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SUMMARY
Hierarchical functional data are widely seen in complex studies where sub-units are nested within
units, which in turn are nested within treatment groups. We propose a general framework of
functional mixed effects model for such data: within unit and within sub-unit variations are
modeled through two separate sets of principal components; the sub-unit level functions are
allowed to be correlated. Penalized splines are used to model both the mean functions and the
principal components functions, where roughness penalties are used to regularize the spline fit. An
EM algorithm is developed to fit the model, while the specific covariance structure of the model is
utilized for computational efficiency to avoid storage and inversion of large matrices. Our
dimension reduction with principal components provides an effective solution to the difficult tasks
of modeling the covariance kernel of a random function and modeling the correlation between
functions. The proposed methodology is illustrated using simulations and an empirical data set
from a colon carcinogenesis study. Supplemental materials are available online.
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1 Introduction
The goal of this paper is to develop a new methodology for modeling hierarchical, spatially
correlated functional data, where sub-units are nested within units, which in turn are nested
within treatment groups, and the functions are allowed to be correlated at the sub-unit level.
There is an extensive literature for modeling independent functional data with various levels
of hierarchies; see for example, Shi, et al. (1996), Grambsch et al. (1995), Brumback and
Rice (1998), Staniswallis and Lee (1998), Wang (1998), Wang and Wahba (1998), Rice and
Wu (2001), Wu and Zhang (2002), Liang, et al. (2003), Morris et al. (2003), and Wu and
Liang (2004), Yao et al. (2005a; 2005b), Morris and Carroll (2006), Di et al. (2008), among
many others. Recently, Baladandayuthapani, et al. (2008) proposed a Bayesian model for
hierarchical, spatially correlated functional data. However, the methodology for dealing with
such data is still in its infancy and further development is needed.

In modeling spatially correlated hierarchical functional data we face two major challenges.
One is the specification of the covariance structure of random functions. Because of the high
dimensionality, it is not feasible for statistical estimation to employ an unstructured
covariance specification, which is flexible but requires a large number of unknown
parameters. Therefore dimension reduction of some sort is necessary. Some useful
covariance specifications with simpler structure have been considered in the literature. For
example, diagonal covariance matrices have been used to specify part of the covariance
structure by Morris et al. (2003), Morris and Carroll (2006), Baladandayuthapani, et al.
(2008). However, such simple structure is often too restrictive in real data analysis. Another
challenge is modeling spatial correlation of random functions. This is much less studied in
the literature. In the only work we know, Baladandayuthapani, et al. (2008) used a space-
time separable covariance structure: while their work is an important step forward, this
assumption is hard to justify for real data.

To overcome these challenges, we propose to use functional principal components for both
dimension reduction and modeling the spatial correlation of sub-unit level functions. In our
functional mixed effects model, an observed functional data object is decomposed as the
sum of a fixed treatment effect, a unit level random effect representing unit specific
deviation from the treatment effect, a sub-unit level random effect representing sub-unit
specific deviation from the unit effect and an error term. The covariance structures of the
unit level and sub-unit level random effects are modeled using different sets of principal
components and the spatial correlation of sub-unit level random functions is modeled
through the spatial correlation of the principal component scores. We use penalized splines
to model the mean functions and the principal components functions at both the unit and the
sub-unit level. Our approach has two substantial methodological advantages over the
existing approach of Baladandayuthapani, et al. (2008): First, a more flexible covariance
structure is adapted in our model since principal components instead of pre-specified basis
functions are used to represent functional data. Second, we allow a non-separable correlation
structure when more than one sub-unit level principal components are used, see Section 2.5
for a detailed discussion. This paper also makes a contribution to modeling hierarchical
independent functional data. When no spatial correlation is specified, our modeling
framework provides a random effects model alternative to the fixed effects model of
Brumback and Rice (1998). In particular, use of two sets of principal components for
dimension reduction and modeling covariance structure is new in this context.

The idea of using functional principal components is not new, but most existing work is
restricted to independent functions (e.g., Rice and Silverman 1991, Silverman 1996, James
et al. 2000, Rice and Wu 2001, Yao, et al. 2005a, 2005b, Di et al. 2009). Recently, Zhou et
al. (2008) used principal components to model the correlation of a pair of functions. This
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paper extends that work in several important aspects. First, the three-level hierarchical data
structure presented here is much more complex. Secondly, instead of a pair of correlated
functions, a collection of spatially correlated, possibly irregularly positioned functions are
considered in this paper. In addition, the complexity of data and model structure introduces
substantial computational challenges. Naive extension of Zhou et al. (2008) is theoretically
sound but computationally impractical and causes problems with computer storage and
computational time. In this paper, we have developed specific techniques to circumvent such
difficulties by avoiding storage and computation of large matrices, see the supplemental
materials.

Our work is motivated by analyzing data from an experiment using rodent models to
investigate the role of p27, an important cell-cycle mediator, in early colon carcinogenesis.
To investigate the mechanisms by which diet modulates colon tumor development, rats were
fed particular diets of interest for specific periods, exposed to a carcinogen inducing colon
cancer and subsequently euthanized for sample collection. The colon was then resected from
these rats and colonic cells were examined for response of interest. Colonic cells replicate
and grow completely within discrete units called crypts which are finger-like structures that
grow into the wall of the colon. The need of a model for spatially correlated hierarchical
functional data comes from the following three aspects of the data. First, the data are
inherently functional in nature since responses from the cells within each crypt can be
viewed as a function of cell position. Second, the experimental data have a three-level
hierarchy: crypts are nested within rats, and rats within treatment (diet) groups. In addition,
although the rats were independent samples, there may exist spatial correlation at the
deepest level of the hierarchy, since within a rat one crypt may behave in accordance with its
neighboring crypts.

The rest of the paper is organized as follows. In Section 2, we introduce our model for
hierarchical spatially correlated functional data. Section 3 deals with estimation of model
parameters and inference. Section 4 discusses some model specification issues including
tuning parameter selection for penalized splines and choice of the number of principal
components in modeling random functions. Section 5 gives a simulation study that compares
our method with that of Baladandayuthapani, et al. (2008). In Section 6 we show the
application of our proposed model and method to the colon carcinogenesis data. Section 7
concludes the paper.

2 The Model
Due to the complexity of the data structure, we divide our model specification into four
parts: Section 2.1 presents the basic form of our hierarchical mixed effects model of
functions; Section 2.2 introduces the dimension reduction for modeling the covariance
structure of random functions; Section 2.3 describes how to model the correlation of
functions at the sub-unit level of the hierarchy and summarizes the overall covariance
structure of the data; Section 2.4 discusses spline models of functions and gives conditions
for parameter identifiability. Section 2.5 compares the proposed approach with the Bayesian
approach of Baladandayuthapani, et al. (2008).

2.1 Data Structure and Hierarchical Mixed Effects Model
We consider functional data that have a natural hierarchical structure. At the top level of the
hierarchy, there are treatment groups; within treatment groups, there are experimental or
sampling units and nested within these units are sub-units. For the colon carcinogenesis data
we analyze in Section 6, the treatment groups correspond to different diets and time after
exposure to the carcinogen, the experimental units are rats and sub-units are colon crypts.
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A multilevel model that takes into account the hierarchy is the following:

(1)

where t is a generic argument represents the evaluation point of the underlying function,
such as cell position on a crypt or time, and Yabc(t) is the observation of the quantity of
interest at t for sub-unit c from unit b of treatment group a. The functions µabc(·), µab(·), and
µa(·) represent true underlying functions of t for an individual sub-unit, unit and treatment
level, respectively. We treat µa(·) as a fixed effect, modeled as a fixed smooth function;
ξab(·) and ηabc(·) are random effects, modeled as realizations from zero mean random
processes, and εabc(·) are white noise processes. Model (1) can be written succinctly as

(2)

The functions Yabc(t) are usually observed on a finite number of points t, and the sets of
observation points usually vary from sub-unit to sub-unit. The covariance kernels of the
random processes ξab(·) and ηabc(·) are bivariate functions, a direct nonparametric fit of
which is difficult since ξab(·) and ηabc(·) are latent processes and thus not observable.

2.2 Dimension Reduction with Principal Components
We assume that the important mode of variation of the processes ξab(·) and ηabc(t) can be
summarized by a few principal components (PCs). Specifically, for a given treatment group
a, we assume the variation of ξab(·) among units within this treatment group is summarized
by a set of Kξ PCs {fj(·)}. This suggests the reduced rank model

(3)

where αabj are the unit level PC scores, which are assumed to be components of a random
vector from a multivariate normal distribution with mean 0 and diagonal covariance matrix
Dα,a, fj(t) are PC functions subject to the orthogonality constraint ∫ fjfl dt = δjl for j, l = 1, ⋯,
Kξ, δjl is the Kronecker delta.

Similarly, for a fixed unit b in treatment group a, we assume the variation of ηabc(·) is
summarized by a set of Kη PCs {gj(·)} and have the model

(4)

where βabcj are the sub-unit level PC scores, which are assumed to be components of a
random vector from a multivariate normal distribution with mean 0 and diagonal covariance
matrix Dβ,a. The PC functions gj(t) are subject to the orthogonality constraint ∫ gjgl dt = δjl,
j, l = 1, ⋯, Kη.

Use of a few PCs in (3) and (4) effectively reduces the dimensionality of the random effects
processes. The difficult task of modeling the covariance kernel of a stochastic process is
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reduced to modeling the covariance matrix of a low dimensional vector. After dimension
reduction with PCs, model (2) becomes

(5)

where f = (f1, …, fKξ)
T, g = (g1, …, gKη)

T, αab = (αab1, …, αabKξ)
T and βabc = (βabc1,

…,βabcKη)
T. Here, the mean functions µa(·) and the PC functions f1(·), …, fKξ(·), g1(·), …,

gKη(·) are fixed but unknown and need to be estimated, the random effects αab and βabc are
also unknown and will be treated as missing data when fitting the model. Specification of
the joint distribution of the random effects will be given in Section 2.3.

Our formulation and methodology can be extended in a straightforward manner to allow the
PC functions to vary among treatment groups. Such extension only involves some notational
complication. We will not discuss such extension for simplicity of the presentation.

2.3 Modeling Correlations
With the assumption that all random components in (5) come from normal distributions, we
only need to specify the covariance structures to complete the model specification. We
assume the unit level random effects are independent and the sub-unit level random effect
functions are spatially correlated through the correlation of PC scores. To be specific, we
assume that the scores of each PC are realizations of a spatially stationary process. Let xabc
be the physical location of sub-unit c from unit b in treatment group a. It is assumed that for
each j, corr (βabcj, βabc′j) = ρ(dcc′; θaj), where ρ(·) is a correlation function with a parameter
vector θaj and dcc′ = |xabc − xabc′| is the Euclidean distance between the sub-units c and c′.
Any parametric family of correlation functions can be used for ρ(·, ·) (Stein 1999).

One choice of correlation functions is the Matérn family (Handcock and Stein 1993; Stein
1999), which is used in our numerical examples. The Matérn isotropic autocorrelation
function has the general form

(6)

where Kν(·) is the modified Bessel function of order ν. This Matérn function has two
relatively independent parameters. The range parameter, ϕ > 0, controls the rate of decay of
the correlation between observations as distance d increases. Large values of ϕ indicate that
sites that are relatively far from one another are moderately (positively) correlated. The
order parameter ν basically controls the behavior of the autocorrelation function for
observations that are separated by small distances.

Our assumptions on the correlation structure can be summarized as follows.

• The unit level PC scores αabj’s are independent with mean 0 and variance  and
the covariance cov(αabj, αa′b′j′) = 0 if a ≠ a′ or b ≠ b′ or j ≠ j′. In addition, the αabj’s
are independent of the sub-unit level PC scores βabcl and the error εabc(t);

• The sub-unit level PC scores βabcj’s are mean 0 and independent with the error

εabc(t)’s. The covariances are , where ρ(·)
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is a spatial correlation coefficient depending on the distance between xabc and xabc′,
and cov(βabcj, βa′b′c′j′) = 0 if a ≠ a′ or b ≠ b′ or j ≠ j′. Note that the variances of
βabcj’s do not depend on b.

•
For the purpose of identifiability, we require that  and

 for a = 1. More details about the identifiability issue will be given
in Section 2.4.

• The errors εabc(t) are mutually independent with mean 0 and constant variance σ2.

To see that our modeling framework allows non-separable correlation structure
(Schabenberger and Gotway 2005, Section 9.2), consider two sub-units c and c′ from unit b
of treatment group a with physical distance dcc′. The covariance of the corresponding sub-
unit level functions ηabc(t) and ηabc′(t′) is

(7)

which is in general nonseparable, except when there is only one sub-unit PC (i.e., Kη = 1) or
the θaj’s do not depend on j. Parsimonious sub-models of our general model can be obtained
by removing the dependence of the variances of the random effects on the treatment groups
and/or by removing the dependence of the correlation parameters on the treatment groups
and the PCs. Such parsimonious sub-models are useful when we do not have enough data to
support a flexible specification.

2.4 Modeling Functions with Splines
We choose to fit the mean functions and the PC functions using polynomial splines. Use of
polynomial splines can be justified by the good approximation properties of regression
splines to smooth functions as well-studied in applied mathematics (de Boor 2001). Other
basis expansion approximation of functions can also be used in our methodology. Let b(t) =
{b1(t),⋯, bq(t)}T be a spline basis with dimension q. Write µa(t) = b(t)T γµ,a, f(t)T = b(t)TΓξ
and g(t)T = b(t)TΓη, where γµ,a is a q-dimensional vector, a = 1, …, A, Γξ = (γξ,1, …, γξ,Kξ),
Γη = (γη,1, …,γη,Kη) are, respectively, a q × Kξ and a q × Kη matrix of spline coefficients.
The reduced rank model (5) then takes the form

(8)

For identifiability, we require that b(t), Γξ and Γη satisfy the conditions

(9)

The equations in (9) imply orthogonal constraints on the PC functions such that

(10)
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and

(11)

See Appendix 1 of Zhou, Huang and Carroll (2008) on how to construct a spline basis b(t)
that satisfies the orthonormal constraint given in (9).

Denote  and . Only the covariance

matrices of Γξαab and Γηβabc, which are  and  respectively, can be
identified. To identify Γξ, Γη, Dα,a, and Dα,a, we need to impose some restrictions on these
parameters, as detailed in the following proposition. The result follows directly from the
uniqueness of eigen-decomposition of nonnegative definite matrices.

Proposition 1. Assume  and . In addition, assume that the first nonzero
element of each column of Γξ and Γη is positive. Suppose the variances of elements of α1b

and β1bc satisfy  and . Then the model specified by (8) and
(9) is identifiable.

In this proposition, the first nonzero element of each column of Γξ and Γη is used to
determine the sign at the population level. To minimize the influence by finite sample
random fluctuation, in our implementation we have used the elements of the largest
magnitude in each column of Γξ and Γη to determine the sign. In addition, we suggest to let
the first group (a = 1) be the treatment group with the largest sample size to improve
stability of the variance estimates.

2.5 Discussion
Baladandayuthapani, et al. (2008) developed a Bayesian approach for modeling the same
kind of hierarchical functional data considered by this paper. In their modeling framework,
the component functions µa(·), µab(·) and µabc(·) in (1) and (2) are represented using basis
expansions

where b(·) is a q-dimensional vector of basis functions, and γa, γab, γabc are the coefficients
in basis expansion. The treatment effects γa are assumed to be fixed effects and are given a
prior γa ~ N(0, Σ1). The coefficients γab for the unit level functions are mutually independent
for different units b and are assumed to have a N(0, Σ2a) distribution. The coefficients γabc
for the sub-unit level functions are independent across different units b but may be spatially
correlated for different sub-units c within the same sub-unit b. It is assumed that marginally
γabc ~ N(0, Σ3a) and, cov(γabc, γabc′) = ρ(dcc′; θa)Σ3a where ρ(·; θa) is a correlation function
with parameter θa, dcc′ is the Euclidean distance between sub-units c and c′. The Matérn
family of correlation functions is used in their empirical analysis.

If left unstructured, each of the covariance matrices Σ1, Σ2a, and Σ3a has q(q + l)/2 unique
parameters where q equals the number of basis functions used in the basis expansion. Since
q can be relatively large, there is an obvious need for dimension reduction.
Baladandayuthapani, et al. (2008) proposed the following approach for dimension reduction.
They focused on the truncated power basis of quadratic splines
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(12)

where (1,m1(t),m2(t)) is an orthonormal basis of quadratic polynomials, and t1, …, tk are
knots of the splines. The covariance matrices of the coefficient vectors are assumed to have

a special block diagonal structure, i.e., , ,

, where c is a large number serving as a non-informative vague prior,

Ik is a k × k identity matrix,  and  are unstructured 3 × 3 matrices. Using the
proposed structure reduces the number of parameters to 2 for Σ1 and to 7 for Σ2a and Σ3a.

There are two limitations of the approach by Baladandayuthapani, et al. (2008). First, the
covariance structure is assumed separable, that is,

(13)

Separability is a strong assumption that may be hard to justify for a given data set. In
comparison, our approach does not impose the separability assumption and thus can provide
more reliable inference. Second, the marginal block diagonal covariance structure used by
Baladandayuthapani, et al. (2008) is convenient to implement but imposes a usually
unrealistic restriction on the data generating process. In contrast, our principal components
based dimension reduction can model a broader class of covariance structures. The
methodological advantage of our approach is confirmed by simulation results in Section 5.

3 Model Fitting and Inference
3.1 Maximum penalized likelihood

We use the method of penalized maximum likelihood for parameter estimation. Roughness
penalties are introduced to regularize the spline fits of functions (Eilers and Marx 1996;
Ruppert et al. 2003).

For a = 1, …, A, b = 1, …, Ba, and c = 1, …, Cab, suppose the observation points of Yabc(·)
are tabcs, s = 1, …, nabc. Denote Yabcs = Yabc(tabcs), Yabc = (Yabc1, …, Yabcnabc)

T, and

. Recall that b(·) is the q-dimensional spline basis vector. Let babcs =

b(tabcs), Babc = (babc1,…,babcnabc)
T, , and ab = diag(Bab1,

…,BabCab). Denote . Denote Γη,ab = ICab ⊗ Γη where ICab is the
identity matrix of rank Cab. Model (8) for observed data then can be rewritten as

(14)

where εab = (εab1 (tab11),…,εab1(tab1nabc),…,εabCab(tabCab1),…,εabCab(tabCabnabCab))T.

If αab and βab were observable, the joint likelihood of (Yab, αab, βab) can be factored as
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because of the independence between αab and βab. The likelihood of the observed data Yab is

We estimate model parameters by minimizing the following penalized likelihood criterion

(15)

where the Ω’s are roughness penalties and the λ’s are penalty parameters. The roughness
penalties will enforce the smoothness of the fitted mean and PC functions.

We define the roughness penalties using the integrated second derivatives of the fitted
functions. For the mean functions µa(t) = b(t)Tγµ,a, we use the penalty

Similarly, the penalties for the unit and sub-unit level PCs are, respectively,

and

Although more flexible specification is possible, we use three penalty parameters, one for all
mean functions, one for all unit level PC functions, and one for all sub-unit level PC
functions. Selection of these penalty parameters will be discussed in Section 4.1.

Minimization of (15) does not have a closed-form solution. To avoid the computation of the
high-dimensional integral in (15), we treat αab and βab as missing values and use the EM
algorithm (Dempster et al. 1977;Laird and Ware 1982) to compute our parameter estimates.
At each iteration of the algorithm, given a set of current guesses of the parameter values, the
EM algorithm updates the parameter estimates by minimizing the conditional expectation of
the −2× log likelihood, where the expectation is taken under the distribution whose
parameters are set at their current guesses. Details of the algorithm are given in subsequent
subsections. Under mild conditions the EM algorithm converges and each iteration of the
EM decreases the negative log likelihood of observed data (Wu, 1983). Our adding
roughness penalties to the negative log likelihood does not change the convergence
properties of the EM algorithm.
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3.2 The EM algorithm

Let  and denote Vab = cov(βab). Then −2× joint log likelihood of the
“complete data” (Yab, αab, βab) from sub-unit b of unit a is

(16)

The correlation parameters θaj enter the likelihood through Vab. Since sub-units are
independent, the −2× joint log likelihood of the “complete data” (Y, α, β) is

(17)

The E-step of the EM algorithm consists of finding the conditional expectation of (17) given
Yab and the current parameter values. Since the log likelihood is a quadratic form of the
random effects αab and βab, only their conditional first two moments need to be computed.
Details on computing these conditional moments are provided in supplemental materials.
Direct calculation of the conditional moments requires the inversion of the matrix cov(Yab).

This matrix has size Nab × Nab with , which is often very large. In our
empirical example, for a typical rat, there are about Cab = 20 crypts and nabc = 30
observations on each crypt, so the matrix to be inverted is of size 600 × 600. By repeatedly
applying the Sherman-Morrison-Woodbury formula, we developed the computational
devices to circumvent the inversion of this matrix; see Supplemental materials for details.

The M-step of the EM algorithm updates the parameter estimates by minimizing the
objective function which is the conditional expectation of −2× log likelihood given in (17),
or by reducing the value of this objective function as an application of the generalized EM
algorithm. The parameters are well separated in the expression of the conditional log-
likelihood, so that we can update the parameter estimates sequentially given their current

values. We update according to the following order: (1) σ2; (2)  and , a= 1, …, A, i
= 1, …, Kξ and j = 1, …, Kη; (3) γµ,a, a = 1, …, A; (4) Γξ; (5) Γη; (6) the correlation
parameter θaj, a = 1, …, A, j = 1, …, Kη. Details of the updating formula are given in
supplemental materials. Note that when updating Γξ and Γη, some care is needed to enforce
the orthonormal constraints.

In our implementation of the EM algorithm, the initial values are obtained using the
following procedure. We sequentially fit fixed effects models to obtain raw estimates of the
treatment group level, unit level and sub-unit level functions appeared in (2). We first obtain
estimates of the treatment effects ηa(t) by fitting fixed effects models with working
independent covariance structures and use these raw estimates as the initial values of the
treatment effects. Next, we remove the treatment effects from the data and obtain the unit
level effects ξab(t) by fitting separate fixed effects models for each unit. Then, removing
both the treatment effects and unit level effects we obtain the sub-unit level effects ηabc(t) by
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fitting separate fixed effects models for each sub-unit. After raw estimates of unit level and
sub-unit level functions are obtained, the standard principal components analysis is applied
to get the initial estimates of functional principal components and associated variances.
When obtaining the unit and sub-unit level effects, the ridge regression with a small ridge
parameter is used to deal with the singularity problem caused by small sample size in fixed
effects regression. The initial value of the error variance is obtained using the sample
variance of the residuals after removing the treatment effects, the unit level and sub-unit
level functions from the data. The initial values of the correlation parameters are chosen to
be the midpoint of a prespecified interval. With starting values generated by this procedure,
the EM algorithm works well in our simulation and real data analysis; it usually converges
within twenty steps.

3.3 Prediction of random effects functions and inference
Using estimated parameters, the best linear unbiased predictors (BLUP, Henderson 1950) of
the random effects αab and βab are given by α̂ab = E(αab|Yab) and β^ab = E(βab|Yab), whose
closed-form expressions are available in the supplemental materials. The BLUP of the unit
level random function ξab(t) in (2) is f ̂(t)Tα^ab and the BLUP of the sub-unit level random
function ηabc(t) is ĝ(t)Tβ^abc, where f ̂(t) and ĝ(t) are vectors of estimated unit level and sub-
unit level PCs respectively.

The bootstrap (Efron 1979) can be used to obtain standard errors of the parameter estimates.
In a nonparametric bootstrap, we resample units without replacement to ensure that the
covariance structure in the original sample is preserved in the bootstrap sample. In a
parametric bootstrap, we draw bootstrap samples from the model with fitted parameters.
After bootstrap samples are drawn, we estimate the model parameters for each bootstrap
sample and obtain a collection of resampled estimates. The sample standard deviations of
these resampled estimates provide estimates of the desired standard errors. Alternatively, the
sample quantiles of the resampled estimates can be used directly to construct bootstrap
confidence intervals.

4 Model Selection and Assessment
4.1 Specification of Splines and Penalty Parameters

When using penalized splines to fit smooth functions, degree two or three splines are
commonly used, and the placement and number of knots is generally not crucial since the
penalty takes care of overfitting (Ruppert 2002). For a typical application, 10–20 knots
equally spaced over the data range is often sufficient and fewer knots can be used when the
sample size is small or noise level is high.

To choose penalty parameters, one can calculate the crossvalidated score, defined as the
crossvalidated −2× log likelihood, and select the parameters corresponding to the minimum.
Details on computing the observed data log likelihood without forming the large covariance
matrix cov(Yab) are given in supplemental materials. To preserve the covariance structure in
the data, the data from a whole unit needs to be deleted and serve as a validation set in the
crossvalidation. When there are a large number of units, K-fold crossvalidation can be used
for computational efficiency. There are three penalty parameters in our method, so we need
to search over a three dimensional space for a good choice of these parameters. A
multidimensional optimization algorithm can be used to speed up the search. We applied the
downhill simplex method of Nelder and Mead (1965) in our implementation of the method.
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4.2 Selection of the Number of Significant PCs
To determine the number of important PCs at both the unit level and the sub-unit level, first
note that the available data usually set an upper bound on the feasible number of PCs we can
fit in the model. If too many PCs are acquired from the EM algorithm, numerical problems
may occur such as inversion of singular matrices and the algorithm failing to converge. This
is precisely the reason dimension reduction through use of principal components is needed.
See James et al. (2000) for a similar discussion in the case of functional data without spatial
correlation. Leave-one-unit-out crossvalidation or its K-fold version can be used to decide
on the number of significant PCs. This strategy works well in our simulation studies: it can
correctly identify the number of PCs in the data generating model most of times, see Section
5.

In actual data analysis, however, the crossvalidation score may keep on decreasing as more
PCs are included in the model. This phenomenon, also observed in application of principal
components analysis in multivariate analysis, is not surprising since a reduced rank model
with a finite number of PCs is typically only an approximation. We can still use
crossvalidation, not to identify the “correct” model, but to identify the most parsimonious
model that fits the data well. If one arranges the crossvalidation scores according to the
increasing complexity of the model, one usually sees a quick drop of the crossvalidation
scores, followed by much slower decrease; the turning point suggests the suitable number of
PCs. See Section 6 for an illustration of this method.

4.3 Model assessment
Various diagnostic plots can be used to assess whether the number of PCs selected by cross-
validation is sufficient and how well the model fits the data. At the unit level, using too few
PCs will force some unit level effects to be included into the estimates of the sub-unit level
effects. Thus deviation from zero of the unit mean of fitted sub-unit level effects for some
units indicates an insufficient number of PCs at the unit level. At the sub-unit level, if too
few PCs are fitted, a pattern will appear in the unit-wise residual plots. Thus examination of
the unit-wise residual plots can help assess whether the number of PCs obtained from
crossvalidation is sufficient at the sub-unit level. The normal quantile-quantile plots of fitted
random effects and of residuals can be used to assess the distributional assumptions in the
model.

5 Simulation
In this section we illustrate the performance of our method using simulated data and
compare it with the Bayesian method of Baladandayuthapani, et al. (2008). The two
methods differ mainly in the specification of the covariance structure. When setting up the
simulation studies, we considered not only generating data from our reduced rank model but
also from the model of Baladandayuthapani, et al. (2008). We used the existing computer
code from the original paper when applying the Bayesian method.

The errors of estimating the treatment group means are measured using the following
integrated absolute errors

where a denotes the treatment group and the hat indicates estimated values. The errors from
all treatment groups are then averaged to get a summary measure. To facilitate comparison
of the estimated covariance structure from the two methods, we examined the predictions of
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the unit level and sub-unit level random effects. These predictions are given by the posterior
means of the relevant quantities using the estimated covariance structure. Using the notation
in (2) of Section 2.1, the errors of predicting the random effects are measured using the
integrated absolute errors

for treatment a, unit b, and sub-unit c, where the hats indicate predicted values. All unit level
errors are then averaged to get a summary measure at the unit level. Similarly, all sub-unit
level errors are averaged to get a summary measure at the sub-unit level. In our calculations,
the integrals were approximated using a Riemann sum with a grid of 20 equally spaced
points.

In all simulations, there were two treatment groups, twelve units within each treatment
group, twenty sub-units within each unit and twenty observations on each sub-unit. For each
unit, the twenty sub-units were located on a line segment with locations independently
generated from the uniform distribution on [0, 14]. For each sub-unit, the functional
response Y(t) was evaluated at twenty points randomly generated from the uniform
distribution on [0, 1]. Details of setting up the mean and principal components functions,
variance and correlation parameters are given below. We ran the simulation 100 times for
each setup and used the measures described above to assess/compare the performance of the
two methods. When applying our method to the simulated data, we used cubic splines with
five interior knots to fit the functions and used crossvalidation to select the penalty
parameters.

We first considered three different setups from our reduced rank model where we fixed the
forms of the mean and PC functions but varied other parameters of the model. The mean
curves for the two treatment groups were

The unit level PC functions were

(18)

and the sub-unit level PC functions were

(19)

The five-fold crossvalidation identified the correct number of PCs in more than 95% of the
cases, in each setup.

Setup 1. We used a model with one unit level PC f1(t) given in (18) and one sub-unit level

PC g1(t) given in (19). At the unit level, the PC score variances  for treatment

group 1 and  for treatment group 2; at the sub-unit level, the PC score variances

 for treatment group 1 and  for treatment group 2. The spatial
correlation structure for modeling sub-unit level dependence was the Matérn family (6) with
parameters ϕ = 8 and ν = 0.1. The error variance was set to be σ2 = 0.01.
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Setup 2. We used a model with two unit level and two sub-unit level PCs given in (18) and

(19) respectively. The unit level PC score variances were  and  for

treatment group 1 and  and  for treatment group 2. The sub-unit level

PC score variances were  and  for treatment group 1 and  and

 for treatment group 2. The spatial correlation structure was the Matérn family (6)
with parameters ϕ1 = 8, ϕ2 = 4, ν1 = 0.1 and ν2 = 0.3. The error variance was set to be σ2 =
0.01.

Setup 3. This is the same as Setup 2 except that all variance parameters, including PC
variances and the error variance, were halved. This setup is equivalent to doubling the
sample size of Setup 2. We did not simulate data by doubling the sample size because that
would have created a serious computational burden for the Bayesian method.

Next we considered a slight modification of our model where functional data are
independent.

Setup 4. This is the same as Setup 2 except that there was no spatial correlation among sub-
unit level PCs. We applied our program to this setup to test its performance in a situation it
is not designed to handle.

We also considered setups where data were generated from the Bayesian hierarchical
models of Baladandayuthapani, et al. (2008). One setup is presented below. The results for
two other setups are presented in the supplemental materials.

Setup 5. We used the notation introduced in Section 2.5 where a brief summary of the
Bayesian hierarchical model was given. The basis functions corresponding to a three-knot

quadratic splines were as in (12) with , 
and knot locations t1 = 0.25, t2 = 0.5 and t3 = 0.75. The fixed treatment effects were γ1 = (1,
0.5, 1.5, 1, −0.8, 0.3)T and γ2 = (2, −0.5, −0.3, 1.2, −.4, −0.7)T. To specify the unit level
random effects distribution, we set  and

and to specify the sub-unit level random effects distribution, we set  and

The parameters of the Matérn family (6) were set to ϕ = 0.57 and ν = 0.11. The noise
variance was set to be σ2 = 0.01. We ran our method with three unit and sub-unit level
principal components, a specification of our model that provided a reasonable
approximation to the simulation model. The Bayesian method encountered some numerical
problems and could only run on 78 out of 100 simulated data sets. More serious numerical
problems were experienced by the Bayesian method in two setups presented in supplemental
materials.

Zhou et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Table 1 shows the results of comparing our reduced rank method with the Bayesian method.
For setups 1–4, our reduced rank method consistently did a much better job in estimating the
mean functions and in predicting the random effects. The inferior performance of the
Bayesian method might be due to its use of oversimplified covariance matrices and/or of a
separable covariance structure, it might also be that the Baysian model is overfitting the
data. For data generated from the Bayesian model, our reduced rank method is comparable
to the Bayesian method. We do not compare the parameter estimates here since parameters
from the two models have different interpretations. Some results of parameter estimation for
our method are presented in the online supplementary materials.

6 Application to Colon Carcinogenesis Data
In this section we apply our model to the rodent experiment introduced in Section 1. We will
focus on studying the cell expression level of the p27 protein, a cyclin-dependent kinase
inhibitor in normal and neoplastic cells. These data were analyzed previously by
Baladandayuthapani, et al. (2008) using their Bayesian hierarchical model. The data were
also used in Li et al. (2008) to illustrate a method for nonparametric estimation of
correlation functions.

In the experiment, 48 rats were randomized to 4 diet groups: corn oil with butyrate (CO+B),
corn oil without butyrate (CO−B), fish oil with butyrate (FO+B) and fish oil without
butyrate (FO−B). After being fed these diets for 2 weeks, each rat was exposed to the
carcinogen azoxymethane (AOM) and euthanized at one of four randomly chosen time
points: 0, 12 hours, 24 hours and 48 hours. From each rat, 20–30 crypts were selected from
its colon and the physical locations of the crypts were measured in microns. Within rat crypt
distance ranges from 5 microns to about 14, 000 microns. There are about 20–40 cells on
each crypt and their relative cell positions t were calculated such that the bottom of each
crypt has t = 0 and the top has t = 1, with positions in between coded proportionally. The
expression level of p27 was determined for each cell. For details on the measuring process,
see, Hong, et al. (1997). Our goal is to study the phenomenon of crypt signaling, that the
level of p27 in the cells in a given crypt is affected by neighboring crypts and the effect is a
function of crypt distances.

As an illustration of our methods, we use data from rats euthanized at 24 hours only. We
have diet groups as the treatment groups, and each rat is a unit with its crypts as sub-units. In
the notation of our model (8) given in Section 2.4, denote Y for the logarithm transformed
p27 levels which are standardized to have mean 0 and variance 1, denote X for the crypt
location and t for relative cell position. Based on the biological nature of our data and the
short length of the assayed colon slice, it is reasonable to assume that cells on nearby crypts
would have similar p27 responses and the correlation coefficient function between the crypt
level PC scores is stationary in the sense that it only depends on the relative distance
between crypts. As mentioned in Section 2.3, we used the Matérn family of isotropic
autocorrelation function in our model. For simplicity, the same parameters ϕ and ν are used
for all diet groups.

For modeling the diet, rat and crypt level functions of relative cell positions, we used
quadratic B-splines with 5 equally spaced interior knots. Three-fold crossvalidation, with
rats from each treatment group evenly distributed to each fold, was used both to select the
penalty parameters and to determine the number of PCs (Sections 4.1 and 4.2).
Crossvalidation scores of some feasible number of PCs are given in Table 2. We decided to
use one rat level and two crypt level PC functions because, the crossvalidation score
increases significantly if fewer PCs are used and it does not change much if more PCs are

Zhou et al. Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



used. Various diagnostic plots (Section 4.3, not shown) also confirmed that our choice is
reasonable.

Next we report our analysis results on crypt signaling and diet effects. The parametric
bootstrap method was applied with 500 bootstrap samples to estimate the distribution of
parameter estimates. When applying the bootstrap, the penalty parameters are reestimated
for each bootstrap sample while the number of PC’s is fixed. We fixed the number of PC’s
to ensure that model parameters are the same for all bootstrap samples. This may lead to
underestimation of the variation, however the effect will only be slight because the method
of choosing the number of PCs is almost always correct in our simulations.

The estimated rat level PC is almost a constant (not shown). The estimated crypt level PC
functions are shown on the top panels of Figure 1. For the spatial correlation parameters of
the Matérn family, the range parameter ϕ is estimated to be 29.39 and 8.58 with 95% CIs
(4.73, 147.39) and (0.74, 76.08) for the two PC scores respectively; the estimated Matérn
order ν is 0.13 and 0.05 with 95% CIs (0.10, 0.20) and (0.02, 0.12) respectively. The bottom
panels of Figure 1 show the estimated correlation function of crypt level PC scores along
with corresponding 95% CIs for crypt distances from 5 to 10, 000 microns. The estimated
correlation functions strongly suggest the existence of crypt signaling: cells in crypts that are
located close together tend to have similar p27 expression levels; the similarity decreases as
the distance between crypts increases. The correlation function of the first PC scores decay
slower than that of the second PC scores.

Baladandayuthapani, et al. (2008) used a separable space-time covariance structure to
analyze the same data. Our fitted model suggests a nonseparable covariance structure,
because it uses two crypt level PC functions with different correlation parameters and in
particular, the 95% CI for ν1 −ν2 is (0.02, 0.15). More specifically, following (7) in Section
2.3, for two crypts c and c′ with physical distance dcc′ from diet group a, rat b, the
covariance of the corresponding crypt level functions ηabc(t) and ηabc′(t′) is

which is nonseparable since ϕ1 ≠ ϕ2 and ν1 ≠ ν2. Figure 2 plots the fitted correlation
functions as a function of physical distance dcc′ for selected pairs of t and t′. In addition to
suggesting crypt signaling, Figure 2 also suggests that the covariance structure is treatment
dependent and that the correlation at locations t and t′ from two different crypts is higher
when t and t′ are closer.

Figure 3(a) shows the mean diet level functions for the four diet groups. There seem to be
some diet differences especially between the CO+B diet versus the rest of the diets. To
investigate this further, Figure 3(b) shows all pairwise differences between the mean diet
level functions of two diet groups, together with corresponding 95% pointwise confidence
intervals. All diet groups show significant differences in mean (logarithm transformed) p27
level. Using their Bayesian hierarchical model and pointwise Bayesian credible intervals,
Baladandayuthapani, et al. (2008) also found significant difference between the CO+B diet
and the other three diets, but not among the later three. Residual plots available in the
supplemental materials clearly indicate that our reduced rank model provided better fit to the
data than the Bayesian model.
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7 Conclusion
In this paper we have proposed mixed effects models for spatially correlated hierarchical
functional data. Dimension reduction by principal components plays an important role both
in modeling the covariance structure of random functions and in modeling spatial
correlation.

Existing work on modeling covariance structure applied diagonal correlation matrices on
coefficients in certain fixed basis expansions; Baladandayuthapani, et al. (2008) used
truncated power (spline) basis expansions. Our approach also applies diagonal correlation in
basis expansion, but the major difference with existing work is that our basis system is
determined by data. Note that relaxation of the diagonal restriction to the correlation
matrices in the fixed basis approach introduces too many parameters and thus poses
substantial statistical and computational challenges. Our use of principal components basis
functions provides a flexible, yet feasible approach of modeling the covariance structure.
Moreover, instead of modeling the correlation between sub-unit level random effects
directly, we model spatial correlation through principal component scores and therefore
relax the space-time separability assumption employed by Baladandayuthapani, et al.
(2008).
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Figure 1.
Colon carcinogenesis data. Top panels: estimated crypt level PC functions. Bottom panels:
estimated correlation functions of PC scores over crypt distance and corresponding 90%
pointwise confidence intervals.
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Figure 2.
Estimated correlation functions over crypt distance for selected combinations of relative cell
depth (denoted as t1 and t2).
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Figure 3.
Estimated mean log p27 level over relative cell depth for the four diet groups. CO is Corn
Oil, FO is Fish Oil and with or without (±) Butyrate supplement. The left figure gives the
fitted group mean functions. The right figure compares the mean functions with 95%
pointwise confidence intervals.
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Table 2

The crossvalidation scores for some candidate models.

# of rat level PCs # of crypt level PCs

1 2 3 4

1 −608.00 −702.84 −721.70 −725.65

2 170.46 −703.45 −722.52 −728.32
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