeting and pharmacokinetics. Larger fragments above 60 kDa will clear via the
liver, whereas those below this size will clear via the kidneys. Presence of Fc domains will
increase the serum residence time, and increase the exposure time to the target. However, for
imaging purposes a more rapid clearance from the blood is warranted in order to increase
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contrast and sensitivity. Difficulties in localizing and accumulating activity in target tissue are
related to specificity and avidity (i.e. number of antigen binding sites). In addition, the number
of target antigen per cell and whether it internalizes or not will affect accumulation in target
tissue. Antibody mediated internalizing of targets followed by catabolism via lysozomal
targeting and protolytic degradation will reduce tissue uptake. The rate of antigen
internalization varies among different antigens. For example CEA internalizes slowly at a rate
of approximately 0.001 minutes−1 109, whereas Her2 has up to 100 times faster internalization
rate when associated with EGFR 110. This may explain the lower accumulation of activity in
Her2 tumors observed with 124I-labeled Herceptin minibody and scFv-Fc DM in Figures 4 and
5B. In contrast, tumor was clearly delineated with 124I-labeled C6.5 minibody (Fig. 5B). The
C6.5 diabody has been reported to differ in internalization rate in different cell lines [i.e.
relatively slowly by SK-OV-3 cells (10% in 3 hours) and rapidly by MDA-361/DYT2 cells]
95. Thus, it is possible that the C6.5 minibody internalizes more slowly than the Herceptin
minibody in this tumor model. Since it appears that the mAb and scFv internalization rates are
determined by antigen recycling, rather than antigen endocytosis 111, 112, antibodies with
greater dissociation rates than antigen internalization rates can minimize catabolism.

The presence of shed antigen in the blood will deplete the pool of free antibodies available to
reach the target. Once bound, the abnormal physiology in solid tumors limits inward diffusion
and extravasation across capillary walls into the surrounding tissue by the antibody due to
presence of a high interstitial fluid pressure gradient. Although smaller antibody fragments can
penetrate tumors better than larger fragments, the affinity of the scFv fragments has also shown
to affect tumor uptake i.e. as affinity increases, penetration decreases which is referred to as
the “binding-site barrier” 113–115. Anti-Her2 scFv with different affinities demonstrated that
a minimum binding affinity of 10−8 to 10−9 M was required for retention in tumors, as a scFv
with 10−7 M affinity failed to accumulate more than the negative control scFv 116. Increasing
the affinity to 10−10 to 10−11 failed to increase the tumor accumulation 114, 117. Thus, the higher
tumor accumulation of C6.5 minibody in Figure 5B may be due to the higher affinity of C6.5
IgG (5.4 × 10−11 M 118) versus that of Herceptin (5 × 10−9 M).

Other factors that may affect the targeting are the nature of label used and the labeling chemistry
employed. Several positron emitters for immunoPET are currently under investigation. These
can be grouped according to their physical half-lives (t1/2) that ideally should be paired with
the biological half-lives of the antibody fragments. Short-lived positron emitters are 68Ga
(t1/2 = 1.13 h) and 18F (t1/2 = 1.83 h) which are suitable for rapid clearing fragments such as
scFv and diabodies. Intermediate-lived positron emitters are 64Cu (t1/2 = 12.7 h), 86Y (t1/2 =
14.7 h) and 76Br (t1/2 = 16.2 h) which are suitable for antibody fragments with intermediate
clearance properties such as minibodies and modified scFv-Fc fragments. Long-lived positron
emitters are 89Zr (t1/2 = 78.4 h) and 124I (t1/2 = 100.3 h) which are suitable for intact antibodies
and scFv-Fc WT. Since long lasting radionuclides have been successfully used with rapid
clearing antibody fragments and produced excellent, high contrast images 73, 97, it does not
seem to be crucial to pair the physical and biological half-lives of the radionuclide and antibody,
respectively. One may consider the target and use bifunctional chelates for stable, indirect
radiolabeling chemistry when targeting rapid internalizing targets, as the label will be trapped
in the lysosomes leading to increased accumulation of activity over time. Since directly
iodinated proteins will be rapidly catabolized with the radioactivity excreted and eliminated
via the kidneys, only targets with slow internalization rates are suitable to be imaged with this
label. However, there are exceptions as demonstrated with C6.5 Mb in Figure 4. Another issue
is that critical residues may be modified and impair the function of the antibody, especially as
the fragment become smaller. If this is the case, site-specific conjugation and radiolabeling
chemistry can be employed in order to retain function.
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OTHER PROMISING NEW DIRECTIONS
Over the past 10–15 years, the antibody engineering field has moved towards even smaller
scaffolds, encompassing a range of protein domain-based frameworks that are neither
conventional antibodies nor peptides. These are characterized by small molecular size (single
polypeptide chain format), high stability (thermodynamic and chemical), high solubility, and
architecture suitable for modifications. Other attractive features may include high bacterial
expression for inexpensive production, absence of disulfide bonds and human origin. These
protein based reagents represent a new generation of highly specific and sensitive binding
molecules that are immunoglobulin or non-immunoglobulin based 119, 120. Immunoglobulin
based scaffolds include immunoglobulin variable fragments (Fv), single domain antibodies
from camelids and sharks, T cell receptor (TCR), cell adhesion molecules and fibronectin
domains. Among non-immunoglobulin based scaffolds are affibodies, ankyrins, adnectins,
avimers and anticalins.

Nanobodies® are derived from naturally occurring antibodies that lack the light chain. An anti-
EGFR llama single-domain antibody fragment (8B6 Nanobody; 12 kDa) was recently
evaluated for in vivo radioimmunodetection 121. The 8B6 Nanobody was radiolabeled
with 99mTc via its C-terminal histidine tag and evaluated in mice bearing high (A431) or
moderate (DU145) EGFR expressing xenografts by SPECT. Although rapid clearance (t1/2β =
1.5 h) from the blood was observed, a significantly higher radioactive uptake was seen in the
high EGFR expressing A431 xenografts, demonstrating specificity at 3 hours post injection.
Another camelid Nanobody targeting CEA was also radiolabeled with 99mTc on a hexahistidine
tag and evaluated for tumor targeting by SPECT 122. At 3 hours p.i. 3.2% ID/g was in the
positive tumor, which was 3 and 6 times higher than the activities in the negative tumor and
blood, respectively. Images showed specific localization to the positive tumor, and background
activities in the liver and kidneys.

Affibodies (7 kDa), derived from staphylococcal surface Protein A, are one of the most
characterized non-immunoglobulin based scaffolds (reviewed in 123). Affibodies to Her2 have
been radiolabeled with 125I, 111In, 99m Tc, for SPECT imaging and 18F for PET imaging. Clear,
high contrast images of the tumors were seen early in all the imaging studies performed.
However, high activity in the kidneys was observed with the radiometal labeled protein. The
anti-Her2 affibody has also been labeled with Alexa Fluor for near-infra red imaging. A second
affibody molecule against EGFR has also shown successful targeting of tumors in gamma-
camera imaging. A clinical pilot study demonstrated that anti-Her2 affibody could delineate
tumors as early as 2 hours after administration. Thus it appears that affibody may be favorable
molecules as alternative imaging agents.

CONCLUSIONS
It is clear that engineering antibodies for tumor targeting is not a trivial task as several factors
regarding the antibody and the target need to be taken into account. For imaging, homogeneous
tumor penetration is less important since heterogeneous distribution will still identify the tumor
provided that expression of surface molecules is sufficient to discriminate the target tissue from
background activity. However, the imaging time frame and radiation exposure to other tissues
are governed by specificity and blood clearance of the immunoprobe. Several intact antibodies
and to a lesser extent antibody fragments have been evaluated in patients (reviewed in 124,
125). Although preliminary clinical studies with antibody fragment with gamma-camera
imaging show encouraging results, to date only intact antibodies have been evaluated by PET.
As a result, there is great interest in clinical translation of antibody fragments and alternative
affinity scaffolds for tumor targeting with improved properties (i.e. rapid blood clearance),
ideal for molecular imaging of surface markers. In addition to enabling early, same day imaging
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of malignant lesions that will accelerate evaluation of patient care and treatment, antibody-
based molecular imaging tracers will play an important future role in the diagnosis and
management of cancer and other diseases.
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Fig. 1.
Schematic presentation of an intact antibody and engineered antibody fragments derived from
it including a single variable domain fragment (Fv), single chain Fv (scFv), diabody, minibody
and scFv-Fc. Molecular weights are indicated below each fragment. VL = variable light (light
green); VH = variable heavy (dark green), CL = constant light (pink); CH = constant heavy
(blue).
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Fig. 2.
Blood clearance (A) and tumor uptake (B) curves of radioiodine-labeled anti-CEA T84.66
antibody fragments in mice carrying subcutaneous LS174T human colon carcinoma
xenografts. Standard errors are shown. Uptake is expressed as percentage of injected dose per
gram (% ID/g). The scFv-Fc fragment, modified to clear quickly by the introduction of two
mutations in the Fc region that interfere the FcRn interaction, is referred to as double mutant
(DM). The longer persistence of radiolabeled fragments in the circulation leads to higher and
more persistent tumor uptakes, but longer times are required to obtain high contrast imaging.
Data are from 26,39,105.
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Fig. 3.
Small animal PET (A) and optical imaging (B) of anti-CEA T84.66 diabody in LS174T
xenograft-bearing mice 73,74,76,77. A. Coronal PET images of mice injected with diabody
following radiolabeling with different positron emitting radionuclides. Specific localization to
the positive tumor (arrow) and no localization to the negative C6 rat glioma tumors (arrowhead)
are seen in all the images. Renal clearance is evident at 4 hours p.i. with 64Cu- and 18F-labeled
diabodies which is expected for a fragment of < 60 kDa in size. High contrast imaging is
achieved with 124I-labeled diabody at 20 hour p.i. due to almost complete elimination of any
background activity, and a PET/CT overlaid image is shown for anatomical reference. B.
Bioluminescence imaging of mice injected with diabody-renilla (Db-RLuc8) and –gaussia
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(Db-GLΔ15) luciferase fusion proteins at 4 hours p.i. The control mouse injected with Rluc8
only is shown. Specific targeting to the positive tumor is seen with both fusion proteins.
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Fig. 4.
Small animal PET imaging of xenograft-bearing mice injected with 124I-labeled (top)
and 64Cu-DOTA minibodies (bottom) against different cell surface antigens. Minibodies
against CEA (T84.66 Mb) 73, CD20 (Rx. Mb) 97, Her2 (Herc. Mb) 93 were radiolabeled and
imaged with both radionuclides. The anti-Her2 C6.5 Mb and anti-PSCA 2B3 Mb 92 were
radiolabled with 124I only. All 124I-labeled minibodies, except the 124I-Herc. Mb, produce high
contrast images at 18–21 hours p.i. Less contrast is achieved with 64Cu-DOTA minibodies due
to high background activity. Hepatic clearance is evident with the 64Cu-DOTA minibodies as
expected for a fragment of > 60 kDa in size.
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Fig. 5.
Small animal PET imaging of xenograft-bearing mice injected with 64Cu and/or 124I-labeled
scFv-Fc double mutant (DM) fragments targeting CEA (A) and CD20 (D) 97,103. The
background activity of 124I-anti-CD20 scFv-Fc with IgG4 Fc is less (1.9% ID/g at 21 hours
p.i.) 97 than that seen with 124I-anti-CEA scFv-Fc with IgG1 Fc region (6.9% ID/g at 12 hours
and 2.8% ID/g at 24 hours p.i.) 105, suggesting a more rapid clearance rate of this anti-CD20
fragment. This is consistent with published observation of the different blood clearances of
human IgG1 and IgG4 isotypes. Again, 64Cu-labeled fragments produce less contrast
than 124I-labeled fragments and hepatic clearance is evident.
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