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Abstract
A biphasic mixture model is developed which can account for the observed tension-compression
nonlinearity of cartilage by employing the continuum-based Conewise Linear Elasticity (CLE) model
of Curnier et al. (J Elasticity 37:1–38, 1995) to describe the solid phase of the mixture. In this first
investigation, the orthotropic octantwise linear elasticity model was reduced to the more specialized
case of cubic symmetry, to reduce the number of elastic constants from twelve to four. Confined and
unconfined compression stress-relaxation, and torsional shear testing were performed on each of nine
bovine humeral head articular cartilage cylindrical plugs from 6 month old calves. Using the CLE
model with cubic symmetry, the aggregate modulus in compression and axial permeability were
obtained from confined compression (H−A =0.64±0.22 MPa, kz = 3.62 ± .97 × 10−16 m4/N.s, r2 =0.95
±0.03), the tensile modulus, compressive Poisson ratio and radial permeability were obtained from
unconfined compression (E+Y = 12.75 ± 1.56 MPa, ν− =0.03±0.01, kr =6.06±2.10×10−16 m4/N.s,
r2 =0.99±0.00), and the shear modulus was obtained from torsional shear (µ=0.17±0.06 MPa). The
model was also employed to successfully predict the interstitial fluid pressure at the center of the
cartilage plug in unconfined compression (r2 =0.98±0.01). The results of this study demonstrate that
the integration of the CLE model with the biphasic mixture theory can provide a model of cartilage
which can successfully curvefit three distinct testing configurations while producing material
parameters consistent with previous reports in the literature.

INTRODUCTION
The primary mechanical function of articular cartilage is to transmit loads across diarthrodial
joints while maintaining low friction and wear. The remarkable ability of this tissue to sustain
itself over the human lifetime of seven to eight decades has been investigated both
experimentally and theoretically. Mechanical tests of articular cartilage under various
configurations have established that the material is anisotropic and inhomogeneous in tension
[1,2,3,4], as well as in compression [5,6], that it exhibits a viscoelastic response [7,8,9,10,11,
12], and that its response differs in tension and compression [13,14,15,16,17,18]. The latter
behavior may be referred to as tension-compression nonlinearity or bimodular response. The
tissue has also been shown to exhibit a nonlinear response under finite deformation [2,19,20,
21]. Over the years, several theories have been proposed to describe one or more of these
characteristic behaviors; some of these theories have been quite successful in predicting
experimental responses under one set of testing conditions, but no single model has yet been
able to describe the full complexity of the material.
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It is now generally accepted that porous media models, such as the biphasic mixture theory of
Mow et al. [11] or the electromechanical model of Frank and Grodzinsky [22] can appropriately
explain the time-dependent viscoelastic response of cartilage as resulting primarily from the
dissipative drag of interstitial fluid flowing through the porous solid matrix. These models have
been employed most frequently under the assumption of a linear isotropic solid matrix
undergoing infinitesimal deformation. Good curvefitting and predictive ability have been
found between the linear isotropic biphasic theory and experimental results in confined
compression creep and stress-relaxation [11,23,24] and dynamic loading [22,25]. The theory
has been somewhat less successful in curvefitting the early time response of in situ cartilage
indentation tests with a flat porous indenter [26,27], and unsuccessful in predicting the response
in unconfined compression between impermeable platens [28,29,30,31]. However, Cohen et
al. [14,32] demonstrated that the linear transversely isotropic biphasic theory could provide
successful curvefits of indentation, unconfined compression and confined compression tests,
suggesting that difficulties encountered with the isotropic model could be overcome by
modeling tissue anisotropy. Similarly to the earlier work of Lanir [33], these authors proposed
that the use of a transversely isotropic model was a first approximation to the modeling of
tension-compression nonlinearity, with the axial Young's modulus representing the
compressive modulus, and the transverse Young's modulus representing the tensile modulus.
Alternatively, Suh and Bai [34] were able to show successful curvefits of confined and
unconfined compression and indentation experiments using a linear isotropic poroviscoelastic
biphasic model first proposed by Mak [35] and also used by Setton et al. [12].

In a recent study, Bursac et al. [15] suggested that the linear transversely isotropic biphasic
model, while successful in curvefitting confined and unconfined compression data, could not
properly predict the radial compressive stress measured on the side wall of the testing chamber
during confined compression, using the methodology of Khalsa and Eisenberg [36]. At the
same time, Soulhat et al. [16] proposed a fibril-network reinforced model for the solid phase
of biphasic cartilage which incorporates tension-compression nonlinearity, where the collagen
fibrils can only sustain tensile stresses. They demonstrated that this model could successfully
curvefit the response of cartilage in unconfined compression.

In the present study, we propose to similarly formulate a biphasic model which can account
for the observed tension-compression nonlinearity of cartilage. This formulation employs the
continuum-based Conewise Linear Elasticity (CLE) model of Curnier et al. [37] to describe
the solid phase of a biphasic mixture, rather than the transversely isotropic linear biphasic
theory proposed by Cohen et al. [14] or the composite theory approach proposed by Soulhat
et al. [16]. It is the hypothesis of this study that such a model can successfully curvefit and
predict experimental measurements in confined and unconfined compression. The long term
objective of this study is to develop a single constitutive model of cartilage which can describe
its mechanical response in multiaxial, tensile, compressive and shear testing configurations
under small strains. The significance of this long term aim is to provide a better understanding
of the state of stress within articular cartilage under normal physiologic conditions and the
mechanism by which changes in the stresses may be implicated in the etiopathogenesis of
osteoarthritis; furthermore, a constitutive model which more accurately reflects the mechanics
of cartilage under various loading conditions can provide a better assessment of the role of
interstitial fluid pressurization in reducing the friction and wear of articular cartilage [38].

MODEL FORMULATION
In the biphasic theory of Mow et al. [11], articular cartilage is modeled as a binary mixture of
an intrinsically incompressible solid phase, representing primarily the collagen fibers,
proteoglycans and chondrocytes, and an intrinsically incompressible fluid phase representing
the interstitial water (up to 85% by weight in healthy cartilage). The total stress tensor σ inside
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the tissue is the sum of the interstitial fluid pressure p and the elastic or effective stress σe

resulting from deformation of the solid matrix,

(1)

where I is the identity tensor. The momentum equation for the mixture, under quasi-static
conditions and in the absence of body forces is given by

(2)

where ∇· denotes the divergence operator and ∇ is the gradient operator. The continuity
equation for the mixture is given by

(3)

where w = φf (vf − vs) is the flux of fluid relative to the solid, φf is the fluid volume fraction
(tissue porosity) and vs, vf are the solid and fluid phase velocities, respectively.

These governing equations need to be complemented by constitutive relations to provide a
complete formulation of the theory. As in the original biphasic theory (Mow et al., 1980), the
relation between fluid flux and pressure gradient is taken to be linear, as per Darcy’s law:

(4)

where k is the permeability tensor.

Orthotropic CLE Model
Since cartilage has been shown to have different properties in tension and compression, it is
proposed to use the Conewise Linear Elasticity theory developed by Curnier et al. [37] to
account for this “bimodular” response. Furthermore, because it has been shown experimentally
that the tensile properties of cartilage differ along directions parallel and perpendicular to the
split lines [1,2,3,4], it is proposed that a most general infinitesimal strain formulation for
cartilage should accommodate orthotropic symmetry, since two preferred directions (or planes
of symmetry) which are orthogonal automatically define a third direction (plane) orthogonal
to the first two. This is achieved by employing the “orthotropic octantwise linear elasticity”
model of Curnier et al. [37] for the elastic stress of the biphasic mixture, which reduces to:

(5)

with summations implicit over a and b (a,b = 1,3; b ≠ a), and λab = λba ; tr(.) is the trace operator
which yields the first invariant of its tensorial argument, and . In this expression,
E is the infinitesimal strain tensor related to the solid displacement u through E = (∇u + ∇uT)/2.
Aa is a texture tensor corresponding to each of the three preferred material directions defined
by the unit vector aa (aa · aa = 1, no sum over a, • denoting the dot product of vectors), with
Aa = aa ⊗ aa (⊗ denoting the dyadic product of vectors); from its definition it can be
recognized that Aa is symmetric, i.e., . For orthotropic material symmetry, aa · ab = 0
when b ≠ a, and the three planes of material symmetry are defined by their unit normal vectors
aa. The three preferred directions are generally taken to be: a1 parallel to the split line direction,
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a2 perpendicular to the split line direction, and a3 normal to the articular cartilage surface (Fig.
1). The term Aa : E represents the component of normal strain along the preferred direction
aa. Note that the tension-compression nonlinearity is embodied in the fact that

(6)

This signifies that the material properties λaa differ whether the normal strain component along
the direction aa is compressive or tensile. Therefore, the material properties of this model are
λ−aa, λ+aa, λab, and µa (a,b = 1,3; b ≠ a, no sum), or more explicitly, the twelve constants
λ−11, λ+11,λ−22,λ+22,λ−33,λ+33, λ23,λ13,λ12,µ1,µ2,µ3. There are eight fourth-order elasticity
tensors for this orthotropic octantwise linear elasticity model, since Aa : E could be either
negative or positive along any of the three possible directions, a=1, 2 or 3. The convexity of
the energy potential is ensured by the positive definiteness of each of these eight elasticity
tensors [37]; the general relations for satisfying these constraints can be found in the standard
treatment of orthotropic materials (e.g., [39]).

In smooth linear elasticity, there are nine material constants in an orthotropic model; thus the
CLE theory requires three additional constants. A major advantage of this theory is that it is
formulated in invariant form. It is based on the formulation of a piecewise quadratic energy
potential which yields the above piecewise linear stress-strain law with piecewise constant
elasticity modulus [37].

A complete set of governing equations for this biphasic mixture model employing the CLE
theory for the solid phase is obtained by substituting the constitutive relation of Eq.(4) into the
continuity equation, Eq.(3), and the relation of Eq.(5) into the momentum equation, Eq.(2),
recognizing that vs = Dsu/ Dt in Eq.(3) (where Ds/ Dt is the material derivative with respect to
the solid phase). The primary unknowns of these two differential equations are therefore the
solid displacement u and fluid pressure p, which can be obtained for any given problem by
solving these equations with the proper boundary conditions. This model is hypothesized to
be the most general formulation for predicting the experimental behavior of cartilage under
infinitesimal strains with a piecewise linear stress-strain law, which remains to be verified from
experimental studies. It can potentially model tension-compression nonlinearity as well as
tissue anisotropy. As in all constitutive relations, spatial tissue inhomogeneity can be accounted
for by varying the material properties as a function of position, e.g., through the depth of the
cartilage layer; since the direction of split lines is also likely to vary from site to site on an
articular surface, the orientation of the preferred material directions may also be
inhomogeneous.

Cubic Symmetry
Experimental validation of the biphasic CLE model with its twelve elastic constants cannot be
achieved realistically within a single study. The model described above is likely to require
several studies to fully investigate its validity and predictive ability. Typically, it would require
testing of cartilage samples in tension, compression and shear with respect to all three planes
of symmetry; however, due to specimen size limitations, there remain many challenges to
testing articular cartilage in tension along the direction perpendicular to the articular surface
(a3), in compression parallel and perpendicular to the split lines (a1, a2), or in torsional shear
about a1 and a2. As an intermediate step in this process, it is proposed to raise the level of
material symmetry of the octantwise orthotropic CLE model to that of cubic symmetry, which
is still defined by the same three texture tensors and constitutive relation of Eq.(5), but with
the following identities:
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(7)

In this cubic symmetry model, the number of elastic material constants reduces from twelve
to four. The primary limitation of this model, in relation to the known experimental behavior
of articular cartilage, is that it cannot distinguish between the tensile responses of cartilage
along directions parallel and perpendicular to the split lines; the tensile properties along those
two directions would be averaged into a single value. Its major advantage however is that it
reduces the number of material constants considerably, while preserving the tension-
compression nonlinearity response, which may be useful as a first step in the process of
validating this theoretical framework for cartilage. Therefore, the experimental validation
performed in this study is achieved using the testing configurations of confined compression
along a3, unconfined compression along a3, and torsional shear about a3, which unlike tensile
tests tend to be less sensitive to the averaging of tensile properties along a1 and a2.

Stability Constraints
For cubic symmetry, it is straightforward to derive constraint equations for the material
constants to satisfy positive definiteness of each of the elasticity tensors which arise for the
various combinations of Aa : E positive or negative; if it is also required that uniaxial loading
produce an axial normal strain of the same sign as the corresponding normal stress, the
constraints can be combined into the following expressions:

(8 a)

(8 b)

(8 c)

where H−A = λ−1 + 2µ and H+A = λ+1 + 2µ. It will become apparent below that H−A is the
confined compression modulus and that the expressions in Eq.(8 c) are the unconfined
compressive (E−Y) and tensile (E+Y) Young's moduli, respectively. For cartilage, the
experimental results presented below will demonstrate that H−A ≤ H+A, so that in practice Eq.
(8 b)1 will be more constraining than Eq.(8 b)2.

Reference Configuration
In a bimodular material, the stress-strain relation is strictly non-linear (even if piecewise linear).
Therefore, since the principle of linear superposition does not apply, the choice of an
appropriate reference configuration for a particular analysis may be of significant importance.
It is assumed in this model that the articular cartilage reference configuration of zero-elastic
stress and zero-strain is that which prevails under hypertonic conditions, in analogy to the
experimental work of Eisenberg and Grodzinsky [40] and the theoretical framework of the
triphasic theory for soft-hydrated tissues [41] which accounts for swelling (pre-stress) effects.
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Therefore, under non-hypertonic initial conditions (e.g., in isotonic conditions when cartilage
is immersed in 0.15 M NaCl solution) there exists a tensile swelling strain which can be
represented by the tensor Es. For the cubic symmetry model, it can be shown that this state of
strain is isotropic, i.e., Es = Es I, where Es is the scalar measure of the swelling strain. In theory,
every analysis should account for this initial state of strain since choosing between λ+1 and
λ−1 is dependent on the sign of the strain relative to the reference configuration, not the strain
relative to the initial configuration for a particular problem. In practice however, the magnitude
of the swelling strain is relatively small [42,43] in comparison to tissue strains under
physiologic loading conditions; this tensile swelling strain may also be offset by the presence
of a tare compressive load, which is typically applied under experimental testing conditions.
Therefore, it can be shown that in most cases (and for the testing configurations of this study
in particular) the choice of tensile versus compressive moduli according to Eq.(6) is only
slightly affected whether the initial or reference configuration is used.

Experimental Configurations
All three testing configurations of this study employ the same cylindrical plug of articular
cartilage, of thickness h and radius r0. In this study it is assumed for simplicity that the material
is homogeneous, with no variations of the properties through the depth of cartilage.
Furthermore, all analyses assume that axisymmetric conditions prevail; implicit in this
assumption is that the split lines of cartilage are oriented radially relative to the specimen axis
of symmetry. These simplifying assumptions are conceptually similar to those of Cohen et al.
[14] and Soulhat et al. [16]. Because cartilage cylindrical plugs are easily harvested with their
longitudinal axis along a3, the cylindrical coordinate axes for the analysis coincide with the
preferred material directions, i.e., [a1 ] = [1 0 0]T, [a2 ] = [0 1 0]T and [a3 ] = [0 0 1]T. From
these vectors the texture tensors can be easily deduced and it is found that A1 : E = Err, A2 :
E = Eθθ and A3 : E = Ezz, which are the normal strain components along the radial,
circumferential and axial directions, respectively. The permeabilty tensor is also assumed to
have its principal directions aligned with these preferred material directions, so that its matrix
form in this coordinate system is given by

(9)

where kr, kθ, kz are the radial, circumferential and axial permeability constants, respectively.

Confined Compression
In the confined compression configuration of this study, the cartilage plug is compressed by a
free-draining porous filter inside a cylindrical chamber with impermeable side wall and base
(Fig. 2b). It can be shown that for this configuration, the strain tensor, when expressed in matrix
form in the current coordinate system, reduces to

(10)

where uz is the axial deformation (along a3). Since the only non-zero normal strain is
compressive, it follows that A3 : E < 0 and from Eq.(5) and Eq.(7) the matrix of the elastic
stress tensor in the current coordinate system reduces to
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(11)

Substituting these relations into the governing equations yields the following differential
equation for the axial displacement:

(12)

where uz = uz (z,t). The boundary conditions are formulated for a confined compression
chamber with impermeable bottom surface (z = 0) where the displacement and fluid flux are
zero, and where the deformation is applied on the opposite surface (z = h) via a free-draining
porous indenter. Thus, for stress-relaxation problems,

(13)

where ua (t) is the prescribed surface ramp displacement given by

(14)

and V0 is the ramp velocity. The general form of Eq.(12) subject to the boundary conditions
of Eq.(13)–Eq.(14) is the same as that for an isotropic, linear biphasic model and the solution
has been provided previously (e.g., [11]). Once the solution for uz (z,t) has been obtained, the
total reaction force is calculated from

(15)

and the interstitial fluid pressure is given by

(16)

In the present theory, the confined compression response is governed by the material constants
H−A and kz.

Unconfined Compression
In unconfined compression, the cartilage plug is loaded between impermeable platens (Fig.
2c) and it is assumed that the friction between the cartilage and platens is negligible [28]. For
this configuration, the matrix of the strain tensor reduces to
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(17)

where ur is the radial displacement. The radial and circumferential normal strains (Err = ∂ur/
∂r and Eθθ = ur/r) are tensile while the axial strain (Ezz = ∂uz/ ∂z) is compressive; thus, A1 :
E > 0, A2 : E > 0 and A3 : E < 0. The matrix of the stress tensor is then given by

(18)

For this type of problem, it has been shown [28] that the axial strain is not a function of the
spatial coordinates, so that ∂uz/ ∂z ≡ ε(t). The governing differential equation for the radial
displacement is given by

(19)

where ur = ur (r, t). The boundary conditions for this problem are

(20)

with the second boundary condition representing, , while also
recognizing that the fluid pressure is ambient at the radial edge, p(r0,t) = 0. In a stress-relaxation
experiment, the axial strain is given by

(21)

where ua (t) has the same form as in Eq.(14). Once the solution has been obtained, the fluid
pressure is given by

(22)

and the total reaction force at the platens is

(23)

As can be observed from these equations, the unconfined compression response is governed
by the material constants H+A, H−A, λ2 and kr. The mathematical solution for this equation is
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identical to the linear transversely isotropic biphasic analysis provided by Cohen et al. [14],
though the physical interpretation of the material constants is somewhat different.

At equilibrium, when the fluid pressure has subsided, the radial displacement is a linear
function of the radial coordinate and thus Err = Eθθ; from this relation as well as Eq.(18), Eq.
(19) & Eq.(20), the equilibrium Young's modulus  and Poisson's ratio ν−=−Err/
Ezz in compression can be derived,

(24)

The expression for E−Y is the same as that of Eq.(8 c)1; re-arranging the above expressions
produces E−Y = H−A −2λ2 ν−. When using the constraint of Eq.(8 b)2, then −1 < ν− <1/2,
however, for cartilage, the more restrictive constraint on Poisson's ratio in compression derives
from Eq.(8 b)1, i.e.,

(25)

thus, for positive values of ν−, the greater the ratio of tensile to compressive modulus H+A/
H−A, the smaller the upper bound on Poisson's ratio will be [16]. (Note that conversely, for
uniaxial tension, Poisson's ratio would be ν+ = λ2/ (H−A + λ2) and the range of ν+ would
effectively be restricted to −1 <ν+ <1/2.)

An additional useful analysis is that of the response of the cylindrical plug under rapid
compressive loading, which becomes nearly identical to the response of an incompressible
elastic solid [44,45]. Under such isochoric conditions, ∂uz/ ∂z = ε and ∂ur/ ∂r = ur/ r = −ε/ 2 at
t = 0+, from which it follows that

(26)

Since these stress components are all spatially homogeneous, the interstitial fluid load support
at t = 0+ is given by the ratio of the pressure to the total axial stress, i.e.,

(27)

Thus, for a linear biphasic material (H+A = H−A), the instantaneous fluid load support is equal
to 1/3 [28] while for a bimodular material with H+A > H−A, it can approach unity either as λ2
approaches H−A or when H+A ≫ H−A.

Torsional Shear
In torsional shear about the a3 direction, the specimen is clamped between two porous platens
which interdigitate with the tissue to prevent slippage (Fig. 3). The matrix of the strain tensor
for this problem reduces to
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(28)

where uθ is the circumferential displacement. From the CLE constitutive relation,

(29)

Substituting these stress components into the momentum equation indicates that there is no
fluid pressurization and no transient response for this type of problem; the equation yields the
classical torsion solution,

(30)

where α is the twist angle per unit cylinder height. From this solution, the non-zero shear stress
component is  and the torque is obtained by integration,

(31)

The angular displacement imparted by the platens to the specimen is θ0 = αh. The torsional
shear solution is governed by the material constant µ. The above analysis demonstrates that
such measurements can yield the shear modulus from a simple testing configuration; it also
demonstrates that torsion about one of the preferred material directions involves neither tensile
nor compressive moduli even though the principal normal strains assume both tensile and
compressive values.

Materials and Experimental Methods
Three glenohumeral joints of 6 month old bovine were obtained from a local abattoir. After
dissection, cylindrical plugs of cartilage (n=9, diam. = 4.78 mm) were punched out from the
humeral head and microtomed (Leica Instruments GmbH, Nussloch, Germany, Model
SM2400) by 20–100µm at the deep zone to produce a parallel surface to the intact articular
side, resulting in a mean±std.dev. thickness of h=0.85±0.14 mm. Specimens were stored at
−25°C until ready for use.

Testing Apparatus
Confined and unconfined compression tests were performed on the same apparatus, fitted with
different testing chambers and loading platens depending on the type of test (Fig. 2). This
apparatus consists of a computer controlled stepper micrometer (Model 18500, Oriel
Instruments, Stratford, CT, step size 0.7–1.2 µm) connected in series with a linear variable
differential transformer (LVDT) for measuring displacements (HR 100, Schaevitz Sensors,
Hampton, VA), and a multiaxial load cell (JR3, 20E12A-M25B, 6-axis load cell, Woodland,
CA) mounted on its base. The LVDT provides measurements of the specimen axial deformation
(uz) while the load cell measures the axial reaction force (Fc, Fu). The stepper micrometer is
driven by a personal computer equipped with a National Instruments data acquisition card
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(PCI-MIO-16XE, Austin, TX) and running the LabView data acquisition and control software.
The output from the LVDT and load cell are also monitored with this card and software. The
stepper micrometer was operated under load control, via a feedback control loop using the load
transducer, for the application of the specimen tare load; displacement control was employed
for the stress-relaxation tests in confined and unconfined compression. The order of testing for
confined and unconfined compression was randomized and all tests were conducted in
physiological buffered saline (PBS) solution.

For unconfined compression experiments, the tissue was compressed between two
impermeable flat platens (Fig. 2c). The fixed, bottom aluminum platen had a 1 mm hole
connecting to a piezoresistive microchip pressure transducer (NPC 1210-100G-3N; Lucas
NovaSensor, Fremont, CA; range 0–690 kPa gauge pressure), similar to the one used in
previous studies [24,25]. The top platen was covered with a 1 mm thick glass slide. The
specimen was mounted with its articular surface facing the fluid-filled hole leading to the
pressure transducer. A tare load of 0.89 N (50 kPa) was first applied; following equilibrium,
as indicated by fluid pressure reducing to zero, a stress relaxation experiment was initiated
where the displacement ua (t) of the top stainless steel platen was ramped at constant velocity
(V0 =0.25 µm/s) until 10% tissue strain was reached (V0t0 = 0.1h) at which time the
displacement was maintained constant. The unconfined compression reaction force Fu(t) and
fluid pressure at the center of the articular surface, p(r = 0,t), were recorded as a function of
time. At the completion of the stress relaxation test the tissue was unloaded and allowed to re-
equilibrate for 1 hour.

For confined compression tests, the specimen was loaded into a confining chamber, 4.78 mm
in diameter (Fig. 2b). Loading was applied on the specimen via a porous indenter, 4.76 mm in
diameter. The same loading protocol was used as for unconfined compression, starting with
the tare load and followed by the axial tissue displacement ua (t). The confined compression
reaction force Fc (t) at the articular surface was recorded as a function of time. At the completion
of both stress relaxation tests the tissue was frozen at −25°C for shear testing on a subsequent
day.

A second apparatus was used for shear tests (Fig. 3), which employed a load cell (Sensotec 0–
45 N, Columbus OH) and torque transducer (RTS-10, 0–0.035 Nm, Transducer Techniques,
Temecula CA) placed inline and connected to a stepper micrometer (Oriel Instruments,
Stratford, CT). For these tests, performed within 15 days of the confined and unconfined
compression stress-relaxation tests, the specimen was thawed, allowed to equilibrate at room
temperature in PBS for 1 hour, and then mounted between two porous loading platens. As for
stress-relaxation tests, the specimen was compressed between the platens to a tare load of
0.89N. Following tare equilibrium, a step rotation of θ0 =0.016 rad was applied about the axis
of the cylindrical specimen using a stepper motor (Slo-Syn Model 440, Warner Electric, Ann
Arbor MI). The resultant equilibrium reaction torque, T, was measured with the torque
transducer; for all specimens, torque equilibrium was achieved within 60 seconds.

Data Analysis
For confined and unconfined compression, a least-squares curvefitting algorithm was used to
find the best-fit material parameters by matching the experimentally measured transient
reaction force with the corresponding theoretical response (Eq.(15) or Eq.(23)). For
computational efficiency, the theoretical responses were determined using a numerical finite
difference scheme for solving the governing differential equations (Eq.(12) or Eq.(19)); central
difference was used for spatial differentiation and backward difference in time, yielding a fully
implicit scheme. The spatial solution domain (0 ≤ z ≤ h for confined compression and 0 ≤ r ≤
ro for unconfined compression) was divided into 40 equal intervals and the finite difference
solution was obtained at each time step using a linear solver for band-diagonal systems of
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equations. Numerical integration was employed for calculating the reaction force in unconfined
compression, Eq.(23), using the trapezoidal rule. Curvefitting was performed using the BFGS
quasi-Newton optimization method for minimizing a function with simple bounds using a
finite-difference gradient (IMSL Fortran Numerical Libraries, Visual Numerics, Houston, TX),
with the objective function given by the root-mean-square of the residual error between the
experimental and theoretical load response.

The parameters H−A and kz were obtained by curvefitting the total load response Fc(t) to the
confined compression solution (Fig. 4). Using this value of H−A in Eq.(23), H+A, λ2 and kr were
obtained by curvefitting the total load response Fu(t) from unconfined compression (Fig. 5).
The shear modulus µ was obtained from Eq.(31) using the equilibrium torque response T, given
the specimen radius r0 and thickness h.

Once the material parameters had been determined from curvefitting, the fluid pressure at the
articular surface of the specimen was subsequently predicted from theory for unconfined
compression using Eq.(22) at r = 0, and compared with the corresponding experimental data
to test the predictive ability of the model. Curvefits and predictive comparisons between
experimental and theoretical results were assessed with a nonlinear coefficient of determination
r2 [24,46].

RESULTS
The mean±std.dev. values of the material properties (n=9) were found to be: H−A=0.64±0.22
MPa and kz=3.62×10−16 ±0.97×10−16 m4/N.s from curvefitting the transient confined
compression response (r2=0.95 ±0.03, Fig. 4), H+A=13.2±1.7 MPa, λ2= 0.48±0.23 MPa, and
kr= 6.06×10−16 ±2.10×10−16 m4/Ns from curvefitting the transient unconfined compression
data (r2 = 0.99±0.002, Fig. 5). A paired two-tailed t-test performed on the radial and axial
permeability yielded p=0.001. The model predicted the transient fluid pressure response with
an r2 =0.98±0.01 in unconfined compression (Fig. 5). The shear tests produced µ = 0.17 ± 0.06
MPa. Table 1 summarizes the material properties obtained for each specimen by curvefitting
the experimental responses, as well as r2 values for the curvefitting of the confined compression
load response (c.c.f.) and unconfined compression load response (u.c.f.), and for the prediction
of the fluid pressure in unconfined compression (u.c.p.). The elastic constants provided in Table
1 (H−A, H+A, λ2, µ) represent a complete set of properties for a material with cubic symmetry;
these properties can be combined to produce alternative material constants as summarized in
Table 2 (E−Y, E+Y, λ−1, λ+1, ν−) calculated from the results of Table 1. Using a paired Student
t-test, λ−1 (Table 2) and λ2 (Table 1) were found to be statistically different (p<0.001), which
technically precludes the possibility that the material is isotropic in compression.

The average material properties and tissue dimensions described above were substituted into
the governing equations for unconfined compression to calculate the load supported by
interstitial fluid pressure as a function of time during the stress-relaxation test,

(32)

where p(r,t) is given in Eq.(22). The magnitudes of Pu (t) and Fu (t) and the fraction of the total
load supported by fluid pressure, Pu/ Fu, are plotted as a function of time in Fig. 6 for the
average material properties listed in Table 1.
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DISCUSSION
Good curvefits of experimental data were achieved with the CLE-biphasic model described in
this study, as may be assessed from the results of Table 1. Importantly, no a priori assumption
was made about Poisson's ratio in the process of curvefitting the transient response of articular
cartilage in unconfined compression [14,16]. In addition to the successful curvefits, it was
demonstrated that the interstitial fluid pressure response in unconfined compression could be
predicted from the theory with good accuracy (Fig. 5), as determined from the near-unity
correlation between theory and experiment (Table 1, r2 u.c.p.), providing further support
toward the validation of this model. This prediction serves as an important further test of the
theory since it employs the material properties obtained from other measurements to calculate
the fluid pressure.

Bimodular Response
The long-term hypothesis of this study is that a biphasic mixture model which accounts for the
tension-compression nonlinearity and anisotropy of the tissue solid phase can predict the
experimental response of articular cartilage under a wide variety of testing configurations. The
CLE theory of Curnier et al. [37] was employed to model a piecewise-linear, or bimodular
response of an orthotropic solid phase under infinitesimal strains. Due to the large number of
material constants arising in this model, it was proposed to first adopt a simpler model with
cubic symmetry to reduce the number of elastic properties from twelve to four. In order to
characterize these material properties, along with the tissue permeabilities which govern the
transient response, three different testing configurations (confined and unconfined
compression and torsional shear) were employed on the same cartilage specimens, each of
which yielded a subset of the tissue material properties. Confined compression subjects the
material to compressive strains only whereas unconfined compression produces both
compressive and tensile strains, thereby providing the ability to estimate both compressive and
tensile moduli from these two tests. It was demonstrated that the theory could successfully
curvefit the transient stress-relaxation responses of confined and unconfined compression, as
assessed by the nonlinear correlation coefficient for each of these tests. The material properties
thus obtained demonstrated a very significant disparity between the tensile and compressive
moduli of cartilage (H+A ≫ H−A or E+Y ≫ E−Y), which differ by a factor greater than twenty,
confirming the necessity of modeling this bimodular response. The value of H+A, when
substituted into the expression for Young's modulus in tension, Eq.(8 c)2, produces a value of
E+Y =12.75 ± 1.56 MPa (Table 2). Tensile properties of bovine humeral head cartilage have
been reported previously by Woo et al. [2], under a strain rate of 1%/s, whereas the current
study reports the tensile modulus under equilibrium conditions which precludes a direct
comparison. For human humeral head cartilage, a recent study has shown that the tensile stress-
strain response may be somewhat nonlinear, with the equilibrium tensile modulus averaging
4.2 MPa at 0% strain for specimens harvested parallel and perpendicular to the local split line
direction, from the surface and middle zones of cartilage [17]; however, at 16% tensile strain,
this equilibrium modulus increased to 19.6 MPa. In this context, the tensile modulus reported
in the current study may properly represent an average modulus for an assumed linear tensile
response, supporting the hypothesis that the CLE constitutive model produces material
constants that are physically meaningful; nevertheless, in a future development of this theory,
it may become necessary to generalize the constitutive relation to accommodate a nonlinear
response in tension. Importantly, considering that three independent tests were employed to
gather the four elastic constants of the theory, the stability constraints of Eq. (8) were satisfied
by the material constants of every tested cartilage sample (Table 1 & Table 2).

Lanir [33] and Cohen et al. [14,32] were the first to suggest that tension-compression
nonlinearity of cartilage could explain the observed experimental response of cartilage in
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unconfined compression, which until then had remained an elusive goal [28,29,30,31]. They
demonstrated this point by simulating the cartilage tension-compression nonlinearity with a
transversely isotropic biphasic model using an axial elastic Young's modulus much smaller
than the modulus in the transverse plane. This approach was deemed reasonable in unconfined
compression, where the normal strains are compressive in the axial direction and tensile in the
transverse plane. Bursac et al. [15] adopted this model in their analysis of cartilage unconfined
compression and produced similarly good curvefits of their experimental responses; however,
when they tested the same cartilage samples in confined compression, measuring the radial
normal stress on the confining chamber’s side wall [36], they found stress magnitudes two to
three times smaller than predicted by the transversely isotropic model. They suggested that
their study thus pointed out the limitation of simulating tension-compression nonlinearity with
transverse isotropy. Concurrently, Soulhat et al. [16] proposed to overcome the limitations of
this model by using a true bimodular response for the solid phase of the biphasic mixture. This
was achieved by employing a composite model for the solid phase where the high-modulus
collagen fibrils, which can sustain tensile stresses only, are embedded in an isotropic ground
matrix having a lower modulus. These authors were also able to achieve good curvefits of their
experimental measurements in unconfined compression, though it remains to demonstrate
whether their model could explain the experimental findings of Bursac et al. [15]. The number
of elastic material constants in the transversely isotropic model is five, whereas the model of
Soulhat et al. [16] requires three elastic constants and an assumed fiber volume fraction
distribution. For the specific configuration of unconfined compression, the governing
equations of the models employed by Cohen et al. [14] and Soulhat et al. [16] are identical in
form to those presented in the current study [Eq.(19)–Eq.(22)], though the constitutive relations
and material constants are not the same. As a result, all three models would be expected to
equally describe the response of cartilage in unconfined compression; furthermore, a term-by-
term comparison of these equations can serve to relate some of the material constants of these
three models.

The CLE model adopted in this study offers similar advantages to the model of Soulhat et al.
[16], using a somewhat different approach. Though the bimodular response of cartilage
described by the current model is a manifestation of the fibrillar nature of the collagen matrix,
there is no explicit attempt to model the microstructure of the material in the CLE model [48,
49,50]. This approach is similar to the analysis of composite materials where, for example, the
stacking of multiple laminates with different fiber orientations may still achieve a material
response with orthotropic symmetry, i.e., with only three preferred material directions. Thus,
in the present analysis, the preferred directions aa (a=1,3) do not represent three fibrillar bundle
directions per se, but rather the planes of symmetry resulting from fibrillar bundles oriented in
multiple directions whose compounded effect is to impart an orthotropic response to cartilage.
The choice of orthotropic symmetry is predicated by the presence of split lines in cartilage, as
described above in the motivation for the choice of this model.

Radial Normal Stress in Confined Compression
According to Eq.(11), the radial normal stress on the side wall of the confined compression
chamber is given by , therefore a measurement of the equilibrium value of the
radial stress under a known axial strain can produce a direct measurement of λ2. Such direct
measurements have been performed by Khalsa and Eisenberg [36] who found that on average
H−A =0.40 MPa and λ2 =0.13 MPa (using the current notation for the corresponding material
parameters), for 1–2 year old bovine femoral knee cartilage, in the range of 5% to 26%
compressive strain. Using the same methodology for radial stress measurement in confined
compression, Bursac et al. [15] reported strain-dependent results of material constants from
both confined and unconfined compression of 3–4 week old bovine patellar groove cartilage,
with H−A =1.72−0.79 MPa, E−Y =1.50−0.68 MPa, and λ2 =0.40−0.39 MPa for compressive
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strains ranging from 5.6% to 13.9%; these authors noted that the observed strain-softening
response of their study was unusual. In the higher range of compressive strain, their results are
relatively close to those of the current study (Table 1 & Table 2; H−A =0.64 MPa, E−Y =0.60
MPa, and λ2 =0.48 MPa), considering differences in the source of material and their removal
of ~0.5mm from the superficial zone of their cartilage samples; substitution of their
experimentally derived material constants into Eq.(24) above would produce ν− ≈ 0.055 and
H+A ≈ 6.7 MPa.

Interstitial Fluid Load Support
An interesting consequence of using the CLE-biphasic model over the linear isotropic biphasic
theory is that the former predicts a greater magnitude of interstitial fluid pressurization than
the latter in unconfined compression. Equation (27) and Fig. 6 demonstrate that for the average
properties derived from the experiments of this study, the peak magnitude of the fluid load
support reaches 97.5% of the total reaction force; this fluid load support remains above 90%
for a duration of 210 seconds, confirming that fluid pressurization remains significant for
physiological loading durations. In contrast, the linear isotropic biphasic theory predicts a peak
fluid load support of only 33% in unconfined compression [28], even while it predicts a peak
of 100% in confined compression [24] and up to 96% in the contact of cylindrical layers [51,
52]. Clearly, as per Eq.(27) and the experimental results in Table 1, the large difference between
H+A and H−A, and the closeness of λ2 and H−A both contribute to increase this fluid load support.
Effectively, the tension-compression nonlinearity of cartilage promotes greater interstitial fluid
pressurization in the tissue than a linear material response would otherwise provide because
the higher tensile stiffness causes a greater resistance to radial tissue expansion under axial
compressive loading; the implication of this result is that fibrillation of the surface layer of
articular cartilage, which is often a pre-cursor to full-blown osteoarthritis, produces a lower
tensile stiffness (e.g., [53]), thus potentially a smaller disparity between the tensile and
compressive moduli, that would reduce the cartilage fluid load support according to the present
findings. This loss of fluid load support has been previously hypothesized to be a significant
mechanism in the pathogenesis and progression of osteoarthritis. Indeed, several recent studies
have proposed that cartilage interstitial fluid pressurization is of major importance in relation
to mechanical function, such as load support and stress-shielding of the solid matrix [24,25,
45,51,52,54] as well as cartilage friction and wear [38,55,56].

Poisson's Ratio
A material which exhibits a much greater modulus in tension than compression will necessarily
exhibit a small Poisson ratio in compression because the tendency for the tissue to expand
radially is strongly resisted by the tensile stiffness. In the CLE model, this is manifested by the
restriction of Eq. (25) which, for the average material constants of this study, restricts the
compressive Poisson ratio to an upper bound of 0.045. A similar restriction was observed in
the fibril-network reinforced model of Soulhat et al. [16]; these authors expressed concern
about this apparent limitation of their study, in light of earlier findings by Jurvelin et al. [57]
who reported optical measurements of Poisson's ratio in compression for bovine articular
cartilage averaging 0.186 ± 0.065. In the current study, using Eq.(24)2, we predict from theory
that ν− =0.034 ± 0.014 (Table 2). However, in recent preliminary experimental studies [58],
we have performed direct measurements of immature bovine articular cartilage in unconfined
compression using chondrocytes as fiducial markers, observed under epifluorescence
microscopy as described by Schinagl et al. [6], and found that Poisson's ratio averaged 0.058
±0.023, smaller than previously reported by Jurvelin et al. and in better agreement with the
methodology of the present study. It is important to note that because very few studies have
reported on direct measurements of the compressive Poisson's ratio of articular cartilage to
date, this issue requires further experimental investigations, supported by theoretical
predictions which account for the recognized bimodular response of cartilage. In tension,
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Poisson's ratio has been reported from several studies to exceed unity [2,17,59,60]; whereas
the assumption of cubic symmetry in the current study's implementation of the octantwise
orthotropic CLE model imposes an upper bound of 0.5 on ν+, the more general orthotropic
CLE model can potentially account for such measurements and experiments are currently in
progress which analyze the tensile response of cartilage using this theoretical framework.

Permeability
From the result of this study, the permeability was found to be statistically different in the axial
and radial directions, suggesting that the permeability tensor k may not be isotropic; the larger
permeability observed along the radial direction may be a reflection of the ultrastructural
organization of the collagen fibrils, particularly in the superficial zone where the fibrils are
oriented tangentially to the surface, potentially facilitating radial flow while restricting axial
flow. It has also been suggested that interdigitation of a porous loading platen with the cartilage
may introduce artifacts in the measurement of permeability from confined compression [47],
which may serve as an alternative explanation to the observed differences. However, a more
definitive verification of this observation would require direct measurements of the
permeability.

Infinitesimal Strain Assumption
A tare load was applied to the cartilage samples which produced an average compressive tare
strain of approximately 8%, primarily to ensure complete confinement in the confined
compression test. Based on our prior experience [24,25], proper confinement is essential to
produce good agreement between theory and experiment. The equilibrium strain of 10%
prescribed for the confined and unconfined compression experiments was selected as a
compromise between the constraint of using infinitesimal strain theory and the desire to apply
more physiological loads. As can be deduced by comparing the general expressions for the
Lagrangian and infinitesimal strain tensors, the error introduced when using infinitesimal strain
theory for strains of 10% is on the order of 1% strain (or ten percent relative error), which is
generally considered acceptable in soft tissue mechanics. If the infinitesimal strain formulation
of this model is properly validated from experiments, the natural subsequent step will be to
formulate a corresponding finite deformation model to properly account for physiological
loading magnitudes.

Multiaxial Material Properties
The results of this study suggest that the CLE model, when integrated within a biphasic mixture,
has the potential to model the response of cartilage in a greater number of experimental testing
configurations than possible with previous models. This assessment is based on the ability of
the model to curvefit the stress-relaxation response of the same cartilage samples in confined
and unconfined compression and in shear, as well as its ability to predict the interstitial fluid
response in unconfined compression, while accounting for the known tension-compression
nonlinearity of the tissue. All four elastic constants of the CLE model with cubic symmetry
were obtained from this study, in addition to two out of possibly three distinct permeability
constants. These encouraging results motivate further studies whose aim may be to characterize
the response of cartilage under other testing configurations, such as confined and unconfined
compression and torsional shear along the directions a1 and a2 (parallel and perpendicular to
the split lines), as well as indentation tests, and uniaxial or biaxial tensile tests. These series of
tests can help determine whether the set of material constants which appear in the more general
orthotropic CLE-biphasic model (i.e., the twelve elastic constants and three permeability
constants) may reduce to a smaller set through general identities such as, e.g., µ1 ≈ µ2 ≈ µ3 (as
appears to be the case for meniscal tissue [61]) or E−Y1 ≈ E−Y2 ≈ E−Y3 (for bovine cartilage,
[18]). Furthermore, since the tensile properties (e.g., [53]) and compressive properties (e.g.,
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[6]) of cartilage are known to vary significantly through the depth of the articular layer, it will
be necessary to investigate the depth-variation of the CLE-biphasic material constants as well.
Such variations may be important when interpreting the measurements of Poisson’s ratio from
unconfined compression [57] and confined compression [36], within the context of the CLE-
biphasic model.
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Figure 1.
For the octantwise orthotropic CLE model of the solid phase of cartilage, the three preferred
directions of material symmetry are taken to be: a1 parallel to the cartilage split line direction,
a2 perpendicular to the split line direction, and a3 normal to the articular cartilage surface.
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Figure 2.
(a) Apparatus for performing confined and unconfined compression tests. A different testing
chamber was employed for (b) confined, and (c) unconfined compression.
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Figure 3.
Apparatus for performing torsional shear tests.
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Figure 4.
Experimental confined compression stress-relaxation response  and corresponding
theoretical curvefit for a typical specimen.
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Figure 5.
Experimental unconfined compression stress-relaxation response  and
corresponding theoretical curvefit for the same specimen as in Fig. 4. The experimental
interstitial pressure at the specimen center [p(r = 0,t)] and corresponding theoretical prediction
are also presented.
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Figure 6.
Interstitial fluid load, Pu(t), total load Fu(t), and ratio of fluid to total load support, Pu/ Fu, as
a function of time for unconfined compression stress-relaxation, using the average material
properties listed in Table 1.
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