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Abstract
Insulinomas are rare neuroendocrine tumors of pancreatic islet cells that retain the ability to
produce and secrete insulin. In contrast to normally differentiated β-cells, insulinoma cells
continue to secrete insulin and proinsulin at low blood glucose. This deregulated insulin secretion
manifests clinically as fasting hypoglycemia. The molecular pathways that characterize normal
insulin secretion and β-cell growth are reviewed and contrasted to the biology of insulinomas. The
second half of this review summarizes the clinical approach to the disorder. The diagnosis of
insulinoma is established by demonstrating inappropriately high insulin levels with coincident
hypoglycemia at the time of a supervised fast. Localization of insulinomas is challenging owing to
their small size but should be attempted to maximize the chance for successful surgical resection
and avoid risks associated with reoperation. In the majority of cases, successful surgical resection
leads to lifelong cure.
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The concentration of insulin in plasma reflects the balance between rates of appearance (i.e.,
secretion) and disappearance (i.e., distribution and degradation) of insulin from the vascular
space. Although changes in the volume of distribution and rate of degradation of the
hormone can influence insulin levels in some conditions, these factors are generally not
responsible for exerting rapid changes in plasma insulin levels in the physiologic state. A
change in the rate of insulin secretion, triggered by fuel, entero-incretin and/or neural
signals, is the factor principally responsible for acutely modifying plasma insulin
concentration. The β-cell, a cell uniquely specialized to synthesize, process, store and
secrete insulin, is central to this function. Pancreatic β-cells sense ambient glucose levels
and secrete insulin in an amount precisely adjusted to match the magnitude of the glucose
stimulus. This function imparts β-cells with a prominent role in whole-body glucose
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homeostasis. The insulin–glucose dose–response relationship, established from rodent
pancreas perfusion studies [1], is sigmoidal (Figure 1). Although the magnitude of the
insulin secretory response differs at low or high glucose levels, little to no change in the rate
of insulin secretion is observed outside the physiologic range. This contrasts to the large
increases in the rate of insulin secretion seen as glucose rises within the physiologic range
(~70–400 mg/dl [~5–25 mM]). The half-maximal insulin secretory response in this ex vivo
setting, an index of β-cell sensitivity to glucose, is observed at a glucose concentration
between approximately 140 and 180 mg/dl (~8–10 mM). Physiologic (i.e., nutrient, neural,
entero-incretin signals), therapeutic or pathologic processes that change the characteristics of
this dose–response relationship impact whole-body glucose homeostasis. A clinical and
diagnostic feature of subjects harboring insulinomas is the continued secretion of insulin at
glucose concentration below the physiologic range. Although the insulin–glucose dose–
response for human insulinomas has not been defined and probably differs among individual
tumors, several rodent insulinoma cell lines (HIT-T15, INS-1, β-TC6 and MIN-6) have an
abnormal insulin–glucose dose–response, characterized by either an upward (increased
responsiveness) and/or leftward (increased sensitivity) departure from the normal β-cell
insulin–glucose dose–response at low glucose levels.

Molecular events regulating glucose-stimulated insulin secretion
Our current understanding of the molecular events associated with insulin secretion (Figure
2) is derived from in vitro rodent models. Several discoveries were crucial in defining the
steps involved in glucose-stimulated insulin secretion. Of particular importance were the
realizations that β-cells were electrically excitable [2], glucose controlled β-cell electrical
activity [3], β-cells expressed potassium channels (Kir6.2) responsible for generating a
hyperpolarizing current that could be inhibited by both intracellular ATP [4] as well as
glucose [5] and Kir6.2 channels formed a larger hetero-octomeric complex (KATP channels)
with the receptor for sulfonylurea drugs, SUR1 [6,7]. More recently, advances in the field of
biological imaging has permitted direct visualization of insulin-granule secretion from β-
cells [8-11], and has refined our understanding of insulin exocytosis. Insulin secretion from
mouse β-cells exposed to a rapid increase in glucose (from 50 to 300 mg/dl [2.8 to 16.7
mM]) exhibits a biphasic kinetic pattern. The first and best-characterized phase is transient
(4–8 min). This phase, also coined triggering pathway [12], involves cellular entry of
glucose through low-affinity, high capacity, glucose transporters (GLUT)2 [13]; cytoplasmic
and mitochondrial glucose metabolism limited by flux through the glucose phosphorylating
enzyme glucokinase (reviewed in [14]); increases in intracellular ATP/ADP concentration;
closure of ATP-sensitive potassium channels (KATP channels); depolarization of the plasma
membrane; opening of voltage-dependent Ca+2 channels (L-type) and release of ‘release-
competent’ insulin granules located in the vicinity of these channels. Using capacitance
measurements to detect plasma membrane fusion events, it has been estimated that
approximately 50 [15] of the approximately 10,000 insulin granules [16] present in each β-
cell (i.e., 0.5% of insulin granules/β-cell) are released during this phase. The second, less
well-characterized phase (or amplifying pathway [12]) of insulin secretion is sustained
(within minutes to hours). Similar to first-phase secretion, it also depends on both glucose
metabolism and increases in intracellular calcium but, in addition, involves amplifying
signals that are important in recruiting, priming and docking of a ‘highly calcium-sensitive’
pool of intracellular granules [17]. Several metabolic pathways, including pyruvate cycling
[18], glutamate metabolism [19], NADH shuttling [20], de novo long-chain acyl CoAs (Lc-
CoA) synthesis [21,22] and NADPH production [23,24], have been associated with this
phase of insulin release and are believed to support secretion by generating a number of
important effectors (e.g., ATP, Lc-CoA, DAG/PKC and NADPH). Recent evidence suggests
that these metabolically derived signals are not solely restricted to second-phase secretion
but also contribute to first-phase secretion [25]. The importance of these pathways in insulin
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secretion is further supported by protein expression studies that suggest β-cells are uniquely
specialized to maximize the efficiency of aerobic glucose metabolism [26-28]. In addition to
these biochemical pathways, a complex cell-to-cell communication network within islets is
needed for a coordinated insulin secretory response [29].

Biochemical pathways linked to hyperinsulinism
The relevance and contribution of these biochemical pathways to the excess insulin
secretion observed in adult insulinomas has not been studied but has been well recognized in
the setting of congenital hyperinsulinism. The most common form of this disorder results
from inactivating mutations (reviewed in [30]) in the genes coding for SUR1 (ABBC8) and
Kir6.2 (KCNJ11), both located on chromosome 11 at p15. Less common forms involve
activating mutations in the GDH (10q23.3) [31] and the GCK (7p) [32] and inactivating
mutations in the short-chain HADH gene (4q) involved in fatty acid oxidation [33,34]. More
recently, mutations that result in increased cell surface expression of the monocarboxylase
transport protein, MCT-1 (SLC16A1; 1p) [35], a protein responsible for pyruvate and lactate
transport into β-cells, were shown to result in inappropriate insulin secretion during exercise,
an effect replicated experimentally by intravenous administration of pyruvate [36]. Before
the molecular defects underlying the etiology of congenital hyperinsulinism were
discovered, histology of pancreatic specimens (i.e., nesidioblastosis) had suggested aberrant
growth or development of islets as the basis for the hormone excess [37,38]. This idea was
abandoned when nesidioblastosis was revealed to be a nonspecific histologic finding (i.e.,
present in normal pancreata) and was not found to be associated with an increased rate of β-
cell proliferation [39]. While nesidioblastosis as a cause of hypoglycemia has been
abandoned for pediatric disorders, it is still invoked as the basis of some hypoglycemic
disorders in adults [40-42]. Several controversial issues surround these cases and include an
absence of mutations in genes associated with congenital forms of hyperinsulinim,
inadequate consideration of factors known to influence islet growth (i.e., morbid obesity and
diabetes) or insulin release (i.e., alimentary tract surgery and elevated prandial entero-
incretin release), use of a diagnostic test to establish disease never tested for such purpose
(i.e., selective arterial calcium stimulation) and inappropriate controls used as the
comparator group (i.e., non-BMI-matched subjects with pancreatic cancer). An independent
review of these samples did not find an increase in β-cell area or a change in β-cell turnover
compared with BMI-matched subjects [43]. In addition, a correlation between β-cell nuclear
diameter (i.e., one of the histologic features used to define nesidioblastosis) and obesity in
all subjects (i.e., with and without disease) were found. Finally, the presence of islets
budding from exocrine ducts, another feature used to diagnose nesidioblastosis, is a common
feature of obese and diabetic pancreata [44]. In our experience of more than 35 years, we
have not seen a case of hypoglycemia whose etiology could be explained solely on the basis
of a pancreatic histology consistent with nesidioblastosis. Clinicians should be aware of
these caveats when assessing the risk benefit of pancreatectomy as a treatment option for
this disorder.

Determinants of normal β-cell growth in humans
Understanding the molecular events responsible for physiologic β-cell growth is the focus of
intense research and beyond the scope of this review [45]. In general, β-cell-mass expansion
in humans occurs as a result of normal growth and development [46] or to meet an increased
demand for insulin in states such as pregnancy [47,48] or obesity [44,49]. There is
accumulating evidence suggesting that postnatal β-cell mass expansion in humans is caused
by replication of existing β-cells [46], rather than stem cell differentiation, a process similar
to that observed in rodent models [50,51]. Glucose [52-54], prolactin and placental lactogen
[47], insulin and IGF-1 [55] and GLP-1 [56] have been proposed as potential circulating
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physiologic regulators of β-cell replication and growth. Understanding the individual
contribution of mitogens to β-cell replication is challenging given the interdependence and
multiplicity of cellular pathways triggered by each. Increases in IRS-2 expression, for
example, a key downstream protein activated by tyrosine kinase receptors (e.g., insulin and
EGF receptors) and directly implicated in β-cell growth and survival [57,58], has been
shown to be regulated by both glucose [59] and GLP-1 [60]. The effect of glucose on IRS-2
was shown to be calcium dependent [61], and that of GLP-1; dependent on a coincident
calcium and cAMP signal [62]. A number of effectors downstream of IRS-2 [63-70] have
been independently associated with rodent β-cell mass expansion. These effectors are
involved in insulin biosynthesis, cell-cycle progression, protein synthesis and cell survival
pathways (reviewed in [71]).

Insulin processing & significance to insulinoma
As first suggested by Steiner and Oyer [72], insulin is derived from a larger precursor
molecule. Preproinsulin is first synthesized in the cytosol and processed in the rough
endoplasmic reticulum to form proinsulin (Figure 3) (reviewed in [73]). In β-cell granules
[74] and at optimal calcium and pH, proinsulin is cleaved at a pair of dibasic residues (i.e.,
Arg30–Arg31 and Lys60–Arg61) by two endopeptidases [75,76]. Carboxypeptidase-H
subsequently removes the exposed basic residue to give rise to the disulfide-linked two-
chain insulin molecule (A- and B-chain) and its connecting peptide (C-peptide) [77].
Incomplete processing of the molecule results in the formation of circulating products that
include full-length proinsulin, 31,32 split proinsulin, des-31,32 split proinsulin (i.e., only the
B-chain/C-peptide junction is cleaved and exposed basic amino acid are removed), 64,65
split proinsulin or des-64,65 split proinsulin (i.e., only the C-peptide/A-chain connection is
disrupted and exposed basic amino acids are removed). It was recognized early that these
components, initially termed ‘big insulin’ and re-named proinsulin-like components (PLCs),
could be identified in plasma if a gel-filtration step (i.e., molecular-weight separation step)
preceded the radioimmunoassay procedure used to quantify insulin [78]. It was later
suggested that secretion of these PLCs was elevated in insulin-producing tumors [79], an
observation that was confirmed in human plasma samples [78,80-83]. The realization that
correct processing of proinsulin, a hallmark of differentiated β-cell function, relied on
appropriate sorting of the proinsulin molecule to the ‘regulated’ secretory pathway [84,85]
provided a biological basis for this clinical observation. Indeed, proinsulin in insulinoma
cells was demonstrated to predominantly enter to the constitutive or ‘unregulated’ secretory
pathway usually reserved for plasma membrane proteins [86]. With the advent of more
specific, monoclonal, two-site immunometric assays for insulin and a two-site assay that
targets both insulin and C-peptide but only labels C-peptide [87], it became possible to
directly measure the plasma PLCs and correlate this assay to the older assay used to quantify
PLCs from the total immunoreactive insulin [83].

Box 1. Differential diagnosis of fasting hypoglycemia in adults

• Drug-induced

– Antidiabetic agents (insulin, sulfonylurea and meglitinides)

– Other (salicylates, quinine derivatives, disopyramide and pentamidine)

– Ethanol

• Liver disease

• Renal failure

• Endocrine deficiency
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– Cortisol

– Growth hormone

• Insulinoma

• Nonislet tumor

– Mesenchymal tumors

– Hepatocellular carcinoma

– Hematological malignancies

– Other

• Autoimmune hypoglycemia

– Insulin receptor autoantibodies

– Insulin autoantibodies

Insulinomas
Incidence & clinical features

Insulinomas are rare neuroendocrine tumors of pancreatic islet cells that retain the ability to
produce and secrete insulin. An estimated four insulinoma cases are diagnosed per million
person-years [88]. Although rare, insulinomas are the most frequently observed pancreatic
neuroendocrine tumors accounting for 70%. Insulinomas are approximately 1.5-times more
common in women and can present at any age but, on average, are diagnosed at age 50
years. Patients with multiple endocrine neoplasia (MEN)-1-associated years insulinomas
tend to present at a younger age [89]. Insulinomas are usually solitary, small and are equally
likely to be found in the pancreatic head or tail. Although insulinoma usually present as
solitary tumors, patients presenting with multiple, discreet or 5 mm and above insulin-
staining tumors have been described for sporadic [90] and MEN-1-associated insulinoma
cases [91]. While the majority of islet cell tumors metastasize (e.g., gastrinoma and
glucagonoma), only 10% of insulinomas are malignant on the basis of metastasis [88,92-93].
The clinical course of patients with malignant insulinoma is usually one of prolonged
survival [88,94]. Insulin-producing tumors are usually discovered because they cause
hypoglycemic symptoms and need to be differentiated from other conditions that cause
fasting hypoglycemia (Box 1; reviewed in [95]). These can be divided into three groups:
adrenergic, cholinergic and neuroglycopenic. Classic adrenergic symptoms include anxiety,
tremulousness, pallor and palpitations. Sweating, tingling, nausea and hunger fall under
cholinergic symptoms. Neuroglycopenic symptoms encompass the symptoms of, weakness,
fatigue, visual disturbances, confusion, seizures, focal neurological deficit and coma, and
denote compromised CNS function due to glucose levels insufficient to meet the brain’s
need for energy.

Genetics
Familial insulinomas—von Hippel-Lindau disease, MEN-I and tuberous sclerosis
complex are three familial disorders that have been associated with the formation of islet
tumors that stain for insulin (reviewed in [96]). Of these, only MEN-1 has been associated
with tumors that secrete insulin in excess. Insulinomas occurring in the setting of the MEN-1
syndrome (~5–10% of all insulinomas) are associated with the loss of function of menin, the
610-amino acid protein of the tumor-suppressor gene MEN1 located on chromosome 11 at
q13. Germline mutation and insulinoma cell-specific deletion that results in biallelic loss of
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MEN1 leads to the development of insulinomas. Tissue-specific deletion can be recognized
by demonstrating loss of heterozygosity at the 11q13 locus in these tumors. The exact
molecular mechanism(s) by which functional loss of menin results in tumor formation has/
have not been fully elucidated.

Sporadic insulinomas—Less is known about the genetic events linked to sporadic
insulinoma development. Monoclonal tumors are hypothesized to arise from less aggressive
oligo/polyclonal precursor lesions [97]. Studies using comparative genomic hybridization
for genome-wide analysis of pancreatic neuroendocrine tumors (PNETs) suggest a role of
genomic instability in tumor initiation and progression [98-101]. These studies have
revealed occurrences of nonrandomly distributed genomic alterations in PNETs. Such
abnormalities have included regional chromosomal gains (e.g., 4pq, 5q, 7pq, 9q, 12q, 14q,
17pq and 20q) and losses (e.g., 1p, 3p, 6q, 10pq, 11q, Y and X). The type and number of
chromosomal anomalies have been shown to correlate with tumor size and malignant
potential. The observation that chromosomal losses occur more frequently than gains in
PNET has suggested involvement of a tumor suppressor pathway for these tumors.
Insulinomas, in keeping with their benign nature, tend to exhibit a lower number of genomic
alterations ,with losses in 3p [98] and 6q [99] being especially rare events. The most
frequently observed alteration in 62 recently reported sporadic insulinomas was a 9q gain
[102]. In this and other studies, malignant insulinomas, exhibited a higher rate of
chromosomal alterations than benign insulinomas, suggesting a role for genomic instability
in progression of the disease. Loss of heterozygosity studies, using PCR amplificaltion of
microsatellite markers, have confirmed and added to the findings of comparative genomic
hybridization. Mutations in known oncogenes (e.g., KRAS [12p12.1], MYC [8q24.21], SRC
[20q12-q13] or DCC [18q21.3]) and tumor-suppressor genes (e.g., TP53 [17p13.1],
CDKN2A4 [9p21], PTEN [10q23.3] or SMAD4 [18q21.1]) common to many gastrointestinal
adenocarcinomas, are infrequently observed in benign insulinomas. Finally, single-copy
deletion and somatic mutations in the MEN1 gene have been reported in six out of 12 (50%)
and two out of 12 (17%) cases of sporadic insulinomas, respectively, suggesting a role for
this tumor-suppressor gene in a subset of nonfamilial insulinoma cases [103]. Few studies
have evaluated the role of epigenetic modifications on the development of these tumors
[104]. Taken together, these studies highlight the complex genetic mechanisms that give rise
to insulin-producing tumors. Oncogenesis, as demonstrated by an animal model of
insulinoma [104,105], probably involves the coincident occurrence of both proliferative
(e.g., c-Myc) and antiapoptotic (e.g., Bcl-XL) signals. These signals may arise from aberrant
regulation of signal transduction/growth (e.g., protein kinase B/Akt), hypoxia/angiogenesis
(e.g., von Hippel-Lindau disease), cell-cycle progression (e.g., downregulation of cyclin-
dependent kinase inhibitors) and/or genome stabilization pathways (e.g., JunD, P53, WRN;
extensively reviewed in [96]).

Pathophysiology
Although genetic alterations probably account for tumor initiation and progression, systemic
pathophysiology results from the fact that these tumors produce and release insulin
inappropriately. Insulinoma cells fail to adequately suppress insulin as plasma glucose
concentration falls. The relative insulin excess in relation to glucose leads to hypoglycemia.
Clinical, ultrastructural and molecular studies of human insulinomas suggest that defects in
insulin biosynthesis, processing, storage and secretion contribute to the pathophysiology of
the disease. A total of 95% of patients with insulinomas were shown to have elevated fasting
proinsulin plasma levels [83]. This observation suggests a disordered processing of
proinsulin and implicates the insulin-secretory pathway in the pathophysiology of the
disease [84,86]. Histochemical and ultrastructural studies are consistent with this notion and
have shown that human insulinomas contain lower insulin concentration, higher proinsulin
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concentration and a variable number of atypical-appearing secretory granules when
compared with normal β-cells [106]. More recently, contribution of insulin biosynthesis to
the pathophysiology of these tumors has been suggested by a report demonstrating
overexpression of an insulin mRNA splice variant associated with increased insulin
translation efficiency in nine human insulinomas [107]. These findings suggest that
insulinoma cells have lost the biological functions that characterise normally differentiated
β-cells.

Diagnosis
The most useful and practical approach to establish the diagnosis of insulinoma is the 48 h
supervised fast [93]. During the fast, demonstration of whipple’s triad (i.e., biochemical
hypoglycemia, symptoms consistent with hypoglycemia and reversal with carbohydrate
replacement) and inadequately suppressed insulin levels (>3 μIU/ml) or, in some instances,
proinsulin levels (>22 pM) establishes the diagnosis of insulinoma. In a review of 127 cases,
whipple’s triad and elevated insulin levels were present in 95% of cases by 48 h [93]. The
remaining 5% of cases were diagnosed by 72 h but could have been diagnosed by 48 h based
on blood glucose of 50 mg/dl and below (2.7 mM) and insulin levels of 10 μIU/ml and
above. Whipple’s triad in the presence of suppressed plasma insulin levels usually favors
another etiology (reviewed in [95]). In rare cases, plasma insulin levels in patients harboring
an insulinoma may suppress below the 3 μIU/ml cutoff value. Tumors in these patients are
presumed to have retained some glucose-sensing ability. Since proinsulin components are no
longer detected with newer two-site monoclonal insulin assays, it is possible that these
assays are less sensitive at ruling out the presence of insulinoma using a threshold of 3 μIU/
ml. In such cases, an elevated fasting plasma proinsulin level (i.e., 22 pmol/l or 0.2 ng/ml on
the directly measured assay) predicts the presence of an insulinoma with a sensitivity of
82% and a specificity of 95% [83]. Plasma C-peptide levels and sulfonylurea/meglitinide
drug screens are obtained during the fast to exclude a diagnosis of factitious hypoglycemia.
At our center we have not studied the value of surrogate markers of peripheral insulin action
(i.e., glucagon test and β-hydroxybutyrate levels) in the work-up of adult patients with
hypoglycemic disorders [108].

Localization & therapy
Tumor localization followed by surgical enucleation will result in lifelong cure in close to
90% of patients. However, localization of these small tumors (most are <2 cm), represents
the major clinical challenge and is a limiting factor to a successful clinical outcome. Blind
distal pancreatectomies are not recommended, as they pose considerable risk to patients and
are unlikely to result in cure. In a recent review of NIH cases [92], we found that most
conventional noninvasive imaging techniques (i.e., trans-abdominal ultrasound, computed
tomography and MRI) were poor at localizing small tumors (average tumor size: ~1.8 cm), a
result consistent with our previous observations [109] and that of others [110-112]. The
Mayo Clinic has reported a much higher success rate with conventional imaging [108]. If
conventional imaging studies fail to localize the tumor, invasive preoperative localization
procedures selective intra-arterial calcium stimulation (CaStim) should be considered.
CaStim can regionalize 80–90% of tumors across pancreatic regions [92,109]. Endoscopic
ultrasound has an overall reported sensitivity similar to CaStim [110-114]. Success is
skewed towards localization of head tumors. Localization results using radiolabeled
somatostatin receptor analog to localize small insulin-producing tumors have been
disappointing [114-116]. Despite the high reported success rate of intraoperative
localization, it has been our experience that Preoperative tumor localization: influences
surgical approach, increases the success of intraoperative localization and increases the
likelihood that the initial surgery will result in cure [109]. Before surgery, oral or
intravenous carbohydrates are administered to prevent hypoglycemia. Medical therapy, in
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the form of diazoxide, is reserved for metastatic disease, cases in which the tumor cannot be
localized or when surgery is not a therapeutic option. In patients with metastatic disease, we
have observed long-term symptomatic control with diazoxide [94]. Cytotoxic, cytoreductive
and/or somatostatin analog therapy are seldomly needed in insulinoma. Their usefulness in
this setting have been reviewed by others [117,118].

Expert commentary
Insulinomas are small, for the most part, solitary and benign tumors. Although insulinomas
retain some of the functional features of normal β-cells (i.e., the capacity to synthesize and
secrete insulin), they lack important characteristics of fully differentiated β-cells (i.e., the
capacity to process, store and limit insulin secretion to the physiologic glucose range). The
exact genetic lesions and molecular mechanisms underlying this difference have not been
elucidated and are likely to differ among tumors. As a result of this difference, insulin is
released at inappropriate times and results in biochemical and symptomatic hypoglycemia.
The diagnosis is made by first excluding other causes of hypoglycemia and, second, by
directly observing the coincident occurrence of clinical hypoglycemia and detectable insulin
during a 48-h supervised fast. Localization of the tumor is challenging but necessary to
ensure optimal outcome for the patient. Successful surgical removal of the tumor results in
lifelong cure for the majority of patients.

Five-year view
The molecular events that lead to insulinoma development are still poorly understood and
studies to address these issues are needed. Elucidating the underlying basis for aberrant
growth and differentiation may shed light on the genetic, molecular and biochemical profile
that characterize normally differentiated β-cells. The track-record of promising new
noninvasive localization techniques will need to be confirmed in larger series of patients
[119,120]. Preoperative localization may become more important with the increasing use of
minimally invasive laparoscopic techniques to treat these tumors.

Key issues

• The rate of β-cell insulin secretion is the principal factor determining acute
changes in plasma insulin concentration.

• The effect of glucose on the rate of β-cell insulin secretion is restricted to the
physiologic glucose range.

• β-cells are uniquely specialized to respond to ambient fuel, entero-incretin and
neural signals to meet an increased demand for insulin.

• Lesions in cellular pathways important in glucose-stimulation secretion coupling
have been identified as the cause for several forms of congenital
hyperinsulinism.

• Nesidioblastosis is a nonspecific pancreatic histologic finding.

• Nesidioblastosis as the etiological basis for states of insulin excess in adults is
controversial.

• The processing of proinsulin is characteristic of differentiated β-cell function.

• Insulinomas are rare islet tumors that retain the ability to synthesize and release
insulin.
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• Genetic lesions associated with sporadic insulinomas are consistent with the
indolent behavior of these tumors.

• The diagnosis is made by demonstrating both clinical hypoglycemia and
detectable insulin or elevated proinsulin levels during a supervised fast.

• Localization of these tumors is difficult with conventional imaging but is
necessary to ensure the best possible outcome for patients.

• Surgical removal of the tumor leads to resolution of hypoglycemia and
prolonged survival.
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Figure 1. Insulin–glucose dose–response
The relationship between glucose and the rate of insulin secretion is sigmoidal. The maximal
change in the rate of insulin secretion occurs when glucose is within the physiologic range
(shaded area). The half maximal and maximal response are indicated by marks on the y-axis
and indicate the responsiveness of β-cells to glucose. The glucose concentration that elicits
the half maximal response is an index of β-cell sensitivity to glucose. Physiologic and
pathologic factors can influence the sensitivity and/or responsiveness of β-cells to glucose.

Guettier and Gorden Page 16

Expert Rev Endocrinol Metab. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Glucose-stimulation secretion coupling
Aerobic glucose metabolism in β-cells is intimately coupled to insulin secretion. Glucose
enters β-cells through high-capacity glucose transporters (GLUT2), is metabolized by the
low-affinity (Km ~7–8 mM), rate-limiting, glucose-phosphorylating enzyme (glucokinase or
hexokinase IV) and is further oxidized into pyruvate. Reduced NAD (i.e., NADH) generated
in glycolysis is transported from the cytosol to the mitochondria via the malate aspartate or
glycerol phosphate shuttles, preventing feedback inhibition on glycolytic enzymes and
adding mitochondrial-reducing equivalents. Pyruvate is transformed into acetyl-CoA by
pyruvate dehydrogenase, and acetyl-CoA is completely oxidized in the citric acid cycle,
generating molecules of reduced NAD (i.e., NADH) in the process. Electrons from NADH
are donated to the electron-transport chain and a proton gradient is generated across the
inner mitochondrial membrane that drives ATP production via oxidative phosphorylation. β-
cell pyruvate can also be carboxylated by pyruvate carboxylase to oxaloacetate, adding
intermediaries to the citric acid cycle (increasing the efficiency of aerobic glucose
metabolism), a process called anaplerosis. Increases in the cytosolic ATP/ADP ratio leads to
closure of KATP channels (Kir6.2/SUR1), depolarization of the cell membrane and opening
of voltage-sensitive calcium channels. Intracellular calcium entry causes releases of
immediately releasable granules in the vincinity of these channels or release of a ‘highly
calcium-sensitive’ cytosolic pool of granules. Biochemical effectors also involved in insulin
secretion include NADPH generated through pyruvate cycling. Inhibition of fatty acid
oxidation by malonyl-CoA has also been shown to play a role in insulin secretion, perhaps
by generation of fatty acid-derived effectors such as diacylglycerol.
ER: Endoplasmic reticulum; TCA: Tricarboxylic acid; VDCC: Voltage-dependent calcium
channel.
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Figure 3. Proinsulin: amino acid sequence, A and B chains; C-peptide and disulfide bonds are
shown
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