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Abstract
Individually randomized treatments are often administered within a group setting. As a
consequence, outcomes for treated individuals may be correlated due to provider effects, common
experiences within the group, and/or informal processes of socialization. In contrast, it is often
reasonable to regard outcomes for control participants as independent, given that these individuals
are not placed into groups. Although this kind of design is common in intervention research, the
statistical models applied to evaluate the treatment effects are usually inconsistent with the
resulting data structure, potentially leading to biased inferences. This article presents an alternative
model that explicitly accounts for the fact that only treated participants are grouped. In addition to
providing a useful test of the overall treatment effect, this approach also permits one to formally
determine the extent to which treatment effects vary over treatment groups and whether there is
evidence that individuals within treatment groups become similar to one another. This strategy is
demonstrated with data from the Reconnecting Youth program for high school students at risk of
school failure and behavioral disorders.

Methods for analyzing data from randomized experiments have been widely disseminated
for the case where the unit of randomization matches the unit to which treatment is
administered. Approaches for analyzing data in which individuals are randomly assigned to
individually administered treatments (e.g., individual therapy) are found in standard
univariate and multivariate texts (e.g., Maxwell & Delaney, 2004; Neter, Kutner,
Nachtsheim, & Wasserman, 1996). Approaches for analyzing data in which preexisting
(intact) groups (e.g., clinics, classrooms, or neighborhoods) are randomly assigned to group-
administered treatments, as in cluster-randomized designs, are also readily available (see
Murray & Blitstein, 2003; Murray, Varnell, & Blitstein, 2004; Raudenbush, 1997). These
latter approaches account for lack of independence of observations within group to protect
the nominal Type I error rate, either through adjustments of the test statistic and degrees of
freedom (e.g., Baldwin, Murray, & Shadish, 2005) or by use of a mixed-effects (multilevel)
model (e.g., Janega et al., 2004).

A third type of design is also common in practice yet has received comparatively little
methodological attention. Under this design, randomization to treatment is done on an
individual basis; however, the treatment is administered in a group setting so that multiple
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individuals receive the treatment together. The groups are not preexisting but rather are
formed by the investigator solely for the purpose of treatment provision. To avoid confusing
treatment conditions and treatment groups, we use the term arm to refer to the treatment or
control conditions and the term group to refer to a particular group of participants receiving
treatment together (where many such groups may exist that receive the same form of
treatment). For example, participants suffering from depression might be assigned to one of
two study arms: cognitive-behavioral group therapy (CBT) or control. Individuals assigned
to CBT are administered treatment within small groups. Control participants, in contrast, are
not placed into groups and have no particular relationship to one another. We refer to the
data structure generated by this kind of design as partially nested to indicate that participants
are nested within groups in at least one arm of the study, whereas in another arm of the study
they are not.

To ascertain the prevalence of this kind of design, we conducted a literature review of all
randomized experiments (N = 94) in four representative public health and clinical research
journals: the American Journal of Public Health (2003–2005), Evaluation Review (2004–
2005), Journal of Consulting and Clinical Psychology (2004–2005), and Prevention Science
(2003–2005). This review indicated that partially nested designs (N = 30; 32%) were more
common than group-randomized (fully nested) designs (N = 26; 27%) and almost as
common as individually randomized (nonnested) designs (N = 38, 40%). A prototypical
example of a partially nested design is provided by Carey et al. (2004), who randomized
drug rehabilitation outpatients to group therapy for HIV prevention or no-treatment control.

The grouping of participants within the treatment arm but not the control arm complicates
the evaluation of treatment effects. On one hand, observations within the control arm can
reasonably be assumed to be independent and hence do not require adjustment for grouping
effects. On the other hand, observations within the treatment arm will likely be correlated
within groups. This correlation could arise because group members promote preventative
behaviors via social support, because the fidelity of the treatment implementation differs
across groups, or because the effectiveness of treatment providers varies across groups.
Some group interaction effects may even interfere with treatment; for instance, through
contagion of tactics for needle sharing (see Weiss et al., 2005, for discussion of such
iatrogenic effects). Thus when participants within the treatment arm are clustered into
groups, the independence assumption of conventional statistical methods for individually
randomized designs will be violated.1 Yet, at the same time, models developed for fully
nested (group-randomized) designs are also not optimal, given the lack of a grouping
structure in the control arm of the study.

Despite their common occurrence, very few methodological papers have directly addressed
how applied researchers can appropriately evaluate treatment effects when using a partially
nested design. In an important exception, Hoover (2002) provided an adjustment for the
independent samples t test for the case when one sample consists of individuals within
groups and the other consists of ungrouped individuals. This method can be used to contrast
outcome measures for treated and control participants, but it does not generalize
straightforwardly to accommodate multiple treatment or control arms, pretest scores or other
covariates, additional follow-up measures, or nonnormal outcomes. Nor does it provide
direct information on the nature of the dependence in the data (e.g., variability in treatment
effects, homogenization of group behavior, etc.). Drawing on another suggestion made by

1A separate but related issue is the need to account for correlated observations generated by shared therapist effects. This issue has
been explored at length in a recent series of papers (see Crits-Cristoph & Mintz, 2001; Crits-Christoph, Tu, & Gallop, 2003; Serlin,
Wampold, & Levin, 2003; Siemer & Joormann, 2003a, 2003b; Wampold & Brown, 2005; Wampold & Serlin, 2000) and can arise in
either individually randomized trials, group randomized trials, or partially nested trials.
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Hoover, a pair of papers recently appeared in Clinical Trials offering an alternative
approach for the analysis of partially nested data using mixed-effects models (Lee &
Thompson, 2005; Roberts & Roberts, 2005). The latter approach is more flexible,
overcoming the limitations of the more specific analysis suggested by Hoover. Even in the
latter two papers, however, several key issues that arise specifically with partially nested
designs were left unaddressed (e.g., obtaining unbiased standard errors and appropriate
degrees of freedom, what to do with group-level covariates, and the validity of causal
inferences).

In light of the recency of these methodological contributions, it is unsurprising that our
literature review identified no cases of partially nested data structures that were analyzed
with either of the two aforementioned approaches. Of the 30 studies that fit this design, 87%
used analyses appropriate for individually randomized (nonnested) designs and the other
13% used analyses developed for group-randomized (fully nested) designs. None of the
studies in our sample reported analyses specifically tailored to reflect the partially nested
study design. In contrast, 65% of the fully group-randomized studies in our review properly
accounted for the grouping structure. The latter result corroborates Bland’s (2004) finding
that the proportion of group-randomized trials properly accounting for clustering increased
sharply from 1993 to 2003. We submit that this increase reflects the publication of a number
of methodological papers addressing the analysis of group-randomized trials (e.g., Murray,
1998; Raudenbush, 1997).

Although intervention researchers appear to be increasingly aware of the need to account for
dependence of observations in group-randomized trials, they remain unaware of methods to
account for dependence in partially nested designs. Indeed, under the impression that their
partially nested design could not be analyzed properly, Fromme and Corbin (2004) lamented
that “it was not possible to assess the impact of group composition on treatment outcomes
because there was no group setting for control participants who did not complete the classes.
However, it is possible that the group composition may have had an impact on the
effectiveness of the intervention …” (p. 1046). Other authors have similarly echoed
frustration at the gap between the complex experimental designs utilized in practice and the
simplified experimental designs presented as examples in the methodological literature. For
instance, Livert, Rindskopf, Saxe, and Stirratt (2001) remarked, “Although multilevel
models are increasingly being utilized … actual application of such models to program
assessment is complex and there are few examples (p. 155).”

In response, this article has four primary goals. Our first goal is to better explicate the logic
of the mixed-effects (multilevel) modeling approach of Roberts and Roberts (2005) and Lee
and Thompson (2005) for partially nested data. To do so, we juxtapose this approach with
models that are currently being applied to partially nested data but that assume a parallel
structure in both the treatment and control arms (either nonnested or fully nested). This
allows us to clarify why models originally developed for nonnested or fully nested data are
nonoptimal for partially nested data. Because both Roberts and Roberts and Lee and
Thompson considered relatively simple analysis scenarios, our second goal is to extend this
modeling approach to accommodate some of the more complex partially nested study
designs that commonly occur in practice, such as those that include covariates at the
individual and group levels, multiple treatment arms, and discrete outcome variables. In
particular, the incorporation of group-level covariates into models for partially nested data
has not been discussed elsewhere, despite its importance for elucidating sources of
variability in treatment effects. Our third goal is to demonstrate the application of these
models to partially nested data arising from an effectiveness study of the Reconnecting
Youth program for adolescents at risk of school failure and behavioral disorders. Finally, our
last goal is to provide a general discussion of the issue of causal inference in partially nested
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intervention studies, a topic that has heretofore been neglected in other papers concerned
with this type of study design. We now address each of these goals in turn.

APPROACHES TO THE ANALYSIS OF PARTIALLY NESTED DATA
In this section we first discuss the limitations of the two ways that partially nested data are
currently being analyzed, followed by an introduction to the basic model of Roberts and
Roberts (2005) and Lee and Thompson (2005). We specifically define partially nested data
to have the following structure: One subset of the data exhibits a hierarchical structure such
that individuals are clustered into groups, whereas another subset of the data consists of
independent individuals (with no clustering structure). Of interest is the particular case in
which participants in the treatment arm of a study are placed into groups by the
experimenter, but participants in the control arm of the study are not. To clarify the
assumptions and limitations of the analysis approaches, it is necessary to present exemplar
models in equation form. Very simple models, involving a single grouping variable
(treatment vs. no treatment) and a single posttest outcome, will suffice for these purposes,
but in the sections to follow we consider more complex (and more realistic) analysis
scenarios. In the equations presented here and throughout the remainder of the article, we
use notation consistent with Raudenbush & Bryk (2002), denoting individuals with the
subscript i and denoting groups with the subscript j. For the subset of individuals who are
not grouped, each individual comprises their own “group” of one.

Approach 1: Pretend No Observations Are Grouped
The first approach to analyzing partially nested data that we consider is a standard single-
level regression model. A simple example of such a model might be

(1)

where Y is the outcome variable at posttest; TREAT is an indicator variable scored 0 for
members of the control arm and 1 for members of the treatment arm; β0 is the regression
intercept, interpretable as the mean of Y in the control arm; and β1 is the regression slope,
interpretable as the expected difference in Y associated with being a member of the
treatment group (relative to the control group). The final term in the equation, the residuals
r, are assumed to be independent and normally distributed with constant variance,2 or

This implies that the (conditional) variance of Y in both the treatment and control arms of
the study is the same, with a value of σ2. In particular, the independence assumption is
highly problematic because the Y values for individuals within treatment groups will likely
be positively correlated. Incorrectly assuming independence for the data will then lead to
higher than nominal Type I error rates for tests of parameter estimates (e.g., treatment
effects), increasing the risk of identifying spurious effects. Conversely, in the presumably
less common situation that the observations are negatively correlated within groups (i.e.,
group members differentiate from one another), the Type I error rate will instead be too low,
depressing the power to detect a true effect.3

2Note that under these assumptions this model is equivalent to a standard two-sample t test. Formulating this test within the general
linear model will, however, facilitate the expression of later models.
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Approach 2: Pretend All Observations Are Grouped
A second approach to analyzing partially nested data is to specify a multilevel model for the
data. Multilevel models differ from traditional regression models in that they explicitly
include sources of variability at both the individual and group level. Traditionally, model
equations are written for each level of the data structure (i.e., individuals and then groups).
Recall that, for modeling purposes, each participant in the control arm is viewed as being a
member of their own “group” of one.

At Level 1 (the individual level), we specify a model similar to the one presented previously
in Equation (1):4

(2)

There is, however, one key difference between Equations (1) and (2): the regression
intercept and slope have now been subscripted by j. This indicates that the values of these
coefficients potentially differ across groups. We now express the potential variability in
these coefficients across groups with the Level 2 (group-level) model:

(3)

(4)

Equation (3) indicates that the intercept of Equation (2) varies across groups. The average
intercept is γ00 and the term u0j indicates the extent to which group j deviates from this
average. As we will see, it is the random variability in u0j that will ultimately account for the
correlation of observations within clusters. In contrast, Equation (4) includes no random
deviation term, indicating that the treatment effect in this model is assumed to be constant
(fixed) over treatment groups with a value of γ10.

The grouping effect can also be seen in the combined model equation for the outcome,
obtained by substituting Equations (3) and (4) into Equation (2):

(5)

The combined equation clarifies that this model posits two sources of unexplained
variability. There are the usual individual level residuals (rij), but there is also a second
disturbance due to groups (u0j). This second disturbance implies that the individuals in some
groups have generally higher or lower values for Y than in other groups.

As in the standard regression model, we must make assumptions about the nature of the
unexplained variability in the model. Customarily, we assume that, within groups, the

3The models we discuss throughout are designed to account for positive correlations among group members. Multilevel models for
observations that are negatively correlated are discussed in Kenny, Mannetti, Pierro, Livi, & Kashy (2002).
4Because treatment is assigned at the individual level, we treat this as an individual-level predictor, despite the fact that the value of
this predictor is constant for all individuals within a particular group. This deviates from cluster-randomized designs in which
treatment is assigned at the cluster level and treated as a cluster-level predictor.
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individual residuals are normally distributed with constant variance over individuals
(regardless of arm), or

(6)

Similarly, the group-level disturbance is assumed to be normally distributed with constant
variance over groups (regardless of arm), or

(7)

The variances of these two types of residuals are sometimes referred to as the variance
components of the model. Finally, we assume that the two sources of unexplained variability
are independent, that is, that there is no correlation between rij and u0j.

Based on these assumptions, we can express the within-arm variance in Y as

(8)

Further, the correlation in Y between any two members of the same group (intracluster
correlation or ICC) can be expressed as

(9)

The ICC thus captures the degree of similarity of participants who are members of the same
group within the treatment arm. For controls, the ICC is irrelevant because each control
participant is the sole member of their group.

Overall, this analysis approach appears to accomplish what we would like: the group-level
variance component (τ00) allows us to model the dependence of the observations within
groups in the treatment arm, but the model continues to allow for independence in the
control arm of the study because each control participant is a member of their own group.
However, the model is inconsistent with the design of the study in an important way: the
variance of Y within the control arm is decomposed in precisely the same way as the
variance of Y in the treatment arm. Specifically, Equation (8) implies that

(10)

(11)

Equation (11) is sensible: variation in Y within the treatment arm is partly due to differences
between treatment groups and partly due to differences among individuals within treatment
groups. Equation (10), on the other hand, is not sensible—the same decomposition of
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variance does not apply because there is no grouping structure for participants in the control
arm of the study.5 As it turns out, this inconsistency will not matter much for testing the
fixed effects (e.g., the test of the overall treatment effect) in the special circumstance that the
variance in Y within the control and treatment arms is identical (as implied by Equations
(10) and (11)). However, there is often reason to believe that this variance will differ
between the treatment and control arms. If such heteroscedasticity is present, Roberts &
Roberts (2005) have shown that this model will then generate biased tests of the treatment
effect. What is needed is a more flexible approach that is more consistent with the study
design.

Approach 3: Explicitly Model Partial Nesting Design
As an alternative to the two aforementioned approaches, Roberts and Roberts (2005) and
Lee and Thompson (2005) provide a third approach to the analysis of partially nested data
that better matches the data structure. Aside from being more consistent with the design that
produced the data, this approach also provides model estimates that have appealing
interpretations. Again, for purposes of model specification, participants within the control
arm are viewed as the sole members of their own “groups.”

The Level 1 model for this approach is identical to the preceding case:

(12)

The difference between Approach 2 and Approach 3 arises in the specification of the Level
2 model equations. Here we specify that the slope of this equation varies over groups and
that the intercept term is constant over groups:

(13)

(14)

The combined model for the data, obtained by substituting Equations (13) and (14) into
Equation (12), is now

(15)

The motivation for this model specification follows from several observations. The β0j term
of Equation (12) represents the group mean for participants in control group j (i.e., where
TREAT = 0). However, in the control arm there is only one participant per group, so the
group “mean” and the individual observation are identical. That is, we cannot separate
group-level variation from individual-level variation, as these are one and the same. Because
there is no need for a group-level residual for the control participants, no random component
for β0j is included in Equation (13). As such, in the previously mentioned model, variability

5This decomposition could still make sense even for groups with one member under certain circumstances where preexisting intact
groups are used rather than groups formed during the treatment study. Consider, for instance, the case of data on siblings nested within
families. In this case, the two variance components would correspond to variance due to unexplained child influences on Y and
variance due to unexplained family influences on Y. Clearly family influences operate even on only children (though they could not be
separately estimated from child influences unless multiple sibling families were also included in the analysis).
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in the outcome variable for the control participants is sensibly decomposed into the mean of
all participants in the control arm, captured by γ00, and an individual residual rij, as shown
here:

(16)

The β1j parameter of Equation (12) reflects the difference between the mean for group j
within the treatment arm and the overall mean for the control arm. As expressed in Equation
(14), the present model permits the treatment group mean to vary across groups within the
treatment arm through the inclusion of the term u1j. Such differences reflect differential
treatment outcomes across groups, due to the particular composition of the group, the
fidelity of implementation of the treatment protocol, the effectiveness of the treatment
administrator for the group, or other factors. Thus, for treated participants (when TREAT =
1), Equation (15) can be rewritten as

(17)

so that there are both individual- and group-level residuals. Comparing equations (16) and
(17) we see that the average treatment effect across groups within the treatment arm is
represented by the γ10 parameter, whereas differences across groups in the treatment effect
are captured by the γ1j term.

As in Approach 2, we assume that the individual- and group-level residuals are independent
and normally distributed as

(18)

(19)

Unlike Approach 2, however, the model-implied variance of Y now differs across the arms
of the study. That is, the model explicitly accounts for potential heteroscedasticity across the
two arms of the study. For control participants, this variance is simply

(20)

whereas in the treatment arm it is

(21)

Further, we can express the ICC within the treatment arm as
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(22)

There is no corresponding ICC for the control arm because there is no between-group
variance estimated for that arm. Note that the ratio of the variance in the control arm to the
variance in the treatment arm is

(23)

Thus the ICC in Equation (22) provides a measure of heteroscedasticity across the two study
arms. Equation (23) implies that the degree of heteroscedasticity between the treatment and
control arms is a direct function of the ICC in the treatment arm.

In comparing Equations (20) and (21) we see that the model implies that this
heteroscedasticity takes a special form, that there is added variance in Y due to group
influences. As such, in contrast to Approaches 1 and 2, which assumed equal variance for Y
for the treatment and control arms, the model formulated earlier assumes that the variance in
the treatment arm exceeds the variance in the control arm (so long as τ11 ≠ 0). This may not
always be the case: Group processes may actually increase the similarity of group members
to one another, thereby decreasing within-group differences. Given this possibility, Roberts
& Roberts (2005) noted that we can (and in many cases should) allow the variance of rij to
differ across arms of the study by modifying the assumption in Equation (18) to instead be

(24)

(25)

With this modification, we permit heteroscedasticity between the treatment and control arms
but do not constrain the form of heteroscedasticity. Specifically, there need not be added

variance within the treatment arm. Further, when , the ratio of variances
between the two arms will no longer obey the relationship in Equation (23). Not only does
this modification make the model potentially more realistic, it also offers the exciting
possibility to formally test the hypothesis that participants within a treatment group become
similar to one another in their attitudes and behavior, in which case we should find that

.

To summarize, of the three approaches, only Approach 3 is fully consistent with a partially
nested design. Approach 1 ignores the grouping structure in the treatment arm, potentially
leading to inflated Type I errors and spurious treatment effects. Approach 2 assumes a
parallel grouping structure in both the control and treatment arms; however, the implied
decomposition of variance for the control participants is then nonsensical. Both Approach 1
and Approach 2 assume equal variance in the treatment and control conditions, which may
often be unrealistic. In contrast, by taking explicit account of the partially nested study
design, Approach 3 offers the appealing benefits that it can account for dependence within
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treatment groups, capture variability in treatment outcomes across treatment groups, model
heteroscedasticity, and reveal whether individuals become more homogeneous in their
attitudes and behavior as a function of treatment group membership.

TESTING TREATMENT EFFECTS (AND OTHER FIXED EFFECTS)
Using the model outlined earlier in Approach 3, we are primarily interested in testing the
significance of the estimate for γ10, or the average treatment effect. However, we encounter
two difficulties in doing so. First, obtaining an unbiased standard error for the effect
estimate is not straightforward. Second, the reference distribution for testing the ratio of the
estimate to its standard error is unknown. These difficulties are not unique to models for
partially nested data, occurring for any mixed-effect (or multilevel) model with a complex
covariance structure and/or unbalanced group sizes. We explain each obstacle and then
discuss a combined corrective that handles both.

For contrast, let us first consider an ideal situation. If the population values of the variance

components of the model (in this case τ11 and σ2, or  and ) were known, then
the variance-covariance matrix of the fixed effects estimates, designated Σγ ̂, could be
calculated directly from these values. The square root of the diagonal of this matrix would
provide standard errors for the fixed-effect estimates and the ratio of each estimate to its
standard error would follow a standard normal distribution, permitting z tests of the
estimates.

In practice, however, the population values of the variance components are unknown.
Accordingly, the sample estimates of these variance components must be used in place of
their population values to form an estimate of Σγ ̂, designated Σ̂γ ̂. The standard errors for the
fixed effects are then typically calculated as the square root of the diagonal of Σ̂γ ̂.
Unfortunately, these standard errors are negatively biased, presenting our first difficulty for
testing the fixed effects of the model (Dempster, Rubin, & Tsutakawa, 1981). One source of
bias arises because the variance component estimates are subject to their own sampling
variability, and treating them as known fails to account for the imprecision of these
estimates. A second source of bias is that, in small samples, Σ̂γ ̂ is a biased estimator of Σ̂γ ̂.
Corrections for these two sources of bias were developed in a series of influential papers by
Kacker & Harville (1984), Harville and Jeske (1992), and Kenward and Rogers (1997) and
have been implemented in some software programs capable of fitting multilevel models.

The second difficulty we face in evaluating the overall treatment effect in partially nested
designs is that the reference distribution for the fixed effect estimates is unknown. This
difficulty does not arise for designs in which all subjects are independent and there are no
grouping effects (for which Approach 1 would be adequate). In that case, only one variance
parameter (σ2)is estimated and the reference distribution for testing the fixed effects is an
exact t distribution with known degrees of freedom. A few other special cases also exist
where exact tests can be obtained (Elston, 1998, p. 1086; Maxwell & Delaney, 2004, p.
479). Unfortunately, for models with unbalanced group sizes and/or complex covariance
structures, like the model considered in Approach 3, exact tests for fixed effects cannot be
obtained. In practice, it is assumed that the reference distribution can be approximated by a t
distribution. Kenward and Rogers (1997) suggest estimating the degrees of freedom for the t
distribution by a method-of-moments approach with origins in the work of Satterthwaite
(1941; see also Schaalje, McBride, & Fellingham, 2002, pp. 515–517).

Overall, the Kenward-Rogers (1997) method for testing the fixed effects entails combining
the bias correction for the standard errors (for handling the first difficulty) and the
Satterthwaite (1941) method for computing degrees of freedom (for handling the second
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difficulty). In simulations comparing different methods for testing fixed effects in mixed
models, Schaalje et al. (2002) found that the Kenward-Rogers method performed better than
several competing methods, particularly for complex covariance structures and unbalanced
designs. Based on these results, we recommend using the Kenward-Rogers method for
testing treatment effects in partially nested study designs.6 This issue is applicable also to
the testing of other fixed effects in more complex models for partially nested data. It is to
these extended models that we now turn.

EXTENSIONS OF THE MODEL
In this section we consider how Approach 3 can be extended to some of the more complex
situations commonly encountered in evaluation research. In the subsections that follow we
discuss how to include pretest measures in the model as covariates, incorporate other
individual- and/or group-level covariates into the model, simultaneously evaluate multiple
treatment or control arms, and test treatment effects on discrete outcome measures. Of these
topics, Roberts and Roberts (2005) provide a short discussion on the use of individual-level
covariates in the model (which could include pretest measures). Additionally, Lee and
Thompson (2005) discuss binary outcomes and also briefly touch on the issues of multiple
treatment arms and group-level covariates, though only in the context of a fully nested
design. The other extensions of Approach 3 described here have not, to our knowledge, been
presented previously. Each topic is addressed in a separate section, allowing the reader to
skim sections of less interest.

Pretest as Covariate
One common approach for modeling treatment effects is to include pretest measures of the
outcome as a control covariate in the statistical model, adjusting for preexisting differences
among participants. Denoting the pretest measure as X and the posttest measure as Y, our
Level 1 model will then be

(26)

and our Level 2 model will be

(27)

(28)

(29)

Note that the only new feature of this model is the coefficient associated with the pretest
measure. Here we have assumed that the relation of the pretest measure to the posttest

6SAS code demonstrating this method with the demonstration data is available online at http://www.unc.edu/~dbauer. SPSS code
providing Satterthwaite (1941) degrees of freedom, but not corrected standard errors, is also provided. The importance of correcting
the standard errors is not known at this time, but failure to do so may result in a higher than nominal rate of Type I errors for tests of
fixed effects.

Bauer et al. Page 11

Multivariate Behav Res. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.unc.edu/~dbauer


measure is constant over treatment groups and equivalent across arms of the study,
assumptions that seem reasonable for most applications. Under these assumptions, the
combined model will be

(30)

Adjusting for pretest measures, the conditional variance in the posttest for the control arm
continues to have only one component (individual-level variance only), whereas the
conditional variance for the treatment arm again has two components (one for the
individual-level variance and one for the group-level variance). These (now conditional)
variances continue to be given by Equations (20) and (21).

It is also worth noting that, for the treatment arm, pretest measures may differ both across
and within groups, as shown by decomposing X into a group mean and an individual
deviation from the group mean:

(31)

where X̄·j is the mean of the pretest values for treatment group j, and Ẋij is the individual
deviation from X̄·j. Substituting Equation (31) into Equation (30) shows that, when we
include pretest scores in the model, we are implicitly adjusting for both preexisting
differences among individuals and preexisting differences among treatment groups:

(32)

or

(33)

Note that there is an implicit equality constraint for within- and between-group effects of the
pretest measure. Although often quite reasonable, it may at times be necessary to relax this
assumption. Different within- and between-group effects might be expected if there is a
compositional effect of the group above and beyond the individual effect of the covariate.
For instance, if X represented a pretest measure of antisocial behavior, we might expect that
treatment groups that happen to have higher than average baseline levels of antisocial
behavior might be particularly difficult to manage and more resistant to treatment than
groups that have lower than average levels of antisocial behavior. Fortunately, the
assumption of equal within- and between-group effects can be removed quite easily by
including the pretest means for the treatment groups (X̄·j) in the model as an additional
predictor (see Kreft, DeLeeuw, & Aiken, 1995, for further details on the decomposition of
within- and between-group effects). We discuss the inclusion of group-level covariates in
the next section.

Adding Individual- and Group-Level Covariates
Other covariates at the individual level can be included in the model in the same fashion as
the pretest scores. Specifically, suppose X1 is a pretest measure of the outcome and X2 is a
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background characteristic of the individual (e.g., gender), then the Level 1 model can be
modified accordingly to be

(34)

Similarly, group-level covariates, such as treatment fidelity or perceived group
cohesiveness, can be incorporated into the model at Level 2 to explain why some groups
fare better than others in response to treatment (as called for by Weiss et al., 2005). There is,
however, the additional consideration that such group-level variables pertain only to the
treatment arm of the study and are, in essence, undefined for participants in the control arm.
As an example, suppose that W is a variable that reflects some aspect of the group
composition. Our Level 2 model for the coefficients in Equation (34) would then be

(35)

(36)

(37)

(38)

The combined model is then

(39)

The interaction term reflects the fact that the effect of W is necessarily conditional on
treatment. The omission of a main effect of W in the combined model may appear unusual,
but this is intentional given that W is undefined for control participants. Due to the absence
of a main effect for W, for control participants the model reduces to the following:

(40)

whereas for treated participants the model is

(41)

Thus, the group-level predictor W only affects Y for participants in the treatment arm and
does not affect Y for participants in the control arm, who are ungrouped.
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Practically speaking, to incorporate group-level predictors into the model, W must be set to
an arbitrary nonmissing value for the control participants. If W is set to a missing value for
the control participants, these participants will be deleted from the analysis, which is
nonoptimal for obvious reasons. The value that is chosen for W for the control participants
(e.g., −999, 2, 127) is, however, irrelevant as this variable will “zero out” of the prediction
equation for participants in this arm of the study, as indicated in Equation (40).

Additionally, there may be some individual level predictors that are relevant only for
grouped participants. For instance, one might wish to incorporate a measure of treatment
exposure or “dosage” to evaluate whether this impacts individual outcomes. Similar to the
approach described earlier for group-level covariates, the interaction between this predictor
and the treatment indicator would then be included in the Level 1 equation, omitting the
main effect. For ungrouped participants, the predictor would again need to be set to an
arbitrary value to avoid the deletion of these participants from the analysis.

Multiple Treatment or Control Arms
It is of course also possible to evaluate multiple treatments and/or multiple control groups
using the same basic approach indicated here. Specifically, indicator variables would be
constructed for each arm of the study, and each of these indicator variables would be
included as individual-level predictors. For any study arm that contains groups, the effect of
the corresponding indicator variable would be permitted to vary randomly over groups.

Let us first consider a simple case in which one wishes to contrast the efficacy of a group-
based treatment (Treatment 1) relative to an individually based treatment (Treatment 2).
Additionally, there is a control arm in which participants are not grouped. Extending the
simple two-arm model formulated previously in Equations (12) through (14), we can write
the Level 1 model for this three-arm study design as follows:

(42)

where TREAT1 and TREAT2 are indicator variables scored 1 if the individual participated in
treatment 1 or 2, respectively, and are scored 0 otherwise.

At Level 2, we indicate that only the effect of the group-based intervention has a random
component due to groups:

(43)

(44)

(45)

Note that the individually based treatment does not include a grouping effect. As in the two-
arm case, we can allow the variance of the Level 1 residuals (r) to vary across study arms to
reflect differential effects of treatment on individual variability.
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Now suppose that both treatments were group based, but the control arm consisted of
ungrouped individuals. The Level 1 equation remains as in Equation (42), but the effect of
the grouping structure is then expressed at Level 2 as follows:

(46)

(47)

(48)

Note that both group-based treatments have effects that depend partly on the individuals’
treatment group. Assuming that individuals in the two treatment arms are independent (e.g.,
randomly assigned to treatment groups), we can reasonably assume that the u1j and u2j terms
are also independent. Following Lee and Thompson (2005), we thus express their
distribution as

(49)

In practice, it is worth noting that many multilevel modeling software programs include a
covariance between u1 and u2 by default, in which case this covariance must be manually set
to zero.

Discrete Outcomes
For simplicity, we have thus far described each of the aforementioned models for a
continuous outcome variable Y that could reasonably be assumed to have a conditional
normal distribution. However, dichotomous, ordinal, and count outcomes are also quite
common in intervention and prevention research. Fortunately, great strides have been made
in the past decade in the estimation of multilevel generalized linear models, permitting the
extension of all of the models presented earlier to discrete outcome variables. As a basic
example, we show how the model in Equations (12) through (14) could be reformulated as a
generalized linear model. Although the Level 2 equations remain unchanged, we must
rewrite the Level 1 equation as

(50)

where ηij is referred to as the linear predictor and is related to the expected value (or
conditional mean) of Y though the equation ηij = f (μij), where f is known as the link function.
The purpose of the link function is to map the possibly continuous values of the linear
predictor onto the logical range of the expected value for the outcome. For continuous
outcomes that have a broad range, an identity link is typically used: ηij = μij. In contrast, for
count outcomes, the expected value has a lower bound of zero, but no upper bound, and
hence the log link is often used: ηij = log(μij). For dichotomous outcomes the value of the
linear predictor must be mapped onto the [0,1] interval and hence the logit link is a natural
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choice: ηij = log(μij/(1 − μij)). Other common choices for dichotomous outcomes are the
probit and complementary log-log link functions.

Another important feature of Equation (50) is that there is no Level 1 residual. This is
because this equation only provides information on the expected value of Y and not the
variation around this expected value. To account for this variation, we must also specify a
conditional distribution for Y. For continuous outcomes, the conditional distribution is often
specified as normal, such that Yij|μij ~ N(μij, σ2) In combination with the identity link, this
specification gives rise to the models previously presented. For count outcomes, the
conditional distribution might instead be specified as Poisson, or Yij|μij ~ Poisson (μij).
Alternatively, for dichotomous outcomes, the conditional distribution would be specified as
Bernoulli, or Yij |μij ~ Bernoulli(μij).

As for this most basic of models, appropriate choices for the link function and conditional
distribution could be made for any of the models discussed previously for the case where Y
is discretely distributed.

To summarize, the analysis of partially nested data can be extended beyond the relatively
simple expository examples provided by Lee and Thompson (2005) and Roberts and
Roberts (2005) to the more complex situations that are encountered in much intervention
and prevention research. Although the model extensions delineated earlier are far from
exhaustive, we believe they cover many of the possible analysis scenarios that investigators
encounter when using partially nested designs. We now turn to a demonstrative application
of these models.

AN EMPIRICAL DEMONSTRATION OF THE ANALYSIS OF PARTIALLY
NESTED DATA

For our demonstration, we evaluate an effectiveness trial of the Reconnecting Youth (RY)
preventive intervention program that employed a partially nested design. This RY trial
involved a large sample of adolescents from five high schools in an urban school district in
the Southwest and four high schools in an urban school district on the Pacific coast. The
goals, methods, and recruitment procedures for the RY program have been described in
Eggert, Thompson, Herting, Nicholas, and Dicker (1994), and prior analyses of the current
sample may be found in Hallfors et al. (2006), Cho, Hallfors, and Sanchez (2005), and
Sanchez et al. (2007). Briefly, an initial screened sample was stratified on risk status (based
on criteria including highest 25% for truancy and bottom 50% for grade point average
(GPA), or referred for treatment by a schoolteacher or counselor). High-risk children were
oversampled (N = 1370) and low-risk children were randomly sampled (N = 598). High-risk
children were individually randomly assigned to either the intervention arm (N = 695) or to
the control arm (N = 675). Of those assigned to the intervention, 47% did not participate,
usually because of scheduling issues or other external constraints (remaining N = 370). The
participation rate varied across schools and participation was negatively related to age,
unrelated to gender or ethnicity, and inconsistently related to baseline measures of deviancy.
7

7Unlike many treatment studies, in this study noncompliance was typically dictated by third parties (e.g., guidance counselors) largely
as a function of external constraints (e.g., classes needed for graduation) rather than being an active choice of the participant assigned
to treatment. Compliance is thus unlikely to be related to differential motivation, openness to treatment, or treatment effectiveness. For
this reason, and to simplify the presentation of the example, we chose to exclude noncompliers from the present analyses (i.e., using
an “on treatment” approach). Parallel analyses using an “intent to treat” approach produced broadly similar results (not shown here).
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High-risk participants in the intervention arm received RY treatment administered in groups
(i.e., RY classes), whereas high-risk participants assigned to the control arm were left
ungrouped. The number of RY classes in the intervention arm totaled 41, with 2 to 7 classes
per school, 5 to 15 students per class, and an average class size of 9 students. Additionally,
the low-risk children constituted a second ungrouped control arm—representing “typical”
adolescents from their respective schools. Thus, this is a multiple-control-arm, partially
nested design—features that we will now address using the analytic strategy advocated in
the prior sections.

The RY trial is particularly suited for this demonstration because modeling RY’s partial
nesting is shown to shed important light on some earlier results. Specifically, in previous
analyses of the data, Hallfors et al. (2006) found that the intervention program did not have
the anticipated positive effects. Instead, it appeared to exacerbate some problem behaviors,
particularly when measured one semester posttreatment. Here, we reevaluate the negative
effect of treatment on one outcome variable, deviant peer bonding (DPB). DPB was
measured as the average of eight 5-point items (e.g., How many of your close friends skip
school, drink alcohol, have gotten into physical fights with other kids, etc.). With the
methods proposed in this article, we are able to estimate a series of models that
systematically examine whether, concomitant with the negative mean shift in DPB for RY
participants, there is (a) within-class homogenization of DPB suggestive of an iatrogenic
“contagion” effect, (b) there are differences across RY classes in treatment outcomes
suggestive of iatrogenic compositional or provider effects, and (c) whether these effects
persist when controlling for preexisting differences in DPB and demographic characteristics.
Without the methods proposed in this article, these hypotheses could not be precisely
examined.

In total, we estimated a sequence of three models. Our goals in fitting the first model were
(a) to evaluate whether mean DPB differed across the three conditions at one semester
posttreatment, with particular attention to the effect of RY relative to control; (b) to ascertain
whether there was variability across RY classes in the magnitude of the treatment effect; and
(c) to determine the intraclass correlation among RY students attending the same class. To
satisfy these goals, we also needed to control for the effects of school-based clustering.
Because only nine schools were included in the study and these schools were nonrandomly
selected based on urbanicity and demographic composition, we chose to model school as a
fixed factor. Although this is consistent with the study design and controls for school-based
clustering, we must limit our inference space to these schools (i.e., we cannot speculate as to
what the effects might be in other schools). With a larger, random sample of schools it
would be possible to move to a three-level model with a random effect of school, and this
would permit inferences to the larger population of schools from which the sample was
drawn.8

For our first model, we thus included the treatment condition as the primary predictor of
DPB and school as a control factor. Because only the RY condition was grouped, the Level
1 and 2 equations are similar to those shown in Equations (42) to (45), with the addition of
eight dummy variables to represent the nine-level school factor. The Level 1 Equation is
thus

8In response to reviewer concerns, we also ran these models with a random effect of school rather than including school as a fixed
factor. The results were highly similar to those presented here.
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(51)

where School(c)i j is a dummy variable indicating whether the participant i is a student in
school c (coded 1) or not (coded 0). In turn, the Level 2 Equations are

(52)

The combined model equation is then

(53)

We begin by assuming homoscedasticity for the residual variance r, then go on to test this
assumption by allowing the residual variance to differ between the RY study arm and the
other two arms. This model and all of those to follow were estimated using the MIXED
procedure in SAS with the REML estimator and the Kenward-Rogers (1997) method of
testing the fixed effects (both SAS and SPSS code and annotated output for this analysis are
provided in online supplementary material posted at http://www.unc.edu/~dbauer).

The results from the homoscedastic model, reported in the first column of Table 1, indicated
that the three conditions did differ significantly from one another in levels of DPB, with RY
students displaying higher DPB than controls and controls displaying higher DPB than
typical students. A significant school effect was also detected, indicating that DPB levels
vary across schools. Planned contrasts revealed that the school effect was due almost
entirely to site differences. Controlling for the school effects, the variance component for the
RY classes, .053, was relatively small in magnitude. In relation to the residual variance, .79,
this value yields an intraclass correlation of .06, indicating that the DPB scores of students
attending the same RY class were positively correlated (as expected) but not highly. When
the residual variance was permitted to differ between the RY arm and the other two study
arms, the obtained estimates were .81 and .78, respectively. The direction of this difference
is counter to the hypothesis of within-group homogenization due to iatrogenic effects in the
RY arm, and the difference itself was not statistically significant by the likelihood ratio test
(χ2(1)= .20, p = .65). In total, there is little evidence of “contagion” effects for DPB and only
modest evidence of compositional or provider effects.

The second model that we fit extended the model in Equation (53) to include several
additional Level 1 covariates measured in all three groups. Specifically, we controlled for
baseline DPB (measured pretreatment), age, sex, and ethnicity. As shown in the second
column of Table 1, the differences among the three experimental conditions were
diminished but still statistically significant following the inclusion of the control variables.
Of the control variables, baseline DPB and ethnicity were statistically significant. The
ethnicity effect was largely due to Asian students having lower DPB scores. Notably, after
the inclusion of these covariates, the variance component for the RY classes dropped to .01
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and the residual intraclass correlation dropped to .02. In other words, much of the variability
in the effects of RY on DPB could be explained on the basis of preexisting individual factors
that were unevenly distributed across RY classes.

Finally, in Model 3, we extended Model 2 by including several covariates relevant only to
the RY condition (as discussed in the “adding individual- and group-level covariates”
section). This allowed us to evaluate whether characteristics of the individual or classroom
moderated the effect of treatment on participants. First, we considered whether students
attending more RY classes (absent less) showed greater negative effects (i.e., a dosage
effect). Second, we assessed whether two aspects of class composition moderated treatment
effects: the average age of the students within the class and the percentage of female
students in the class. Because these three variables were only definable for students assigned
to the RY condition, they were set to –999 for students in the control and typical conditions
(i.e., following the strategy outlined previously). To test the effects of these predictors, three
interaction terms were then added to the model, RY × Absences, RY × Mean Age, and RY ×
Percentage Female. The results, shown in the third column of Table 1, indicated that
students who were absent from more classes had slightly higher levels of DPB, as did
students attending classes composed of mostly younger, male students; however, none of
these effects was statistically significant. These null findings were consistent with the results
of Model 2, which indicated that there were few differences among RY classes left to be
explained following the inclusion of the control covariates.

To summarize, these analyses provide one demonstration that data obtained from a partially
nested design can be appropriately analyzed using specifically tailored multilevel models.
To match the complexity of real evaluation research, we have shown how pretest measures,
“common” covariates, and covariates relevant only for the grouped condition can be
included in the model. Many other extensions of the analytic model could also be
contemplated, such as the inclusion of multiple pre- or posttest measures. At this point,
however, we turn to a more fundamental epistemological question that has, to date, gone
unaddressed: To what extent can valid inferences about treatment effects be made using data
obtained from a partially nested study design?

ASSESSING TREATMENT EFFECTS WITH PARTIALLY NESTED DATA
A fundamental difficulty with partially nested study designs is that the structure of the data
is not parallel between the treatment and control arms, and thus treatment effects may be
conflated with grouping effects. Specifically, the act of placing participants into groups may
have either positive or negative effects, and if only treated participants are grouped then
treatment effects cannot be disentangled from these grouping effects. At its core, this is an
issue of internal validity: Does a partially nested study design allow for strong tests of the
theoretical model guiding treatment? Unfortunately, the answer must be “No,” given that
one cannot ascribe effects, either positive or negative, uniquely to the theoretically
motivated aspects of treatment. That is, these effects may be a consequence simply of
grouping participants together, regardless of treatment. Thus, we cannot say with certainty
that the negative effects observed in the RY effectiveness trial were due to an inadequacy of
the theoretical model that motivated the intervention. It may simply be that the intended
positive effects of the manipulation were overwhelmed by the negative effects of grouping
high-risk youth together. Put simply, with partially nested designs, it is not possible to make
definitive statements regarding the causal effects of the intervention.

This is not to say that partially nested study designs are without merit. Although the internal
validity of the partially nested study design is not as strong as would be afforded by a design
with parallel structure for treatment and control arms, in many instances the external validity
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is stronger. For instance, to assess the public health benefits of the RY program, the
ungrouped controls provide the most appropriate contrast condition, as they reflect the true
condition of high-risk students when no intervention is implemented. Constructing untreated
groups of high-risk adolescents for comparison to the treatment groups might be more
internally valid for theory evaluation but would not provide a good indication of what could
be gained (or lost) by implementing this intervention in like schools. Additionally, for many
studies, there would be ethical limitations to the construction of groups within the control
arm. For instance, it would probably be unwise to intentionally congregate high-risk youth
into groups without providing some sort of directed intervention or treatment. Thus, partially
nested study designs have a clear place in prevention and intervention research and in the
investigation of treatment effects more broadly. The limitations of these designs for
evaluating theoretical models of treatment effects have, however, gone largely
unappreciated.

CONCLUSIONS
Partially nested study designs are a common and necessary presence in prevention and
intervention research. Until recently, analytic methods for properly evaluating treatment
effects with these kinds of designs have been unavailable. By extending three recent
publications on this topic (Hoover, 2002; Lee & Thompson, 2005; Roberts & Roberts,
2005), this article explicated a general approach to the analysis of data with a partially
nested structure using multilevel (or mixed-effects) models. This approach not only provides
estimates with appealing interpretations, it is also amenable to the inclusion of covariates
and predictors at both the individual and group levels. We demonstrated the features
analytically and then empirically with RY trial data. Although this approach solves many of
the data-analytic challenges associated with partially nested designs, it does not resolve the
basic question of whether and when valid inferences about treatment effects can be made
with these designs. In our view, these designs often increase external validity at the expense
of internal validity, due to the conflation of treatment and grouping effects. Investigators
should be aware of this trade-off when selecting a partially nested design for their research
and take appropriate precautions in interpreting their findings.
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